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Joint Mean Oscillation and Local Ideals in
the Toeplitz Algebra II: Local Commutivity
and Essential Commutant

Jingbo Xia

Abstract. A well-known theorem of Sarason [11] asserts that if [T, T},] is compact for every h € H,
then f € H® + C(T). Using local analysis in the full Toeplitz algebra T = T(L>°), we show that the
membership f € H* + C(T) can be inferred from the compactness of a much smaller collection of
commutators [Ty, Tj,]. Using this strengthened result and a theorem of Davidson [2], we construct a
proper C*-subalgebra J(L) of T which has the same essential commutant as that of T. Thus the image
of T(L) in the Calkin algebra does not satisfy the double commutant relation [12], [1]. We will also
show that no separable subalgebra 8 of T is capable of conferring the membership f € H* + C(T)
through the compactness of the commutators {[T, 5] : S € 8}.

1 Introduction

In this sequel to our earlier work [13], we continue to explore the C*-algebraic im-
plications of various local oscillatory behaviors of functions. As it is a sequel, we
will follow the notation of [13]. Thus T denotes the unit circle and dm the Lebesgue
measure on T normalized so that m(T) = 1. We write L? for L?(T, dm) and H? for
the Hardy subspace of L?, 1 < p < oco. Let P: [* — H? denote the orthogonal
projection. Given f € L*°, the Toeplitz operator T and the Hankel operator H are
defined by the formulas Tfp = Pfy and Hrp = (1 — P) fo respectively, ¢ € H>.
We have Tgy — TgTy = HyHy. Let T denote the full Toeplitz algebra. That is, T is
the C*-algebra generated by {Ty : f € L>}. Let X be the collection of compact
operators on H. It is well known that X C T.

For each 7 € T, let X, denote the ideal in T generated by X and {T;, : n € C(T),
n(7) = 0}. Recall that the usual localization in T is simply the fact that () . K; = K
(3, p. 198].

Recall from [9] that, for f € BMO and 7 € T, the local mean oscillation of f at T
is

1

LMO(f)(r) = léig)l sup{ m

/|f_fl|dmi|)\—T|SéforallAeI}.
I

Here and in what follows, I always denotes an arc in T with |I| = m(I) > 0, and
fi = |, f dm/|I|. Recall from [13] that, given f,g € BMO and 7 € T, the joint local
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mean oscillation of f and g at 7 is defined to be

LMO(f, 8)(7)
1 1
=1l — — fildm— —gldm:|AN—71|<dforall\el;.
imsap{ - (17 =l [l glams a7 < storaitne 1

Both LMO(f) and LMOC( f, g) are useful invariants in the study of T [9], [13].

Given any 7 € T, we let L(7) denote the collection of bounded functions £ on T
which are continuous on T\ {7}. For any such 7, we also define H(7) = H*NL(7).
If G is a subset of L>°, T(G) denotes the norm-closed operator algebra generated by
{T, : g € G}. In the case G is L* itself, we will simply write T instead of T(L*°).

The results contained in this paper are motivated by, and can be viewed as a nat-
ural extension of, a number of previous investigations [2], [7], [9], [11], [13]. Recall
that a well-known theorem of Sarason [11] asserts that, if f € L> and if [Ty, Ty] is
compact for every h € H*, then f € H* + C(T). Throughout the paper, we will
write Q = 1 — P. It is well known that Qn € VMO ifn € C(T). Also, because T is
compact, for any f € BMO, we have f € VMO if and only if LMO(f)(7) = 0 for
every 7 € T. Thus our first result is a local version of Sarason’s theorem:

Theorem 1 Let f € L™ andletT € T.

(@) If[Ty, Ty] € K, forevery h € H(T), then LMO(Qf)(7) = 0.
(b) IfLMO(Qf)(7) = 0, then [Ty, T,] € X for every g € H*.

An immediate consequence of this is a stronger version of Sarason’s theorem: The
membership f € H*+C(T) can be inferred from the compactness of a much smaller
collection of commutators [T, Tj].

Corollary 2 Let H denote the subalgbra of H* generated by | J ., H(7). If f € L™
is such that [Ty, Ty,] is compact for every h € JH, then f € H* + C(T).

A key motivating factor for our consideration of the subalgebras H(7) of H* is
the following remarkable result of Davidson [2].

Theorem 3 [2] If S is a bounded operator on H* which is not the sum of a bounded
Toeplitz operator and a compact operator, then there is an h € H* such that [S, Tp] is
not compact. Furthermore, h may be required to have at most one discontinuity.

In other words, one may require the h in Theorem 3 to belong to some H(7) in
the notation of the present paper.

Let H be a Hilbert space and let 8 be a subset of B(H). Recall that the essential
commutant of § is the subalgebra {T € B(H) : [T, S] is compact for every S € 8} of
B(H). Using Theorem 3 and Sarason’s theorem mentioned earlier, Davidson proved
in [2] that the essential commutant of T is T(QC), where QC = (H°° + C(T)) N

(H ®©+C (T)) = VMO NL*>. Using Theorem 3 and Corollary 2 in place of Sarason’s
theorem, we can produce an algebra smaller than T whose essential commutant also
equals T7(QC).

Corollary4 Let L be the norm-closed subalgebra of L generated by J__ L(7). Then

the essential commutant of T(L) equals T(QC).

TeT
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As we will show in Section 3, T (L) is strictly contained in 7. It is well known that
T is contained in the essential commutant of T(QC). Thus it follows from Corol-
lary 4 that the second essential commutant of T(£) differs from T(L). This brings
Voiculescu’s double commutant relation [12] into the picture.

Given a separable Hilbert space H, let Q denote the Calkin algebra B(H)/X(H)
andlet7: B(H) — Q denote the quotient map. Voiculescu proved in [12] that if A is
a separable unital C*-subalgebra of Q, then A coincides with its double commutant
inQ,ie, A= A".Thesame s also true if A = m(N), where N is any von Neumann
algebra [8], [10]. In [1], Berger and Coburn constructed a simple, non-separable,
unital C*-subalgebra A of Q for which the double commutant relation fails, i.e.,
A # A’ Their construction used Toeplitz operators on the Segal-Bargmann space.
Corollary 4 leads to another example of a C*-subalgebra A of Q with the property
A # A’. Whereas the A in the Berger-Coburn example is a simple C*-algebra, the
A in our example below obviously has a non-trivial ideal.!

Theorem 5 Let: B(H*) — Q = B(H?)/X denote the quotient homomorphism and
let L be the same as in Corollary 4. Then A = w(T(L)) is a unital C*-subalgebra of Q
for which the double commutant relation fails, i.e., A # A"

Let us now consider a separable unital C*-subalgebra § of T. Since, by Voiculescu’s
theorem, the double essential commutant of § must coincide with § + X and since
T is contained in the essential commutant of T(QC), the essential commutant of §
must properly contain T(QC). That is, there is a bounded operator A on H? such that
A ¢ T(QC) and such that [A, S] is compact for every S € 8. This naturally invites the
question, can such an A be found within the Toeplitz algebra J? Better yet, is there
such an A in the form of a Toeplitz operator Ty with some f ¢ H* + C(T)?

Another look at Sarason’s original theorem and its improved version, Corollary 2,
also leads to the same questions. That is, now that we know there is a closed proper
subalgebra 3 of H> such that the compactness of the commutators {[T¢, Tj] : h €
H} implies f € H*+C(T), is there a separable subalgebra of H> which has the same
property? More generally, does there exist a separable subalgebra 8 of T which has the
property that the compactness of the commutators {[T, S] : S € 8} necessitates the
membership f € H*+C(T)? Our last theorem answers these very natural questions.

Theorem 6 Suppose that § is a subset of T and suppose that § is separable in the
operator-norm topology. Then there is a real-valued f € L* such that f ¢ H>* +C(T)
and such that [T, S] is compact for every S € 8. Moreover, given such an 8, there is a
7 = 7(8) € T such that thereis an f € L(T) which satisfies the above requirements.

The rest of the paper consists of the proofs of these results. More specifically,
the proofs of Theorems 1 and 6 and Corollaries 2 and 4 will be given in Section 2.
Section 3 contains the proof of Theorem 5 along with some remarks.

!Since the initial submission of this paper, the author has learned a great deal more about the relation
A # A"’ for C*-subalgebras A of Q. First of all, in the literature there is an example of a C* -subalgebra A
of Qwith A # A’’ dating back to 1972, namely Example 2.4 in [8]. Furthermore, the relation A # A’/
appears to be ubiquitous among non-separable C*-subalgebras of Q in at least the following sense: The
author has managed to show that if B is any von Neumann algebra whose dimension as a linear space is
infinite, then B contains a C*-subalgebra A such that 7(A) # m(B) and {m(A)}’' = =(B) [14].
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2 Local Commutivity
To prove Theorem 1, we need to recall a result from our earlier work [13].

Theorem 7 [13, Theorem 2] Let f,g¢ € BMO and 7 € T. Then H;Hy € X:
if and only if LMO(Qf, Qg)(7) = 0. If, in addition, f and g are real-valued, then
HyHy € X if and only if LMO(f, g)(7) = 0.

Theorem 7 takes care of the operator-theoretical portion of the proof of Theo-
rem 1; what remains is a function-theoretical construction.

Proposition 8 Suppose that f € BMO and that 7 is a point in T such that
LMO(f)(1) > 0. Then there exists an h € H(7) such that LMO(f, h)(7) > 0.

Proof By the obvious circular symmetry, it suffices to consider the case where 7 =
1. That is, assuming LMO(f)(1) > 0, we need to find an h € J{(1) such that
LMO(f, h)(1) > 0.

We start by picking a C*°-function ¢ on R with the properties that 0 < ¢ < 1 on
R, that{ = 1on[1/3,2/3],and that { = 0on R\ (1/6,5/6). Since LMO(f)(1) > 0,
there is a sequence {I,,} of open arcs in Tand a § > 0 such that lim,,_, o, sup{|1— A :
A € I} = 0 and such that

1
(2.1) 1A |f— fi,|dm >0 foreveryn > 1.
nl JI,

Because |I,| — 0, passing to a subsequence if necessary, we may further assume

(i) IL={e":a,<t<p,}, where —7/2 < o, < 3, < /2
(i) |Lir] <277-107" - ||C/||) - || for every n > 1.

(By the definition of ¢, it is obvious that ||(’||cc > 1.) Now, for each n > 1, define
the function &, on T by the formula

6@ =¢(5=2). H<r

Thus each £, is a C*°-function on T and vanishes outside I,,.
Next we use induction to produce a sequence {s, }, where each s, is either 1 or —1,
such that

n
(2.2) —2< ) 56\ <2 forallA € Tandn > 1.
=1
We start by picking s; = 1. Suppose that n > 1 and thats;,...,s, € {1, —1} have

been chosen such that

m
—2< Zsjgj(A) <2 foral\eTand1<m<n.
j=1
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Then define s, as follows. If Z?Zl si§;j(A) > Oforevery A € 1,11, then we set s,y =
—1. Otherwise, i.e., if Z;‘ 15i€i(X) < 0 for at least one A € Iy, we set s, = L.

Since &,+1 = 0 on T\ I,41, it is clear that we still have —2 < Z”H 5;£;(A) < 2forall
A € T in the case that s, is chosen to be —1. On the other hand we claim that

n n

1
g 5;i6i(N) < T for every \ € I,y if g 5;j(A*) < 0 for some \* € I41.
. pa

Indeed from the definition of §; it is easy to see that |£;(A) —&;(A*)] < (|| ||eo/|Lj]) -
|Li1] for all X\ € I.41. By condition (ii), ([|¢/]|oc/|Lj]) - [Ine1] < 27" - 107! for every
j < n. Since Z;’Zl si&i(\) < Z?Zl ;&) + Z;l:l 1€;(A) — & (A%)], our claim is
verified. Thus, in the case s,.; is chosen to be 1, we also have —2 < 27:1 5;igi(A) <2
forall A € T. By induction, we have the desired sequence {s,}.

Define £ = 3 + Zjil s;&;. It is obvious that, if U is an open arc containing 1,
then all but a finite number of terms in Z;’il s;¢j vanish on T\ U. Hence £ is a
C®-function on T \ {1}. Furthermore, it follows from (2.2) that

(2.3) 1 <&\ <5 foreveryAe T\ {1}.

Next we show that

(2.4) hmlnfm/ |€ — & |dm > %

Indeed, because |s;| = 1, for any n > 2, we have

25) €&l =16 — €l - > 1 — (€.
k>n 1<j<n

When k > n, fln |&k| dm/|L| < |I|/|L,] < 27% by condition (ii). Thus

(2.6) kg =p=nl,

In k>n k>n

Now, if j < nand A € I, then |{;(A) — (§j);,] < fI 1€i(N) = & (w)| dm(w)/|1,| <

sup,e; [§i(A) = §W)| < (¢ oo/ 1) - 1] < (1€ [oo/ITn—1]) - [I] < 27" by the
definition of §; and (ii). Therefore

27) / S 16— €

‘ n| 1, 1<j<n

dm < (n—1)27".

Finally, by the definition of ¢ and &,, we can write I, = E U F U G such that |E| =
|F| = |G| = |I,|/3 and such that §, = 0 on Eand &, = 1 on F. Hence

1 > Bl |F|
2.8) — n— dm

W=

0=&nl+ |1—€zn|—

=&l >
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Obviously, (2.4) follows from (2.5)—(2.8).
Let u be the harmonic extension of log £ to the unit disc D by the Poisson formula
and let v be the harmonic conjugate of u define by the conjugate formula. That is,

T el 4z

et —z

u(z) +iv(z) = % / logé&(e)dt, zeD.

—T

(2.3) ensures that log £ is also C*° on T'\ {1}. Thus, by a well-known theorem about
conjugate functions (see, e.g., [5, p. 106]), the boundary value of v is continuous on
T\ {1}. Therefore, if we set

h = exp(u + iv),

then the outer function & is bounded and continuous on T \ {1}. In other words,
h € H(1). Since |h| = £ on T, we have |h — h;| > |& — |hy||. Note that

f[n |€ =&, dm§2f1n |& — 7| dm for any r € R. Thus it follows from (2.4) that
1 1 1 1 1

2.9) liminf— [ |h— hy|dm > liminf — — e lldm>= = ==,

( ) lnnl)g)l |In/[n In| m = lnnllolg |In/[”|£ | In|| m = 2 3 6

Since the sequence {I,} of arcs converges to the point 1, combining (2.1) and (2.9)
and recalling the definition of LMO, we now have

1
dm—/ h—hy,
0],

as desired. This completes the proof. ]

LMO(f, b)(1) Zliminfll1|/ - f . g »
n—oo n In

Proof of Theorem1 (a) Let f € L° and 7 € T be such that [T, T;] € X for every
h € H(7). By the analyticity of h, we have [Tf, Ty] = Ty, — TwTy = HHy. Thus
Theorem 7 tells us that LMO(Qf, Qh)(1) = 0 for every h € H(7). The analyticity
of h also means that Qi = h — h(0). By the definition of LMO, it is clear that
LMO(Qf, h)(t) = LMO(Qf,h — h(0)) (r). That is, the condition [Ty, T;] € K-
implies LMO(Qf, h)(t) = 0 for every h € J(7). Proposition 8 now tells us that
LMO(Qf)(7) = 0.

(b) Suppose that LMO(Qf)(7) = 0. For any g € H®, it follows from the def-
inition of LMO and the boundedness of g that LMO(Qf, Q¢)(7) = 0. Thus, by
Theorem 7, [Ty, Ty] = H; Hy € XK. This completes the proof. ]

Proof of Corollary 2 If f € L is such that [Ty, T},] € X for every h € H, then it
follows from Theorem 1 that LMO(Qf)(7) = 0 for every 7 € T. By the compactness
of T, this means that Qf € VMO. Thus the Hankel operator Hy = Hy is compact,
which implies that f € H* + C(T) (see [4] or [15, p. 198]). [ |

Proof of Corollary4 Let S be an operator in the essential commutant of T(L). Since

L contains every }(7), Theorem 3 tells us that S = Ty + K with f € L>* and K € K.
Since T(QC) D X, it suffices to show that f € QC. Because L DO H, it follows
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from Corollary 2 that f € H*> + C(T). Since T(L) is *-symmetric, Tf = T}k also
commutes with T(L) modulo compact operators. Thus f also belongs to H*+C(T).
Hence f € QC. ]

Lemma 9 For any given T € T, there is a real-valued f € L(7) which satisfies the
following two conditions:

(i) LMO(f)(r) > 0.
(ii) Ifg € L and if T is a Lebesgue point for g, then LMO(f, g)(7) = 0.

Proof As was the case for the proof of Proposition 8, it suffices to consider the case
that 7 = 1. Define the function f on T by the formula

1 ifo<t<1/2
fley=<200—1t) if1/2<t<1
0 ifr € [-m, 7]\ [0,1].

It is obvious that f is continuous on T \ {1}, i.e., f € L(1). Now if we set I, =
{e" : —27" <t < 27"} for n > 1, then it is also obvious that fln |f — fi,ldm/|L,| =
1/2. Since the sequence {I,,} of arcs converges to 1, it follows that LMO(f)(1) > 1/2,
which verifies property (i).

Next we show that f also satisfies condition (ii). Let ¢ € L* be such that 1 is a
Lebesgue point for this function. Let € > 0 be given. Then thereisa 0 < 6 < 1/2
such that

r

1 :
(2.10) 5 lg(e") —g(1)]|dt < 2 whenever 0 < r < 4.

Now consider any arc I = {¢' : a <t < b} such that —§ < a < b < 6. Write

1 1
L(I) = — — fildm— - dm.
0 =g [1f = flame [1g =0l dm

Since f(e") = 1when0 <t < 1/2and f(e'') = 0 when —1/2 < t < 0, it is clear
that L(I) = 0 if either 0 < a or b < 0. Thus it suffices to consider the case where
a < 0 < b. But, whena < 0 < b, it is clear from (2.10) that [, |g — g(1)| dm/|I| <
2 - (e/4) = ¢/2. Obviously, | f — fi| < 1. Therefore

(2.11) L(I) <¢€/2 whenever —§ <a<b<3d.

Note that [, |g — gi|dm/|I| <2 [,|g — c|dm/|I| forany c € C. Hence it follows from
(2.11) that,if = {¢” :a <t < b} and —§ < a < b < §, then

1 1
m/1|f_ﬁ|dmm/l|g—gzldm§2L(1) <e

This proves that LMO(f, g)(1) = 0if 1 is a Lebesgue point for g. ]
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Proof of Theorem 6 The separability of § means that § is contained in the operator-
norm closure of a countable subset {A;, ..., Aj, ...} of . Now each A; is the limit in
operator norm of a sequence of operators of the form Zle Ty, - - - Tg,,» Where gy, €
L. Hence there is a countable set G = {gi,...,&y, ... } of real-valued functions in
L* such that 8 C T(G).

For each g,, almost every point in T is a Lebesgue point. Therefore there is a
7 € T which is a Lebesgue point for every g,, n = 1,2,.... For this 7, let f €
L(7) be the real-valued function provided by Lemma 9. The membership in L£(7)
means that LMO(f)(u) = O when u € T \ {r}. Thus LMO(f,g,) (1) = 0 for
allmand u € T\ {r}. Since 7 is a Lebesgue point for every g,, Lemma 9 yields
that LMO(f,g,)(7) = 0, n = 1,2,.... Therefore LMO(f, g,)(1) = 0 for all n and
u € T. Thus Theorem 7 tells us that Hy Hy € (1, X, = X. That is, for every n,
Hg Hy is compact, which clearly implies the compactness of [T, Ty, ]. Hence [T, S]
is compact for every S € T(G). Now Lemma 9 also yields that LMO(f)(7) > 0,
which obviously implies f ¢ VMO. Since f is real-valued, we have f ¢ H> + C(T)
as promised. ]

3 The Double Commutant Relation

Recall that L is the norm-closed subalgebra of L> generated by J o1 £(7), where
L(7) is the collection of functions on T which are bounded and continuous on
T\ {7}. The proof of Theorem 5 starts in the obvious way.

Lemma 10 L # L°°. More specifically, if E is a measurable, nowhere dense set in T
such that |E| > 0, then xg ¢ L.

Proof Let L be the collection of functions of the form Z';:l fij- -+ fmj where f;; €
L(7;;). Then L is the closure of Ly with respect to the essential-supremum norm
|l.llco. To show that xy ¢ L, it suffices to show that ||xg — f|lcc > 1/3 for any
f € L. That is, it suffices to show that

(3.1) sup |xe(t) — f(7)| > 1/3 whenever |[N| =0and f € L,.
TET\N

Observe that each f € L, has at most a finite number of discontinuities. Thus for
each f € L there is a finite set F such that T\ F = Uje] I;, where ] is countable and
where each I is an open arc in T such that sup_ /¢ |f(m) — f(r")] < 1/3. Since
|F| = 0 and |E| > 0, thereis a j, € J such that |[E NI | > 0. Because E is nowhere
dense, we have |(T \ E) N I;,| > 0. Thus for any set N with |[N| = 0 we also have
|[EN(I;, \N)| > 0and |(T \ E) N (I;, \N)| > 0. Now if welet 7 € EN (I, \ N) and
7" € (T\E)N(Ij, \N), since | f(7) — f(7")| < 1/3, the inequalities |1 — f(7)| < 1/3
and |0 — f(7')| < 1/3 cannot hold simultaneously. This proves (3.1). [ |

Let €, /, denote the ideal in the C*-algebra T generated by the semi-commutators

{Tyy — TsTy = f,g € L*} of Toeplitz operators. Now, because the linear span of
{pv 1 ¢, € H*} is dense in L™ (see [3, p. 163]), C, ) coincides with the ideal C in
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T generated by the commutators {[A, B] : A, B € T}. Hence we have the short exact
sequence

(3.2) {0} = €, = T — L™ — {0}.
See [3, p. 179].

Proof of Theorem 5 Corollary 4 states that W(T(QC)) is the commutant of
T ( ‘J'(L)) in the Calkin algebra Q = B(H?)/X. It is well known that T is contained in
the essential commutant of T(QCQC), i.e., 7(T) C {N(T(QC)) } = {W(T(L)) } "
Thus it suffices to show that 7(7) # W(U’(L)) . Let s: T — L be the symbol map
in (3.2), i.e., s(T,) = . Since s(T) = L* and S(T(L)) = L, and since L # L™
by Lemma 10, we must have T(L) # T. Since kerm = X, this and the relation
K C T(L) C T together imply 7(T) # W(T(L)) . [ |

Remark 11 Let C; (L) be the ideal in T(L) generated by {Ty, — T T, : f,g € L}.
It is well known that, for any arc I in T with 0 < |I| < |T|, T, — T}, is not compact
[6]. Obviously, x; € L. Therefore 7r( Gl/z(L)) # {0}. On the other hand, (3.2) tells
us that 7r( GI/Z(L)) #* W(U'(L)) . Hence 7r( (‘31/2(&)) is a proper ideal in W(T(L)) .

Remark 12 If S is an operator that essentially commutes with the essential commu-
tant of T(QC), then S essentially commutes with J. By Davidson’s theorem, such
an S belongs to T(QC). Therefore W(T(QC)) satisfies the double commutant rela-
tion A = A’/ in Q. On the other hand, it is well known that ﬂ(‘]’(QC)) ~ QC
is not separable. Therefore the fact that TI'(T(QC)) satisfies the double commutant
relation does not follow from Voiculescu’s theorem. Also, it is an elementary exer-
cise in measure theory to show that QC contains no projections other than 0 and 1.
In particular, 7(T(QC)) is not the image of any von Neumann algebra under .
Therefore the results of [8], [10] cannot be applied to W(T(QC)) either. Neverthe-
less, Davidson’s theorem tells us that the double commutant relation A = A’/ can
also be satisfied by a subalgebra of Q which is neither separable nor close to being the
image of any von Neumann algebra.
Finally, the results of [2] and the above discussion lead to the obvious:

Problem 13 What is the essential commutant of T(QC)? In particular, does the
essential commutant of T(QC) coincide with T?
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