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ON THE IMPLICIT DARBOUX PROBLEM
IN BANACH SPACES

DARIA WOJTOWICZ

In this paper we prove the existence theorem for the implicit Darboux problem on
the quarterplane x ^ 0, y ^ 0. Moreover, we study the topological structure of the
solution set of this problem.

1. INTRODUCTION

In this paper we shall consider the following implicit Darboux problem

d2z ( d2z \
^-z — g \x, y, z, — - .,
dxdy \ dxdyj

(1) z(x,0) = 0, 0 ̂  x < +oo,

z(0,y) = 0,

rj2

in a Banach space, where _. . denotes the mixed derivative of z. We shall give sufficient
dxdy

conditions for the existence of a solution of (1). Moreover, under the same assumptions
we shall prove an Aronszajn type theorem for this problem.

In our considerations we shall apply the following two theorems.
THEOREM 1 [3] Let D be a closed and convex subset of a Hausdorff locally convex

space such that 0 € D, and let G be a continuous mapping of D into itself. If the
implication

(2) (V = convG{V) or V = G(V) U {0}) = > V is relatively compact

holds for every subset V of D, then G has a fixed point.

THEOREM 2 [7] Let X, Y be metric spaces. Assume that y is a point ofY with a
neighbourhood homeomorphic to a closed convex subset of a Frecbet space. Let T : X -»•
Y be a continuous y-closed mapping, and Tn : X -> Y a homeomorphism into. Ify is an

oo

interior point of f) Tn(X) and T~l(y) is compact and nonempty, then T~1(y) is an Rs
n=l
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oo

whenever lim Tn — T uniformly on T~l(y) and all sets of the form (J T~l(C), where C
n-too n = 1

oo

is a compact subset of f) Tn(X).
n=l

Recall that a subset of a metric space is an Rg if it is homeomorphic to the intersection
of a decreasing sequence of compact absolute retracts.

Our main condition that guarantee the existence of the solution of (1) will be for-
mulated in terms of the measure of noncompactness a introduced by Kuratowski (see [2]
for the definition and basic properties).

2. AN EXISTENCE THEOREM

Let / = [0, +oo) and let E be a Banach space. Assume that:

1° g: IxIxExE^E is a. continuous mapping;

2° there exists a number k S [0,1) such that

\\g(x, y, u, vx) - g(x, y, u, v2)\\ ^ k H^ - v2\\

for every (x,y,u)£lxIxE and v\, v2 € E;

3° for every a, b > 0 there exists m(a, b) € M+ such that

\\g(x, y,u, 0)|| ^ m(a,b) whenever |a;| < a, \y\ < b.

First we shall show that (1) is equivalent to some Darboux problem in the explicit
form. Indeed, consider the sequence of functions /„ : IxIxE -> E such that fo{%, y, u) —
0, fn+i(x, y, u) = g(x, y, u, fn{x, y, u)) for every (x, y, u) e / x / x E and n € { 0 , 1 , 2 , . . . } .

By 2°, in view of the Banach contraction principle, for every (x,y,u) e I x I x E
there exists exactly one element f(x, y,u) € E such that f(x, y, u) = g(x, y, u, f(x, y, u))
and f(x,y,u) = lim fn(x,y,u). Hence the mapping (x,y,u) —* f(x,y,u) satisfies the
equation

f(x, y, u) = g(x, y, u, f(x, y, u)).

Moreover, for every n, p E N we have

kn

||/n+p(x, y,u) - fn(x,y,u)\\ ^ — t n ( a , b ) ,

whenever \x\ < a, \y\ < b. Thus / „ —>• / as n —> oo, uniformly on every bounded subset

of / x / x E. Hence the mapping f: I x I x E ^ E is continuous and

| | / ( i , y , « ) | | < M(a,b) for |x| < a, |y| < 6,

where M{a,b) = 1/(1 - k)m(a,b).
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We note that the mapping z : / x / — ^ . E i s a solution of (1) if and only if it is a

solution of the following Darboux problem

— I I T 7/ 7 1

dxdy
(3) z(x,0) = 0,

z(0,y) = 0, 0 < ? / < + o o .

Now, we shall prove the following

LEMMA Let h : R+ -> R+ be a function such that

(4) a(ff(yl x X x Y)) «C max(/i(a(A")),a(Y))

for all bounded subsets A C / x / and X x Y C E x E. Then

(5) a(/(.4 x Z)) ^ h(a(Z))

for all bounded subsets A C I x I and Z C E (see [5]).

PROOF: From the definition of the sequence (/„) and (4), by mathematical induction
we have

a(fn(A x Z)) ^ h(a(Z))

for all bounded subsets A C I x I and Z C E.

Fix e > 0. Since /„ -> / uniformly on every bounded subset of / x / x E, as n —> oo,

for all bounded subsets A C I x I and Z C E, and for sufficiently large n 6 N, where
K(0, e) denotes the open ball of center 0 and radius e in E.

Hence
a(f(A x Z)) ^ a(fn(A x Z)) + 2e^ h(a(Z)) + 2e.

Since e > 0 is arbitrary, we receive (4). D

Our first main result is given by the following

THEOREM 3 If g satisfies 1° - 3° and (4), where h : E+ -» R+ is a continuous,
nondecreasing function such that the inequality

x y

(6) 0^u(x,y)^ J J h(u(t,s))dtds, (x,y) £ I x I
0 0

has only a trivial solution, then the problem (1) has a solution.

The above theorem extends the main result from [6].
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PROOF: Let C = C(I x / , E) be the space of all continuous functions / x / -> E

with the topology of uniform convergence on each compact subset of / x / . Set

F(z)(x,y) = J f(t,s,z(t,s))dtds,
D(x,y)

{x,y) £ I x I, z EC and D(x, y) = {(t, s) € / x 7 : 0 < t ^ x, 0 ^ s < y}. Obviously
the operator F maps C into C and is continuous. Let D — conv(F(C) U {0}). It is clear
that F maps D into itself. We shall show now that F satisfies (2).

Indeed, let V be a subset of D such that V C conv(F(V) U {0}). First, we verify
that V is equicontinuous on every compact subset of I x I. Since

\\F{z){xl,y1)~F(z){x2,y2)\\ = | J f{t,s,z{t,s))dtds - J f{t,s, z{t,s)) dtdsj
D(xuyi) D(l2,!/2)

^ n{D{xu Vl) - D{x2, y2))M(a, b)

where |xi| < a, \x2\ < a, \y^\ < b, \y2\ < b, z € C the family F(C) is equicontinuous on
every compact subset of / x I. Hence V is equicontinuous on every compact subset of
/x/.

L e t W = F(V), v(x,y) = a(V(x,y)) a n d w(x,y) = a{W{x, y)) for (x,y) € 7 x 7 .

From the basic properties of a we obtain

v{x,y) = a{V(x,y))^a(conv(F{V){x,y)u{0}))

(7) = a(F(V)(x, y) U {0}) = max (a(F(V)(x, y)), a({0}))

= a(F{V){x,y)) = w(x,y), (x,y) £ 7 x I

and, similarly,

a{V(T)) ^ a(W(T)) for each compact subset T for I x 7.

Further, we have

\w{xi, yi) - w(x2, y2)\ = \a(W(xi,yi)) - a(W(x2, y2))\

= \a(F{V)(xuy1))-a(F(V){x2,y2))\

^ sup \\F(u){xuyi) - F{u){x2,y2) - F{v){xuyi) + F{v)(x2,y2)\\
u,vev

^ 2 sup l l ^ u X i ! , yi) - F(u)(x2, y2)\\, ( i i , r/i), (x2, y2) € 7 x 7.

By the above inequality and the equicontinuity F(V) on every compact subset of 7 x 7,
we deduce that w is continuous on every compact subset of 7 x 7. Hence w is continuous
on 7 x 7.

Divide the rectangle D(x, y) into n2 parts: 0 = IQ < zi < . . . < i n = x, 0 =
Vo < 2/i < • • • < 2/n = 2/ m s u c n a waY that Xi — Xi-\ < 1/n and yj — J/J_I < \/n
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for i,j = l , . . . , n . Put Dij(x,y) = [xi_i,Xj] x [yj-i,yj], i,j = 1, . . . , n . Since W is
equicontinuous and uniformly bounded on every compact subset of / x / , by Ambrosetti's
Lemma [1] and the continuity of w there exists fa, qj) 6 Dij(x, y) such that

(8) a{W{Dij{x,y))) = sup a(W{t,a))= sup w(t,s)
(t.*)€Dy(x,y) (M)eDy(x,y)

= w(pi,qj), (x,y)£lxl.

From the mean value theorem, for every z 6 V we obtain

f(t,s,z{t,s))dtds

D(x,y)

= £ / f(t,s,z(t,s))dtds

}y(x,y) x z(Dij(x,y))), (x,y) € I x I.

Thus
n

T 7 / 1 C~ » / / I 7 0 • •{ T 7 / 1 I f f l T l V f I I ) • I T 7 / 1 ^

(a;, y ) e l x l .

Hence, by the Lemma, the properties of a, (8) and (7) we have

w(x,y) ^ f

E {x,y)elxl.

If n —> oo, by the continuity of /i and w we obtain

w(x,y) < / h{w(t,s))dtds, (x,y)elxl.
D(x,y)

Thus, by (6) u/(i, t/) = 0 and, therefore by (7), v(x, y) — 0 for every (x, y) £ I x I. Hence
V(x, y) is relatively compact for every (x, y) £ I x I. In view of the generalisation of
Ascoli's Theorem [4, p.81], V is relatively compact.

The operator F satisfies all the assumptions of Theorem 1 and, therefore, there exists
z £ D such that z = F(z). This completes the proof of Theorem 3. D
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3. A N ARONSZAJN PROPERTY

The aim of this Section is to prove the following Aronszajn type theorem.

THEOREM 4 Under the assumptions of Theorem 3 the set S of all solutions of (I)
on I x I is an Rs.

PROOF: Let F : C —>• C be the operator defined in the proof of Theorem 3 and let
T = I — F, where / denotes the identity map. Obviously T is continuous mapping of C
into itself. Now, we verify that T is 0-closed, that is, the following implication

0 e T(V) =» 0 6 T(V)

holds for every closed subset V C C. It is enough to verify that T is a proper map, that
is, if Z is relatively compact, then T~X(Z) is relatively compact.

Let Z C C be a relatively compact set and put U — T~1(Z). Consider the se-
quence (un), where un £ U for n £ N. Set V = {un : n e N}. Since V(x,y) C
(I - F)(V){x,y) + F(V)(x,y) C Z(x,y) + F(V)(x,y), a(V(x,y)) ^ a(Z(x,y)) +

a(F(V)(x,y)) = a(F(V)(x,»)), (x,y) £ I x I.

By arguing similarly as in the proof of Theorem 3, we infer that V is relatively
compact. Hence there exists a convergent subsequence ( u n j of (wn), so U is relatively
compact.

Define

Fn(z)(x,y)= j f{t,s,z(t,s))dtds, (x,y)elxl, z £ C, n 6 N,

D(rn(x,y))

where

r(xv)=l °' (x,y)€K(l/n),
n{ 'V) \ (\-l/(\\(x,y)\\)n)(x,y), (x,y) € (J x

Obviously, the operators Fn map C into itself and are continuous. Put Tn = I - Fn,

n € N. Now, we shall prove that Tn is a homeomorphism of C into itself for every n € N.
Obviously the mappings Tn are continuous. Fix n £ N. It is easy to see that for any

zi,z2£C

(9) Tn(Zl) = Tn(z2) = • zx = z2.

It is enough to prove the continuity of T~l. Assume that z{,z0 £ C, Tn(z,) -> Tn(z0),
as i —> oo. We have Fn(zi)(x,y) = Fn(z0)(x,y) = 0 for (x,y) £ K(l/n), so Z{ -t z0

uniformly on K(l/n), as i —> oo. Since f(t,s,Zi(t,s)) —> f(t, s,Zo(t,s)) uniformly on
K(l/n), as x —> oo,

J f{t,s,Zi(t,s))dtds-> J f(t,s,zo(t,s))dtds
D(rn{x,y)) D(rn(x,y))
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for (x,y) £ K(2/n) \ K{l/n) (that is, to the closure of K{2/n) \ K{l/n)), as i -> oo.
Hence, it is clear that Z{ —> ZQ uniformly on K(2/n) \ K(l/n). By arguing similarly to
the above, we infer that Zi —> ZQ uniformly on every compact subset of / x / , as i —¥ oo.
This proves the continuity of T^1.

Now, we shall show that lim Tn = T uniformly. Fix a set K(r), r > 0. Choose
n S N such that K(l/n) C K{r). From the inequalities

\\Fn(z)(x,y) - F(z)(x,y)\\ = f(t,s,z(t,s))dtds
D{x,y)

- , - - ? . f o r - , zee,
and

\\Fn{z)(x,y)-F(z)(x,y)\\

f(t,s,z(t,s))dtds- J f(t,s,z(t,s))dtds
D(rn(x,y)) D(x,y)

^ -f2r - -)M(r,r) for (x,y) £ K(r) \K(-),ZEC,

it is clear that Fn(z) -> F(z) uniformly in z, on every compact subset of / x / .

Further, since T~1(0) is the set of all fixed points of F, by Theorem 3 it is nonempty.
Let (zk) be sequence such that zk £ T~l{0) for k £ N. Put V = {zk : k £ N}. Obviously
V = F(V). By arguing similarly as in the proof of Theorem 3, we deduce that V is
relatively compact. Hence T- 1(0) is relatively compact. Since it is closed, it is compact.

oo

To complete our proof, it is enough to show that 0 is an interior point of f| Tn(C).
n = l

We shall prove that C C (I - Fk){C) for every k £ N. Fix k £ N and z £ C. Define a
sequence (m), Uj £ C in the following way:

ul(x,y)=z(x,y), {x,y)e

u~i(x, y) is a continuous extension of Ui(x, y) from K( — I to / x / ,

ui+i(x,y) = Ui(x,y) for (x,y) e K{jj,

ui+i{x,y) = z(x,y) + Fk(ui)(x,y) for (x,y) £ K( —

Put u(x, y) = lim uAx, y). This convergence is uniform on every compact subset of / x / .
1—>OO

Hence in view of the continuity of Fk, we obtain u = z + Fk(u), so z £ (I — Fk)(C).

In view of Theorem 2 the set T~l(0) is an Rs, which completes our proof.
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