ON THE IMPLICIT DARBOUX PROBLEM IN BANACH SPACES

DARIA WÓJTOWICZ

In this paper we prove the existence theorem for the implicit Darboux problem on the quarterplane $x \ge 0$, $y \ge 0$. Moreover, we study the topological structure of the solution set of this problem.

1. INTRODUCTION

In this paper we shall consider the following implicit Darboux problem

	$rac{\partial^2 z}{\partial x \partial y}$	=	$g\left(x,y\right)$	$(, z, \frac{\partial^2 z}{\partial x \partial y}),$
(1)	z(x,0)	=	0,	$0\leqslant x<+\infty,$
	z(0,y)	=	0,	$0\leqslant y<+\infty,$

in a Banach space, where $\frac{\partial^2 z}{\partial x \partial y}$ denotes the mixed derivative of z. We shall give sufficient conditions for the existence of a solution of (1). Moreover, under the same assumptions we shall prove an Aronszajn type theorem for this problem.

In our considerations we shall apply the following two theorems.

THEOREM 1 [3] Let D be a closed and convex subset of a Hausdorff locally convex space such that $0 \in D$, and let G be a continuous mapping of D into itself. If the implication

(2)
$$(V = convG(V) \text{ or } V = G(V) \cup \{0\}) \Longrightarrow V \text{ is relatively compact}$$

holds for every subset V of D, then G has a fixed point.

THEOREM 2 [7] Let X, Y be metric spaces. Assume that y is a point of Y with a neighbourhood homeomorphic to a closed convex subset of a Fréchet space. Let $T: X \to Y$ be a continuous y-closed mapping, and $T_n: X \to Y$ a homeomorphism into. If y is an interior point of $\bigcap_{n=1}^{\infty} T_n(X)$ and $T^{-1}(y)$ is compact and nonempty, then $T^{-1}(y)$ is an R_{δ}

Received 30th September, 1996

I would like to thank to dr D. Bugajewski for his valuable suggestions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

whenever $\lim_{n \to \infty} T_n = T$ uniformly on $T^{-1}(y)$ and all sets of the form $\bigcup_{n=1}^{\infty} T_n^{-1}(C)$, where C is a compact subset of $\bigcap_{n=1}^{\infty} T_n(X)$.

Recall that a subset of a metric space is an R_{δ} if it is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts.

Our main condition that guarantee the existence of the solution of (1) will be formulated in terms of the measure of noncompactness α introduced by Kuratowski (see [2] for the definition and basic properties).

2. An existence theorem

Let $I = [0, +\infty)$ and let E be a Banach space. Assume that:

- 1⁰ $g: I \times I \times E \times E \to E$ is a continuous mapping;
- 2^0 there exists a number $k \in [0, 1)$ such that

$$||g(x, y, u, v_1) - g(x, y, u, v_2)|| \le k ||v_1 - v_2||$$

for every $(x, y, u) \in I \times I \times E$ and $v_1, v_2 \in E$;

3⁰ for every a, b > 0 there exists $m(a, b) \in \mathbb{R}_+$ such that

 $||g(x, y, u, 0)|| \leq m(a, b)$ whenever |x| < a, |y| < b.

First we shall show that (1) is equivalent to some Darboux problem in the explicit form. Indeed, consider the sequence of functions $f_n: I \times I \times E \to E$ such that $f_0(x, y, u) =$ $0, f_{n+1}(x, y, u) = g(x, y, u, f_n(x, y, u))$ for every $(x, y, u) \in I \times I \times E$ and $n \in \{0, 1, 2, ...\}$. By 2⁰, in view of the Banach contraction principle, for every $(x, y, u) \in I \times I \times E$ there exists exactly one element $f(x, y, u) \in E$ such that f(x, y, u) = g(x, y, u, f(x, y, u))and $f(x, y, u) = \lim_{n \to \infty} f_n(x, y, u)$. Hence the mapping $(x, y, u) \to f(x, y, u)$ satisfies the equation

$$f(x, y, u) = g(x, y, u, f(x, y, u)),$$

Moreover, for every $n, p \in \mathbb{N}$ we have

$$\|f_{n+p}(x,y,u)-f_n(x,y,u)\| \leqslant \frac{k^n}{1-k}m(a,b),$$

whenever |x| < a, |y| < b. Thus $f_n \to f$ as $n \to \infty$, uniformly on every bounded subset of $I \times I \times E$. Hence the mapping $f : I \times I \times E \to E$ is continuous and

$$\|\|f(x,y,u)\| \leqslant M(a,b) \quad ext{for} \quad |x| < a, \ |y| < b,$$

where M(a, b) = 1/(1 - k)m(a, b).

Darboux problem

151

We note that the mapping $z: I \times I \to E$ is a solution of (1) if and only if it is a solution of the following Darboux problem

(3)

$$\frac{\partial^2 z}{\partial x \partial y} = f(x, y, z),$$

$$z(x, 0) = 0, \quad 0 \le x < +\infty,$$

$$z(0, y) = 0, \quad 0 \le y < +\infty.$$

Now, we shall prove the following

LEMMA Let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be a function such that

(4)
$$\alpha(g(A \times X \times Y)) \leq \max(h(\alpha(X)), \alpha(Y))$$

for all bounded subsets $A \subset I \times I$ and $X \times Y \subset E \times E$. Then

(5)
$$\alpha(f(A \times Z)) \leq h(\alpha(Z))$$

for all bounded subsets $A \subset I \times I$ and $Z \subset E$ (see [5]).

PROOF: From the definition of the sequence (f_n) and (4), by mathematical induction we have

$$\alpha(f_n(A \times Z)) \leq h(\alpha(Z))$$

for all bounded subsets $A \subset I \times I$ and $Z \subset E$.

Fix $\varepsilon > 0$. Since $f_n \to f$ uniformly on every bounded subset of $I \times I \times E$, as $n \to \infty$,

$$f(A \times Z) \subset f_n(A \times Z) + K(0,\varepsilon)$$

for all bounded subsets $A \subset I \times I$ and $Z \subset E$, and for sufficiently large $n \in \mathbb{N}$, where $K(0,\varepsilon)$ denotes the open ball of center 0 and radius ε in E.

Hence

$$\alpha(f(A \times Z)) \leqslant \alpha(f_n(A \times Z)) + 2\varepsilon \leqslant h(\alpha(Z)) + 2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we receive (4).

Our first main result is given by the following

THEOREM 3 If g satisfies $1^0 - 3^0$ and (4), where $h : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous, nondecreasing function such that the inequality

(6)
$$0 \leqslant u(x,y) \leqslant \int_{0}^{x} \int_{0}^{y} h(u(t,s)) \, dt ds, \quad (x,y) \in I \times I$$

has only a trivial solution, then the problem (1) has a solution.

The above theorem extends the main result from [6].

0

[3]

D. Wójtowicz

PROOF: Let $C = C(I \times I, E)$ be the space of all continuous functions $I \times I \to E$ with the topology of uniform convergence on each compact subset of $I \times I$. Set

$$F(z)(x,y) = \int_{D(x,y)} f(t,s,z(t,s)) dt ds$$

 $(x, y) \in I \times I, z \in C$ and $D(x, y) = \{(t, s) \in I \times I : 0 \leq t \leq x, 0 \leq s \leq y\}$. Obviously the operator F maps C into C and is continuous. Let $D = \overline{\operatorname{conv}}(F(C) \cup \{0\})$. It is clear that F maps D into itself. We shall show now that F satisfies (2).

Indeed, let V be a subset of D such that $V \subset \overline{\operatorname{conv}}(F(V) \cup \{0\})$. First, we verify that V is equicontinuous on every compact subset of $I \times I$. Since

$$\begin{aligned} \|F(z)(x_1, y_1) - F(z)(x_2, y_2)\| &= \left\| \int\limits_{D(x_1, y_1)} f(t, s, z(t, s)) \, dt ds - \int\limits_{D(x_2, y_2)} f(t, s, z(t, s)) \, dt ds \right\| \\ &\leqslant \mu(D(x_1, y_1) - D(x_2, y_2)) M(a, b) \end{aligned}$$

where $|x_1| < a$, $|x_2| < a$, $|y_1| < b$, $|y_2| < b$, $z \in C$ the family F(C) is equicontinuous on every compact subset of $I \times I$. Hence V is equicontinuous on every compact subset of $I \times I$.

Let W = F(V), $v(x, y) = \alpha(V(x, y))$ and $w(x, y) = \alpha(W(x, y))$ for $(x, y) \in I \times I$. From the basic properties of α we obtain

(7)

$$v(x,y) = \alpha(V(x,y)) \leq \alpha(\overline{\operatorname{conv}}(F(V)(x,y) \cup \{0\}))$$

$$= \alpha(F(V)(x,y) \cup \{0\}) = \max(\alpha(F(V)(x,y)), \alpha(\{0\}))$$

$$= \alpha(F(V)(x,y)) = w(x,y), \quad (x,y) \in I \times I$$

and, similarly,

 $\alpha(V(T)) \leq \alpha(W(T))$ for each compact subset T for $I \times I$.

Further, we have

$$\begin{aligned} |w(x_1, y_1) - w(x_2, y_2)| &= |\alpha(W(x_1, y_1)) - \alpha(W(x_2, y_2))| \\ &= |\alpha(F(V)(x_1, y_1)) - \alpha(F(V)(x_2, y_2))| \\ &\leq \sup_{u, v \in V} ||F(u)(x_1, y_1) - F(u)(x_2, y_2) - F(v)(x_1, y_1) + F(v)(x_2, y_2)|| \\ &\leq 2 \sup_{u, v \in V} ||F(u)(x_1, y_1) - F(u)(x_2, y_2)||, \quad (x_1, y_1), (x_2, y_2) \in I \times I. \end{aligned}$$

By the above inequality and the equicontinuity F(V) on every compact subset of $I \times I$, we deduce that w is continuous on every compact subset of $I \times I$. Hence w is continuous on $I \times I$.

Divide the rectangle D(x, y) into n^2 parts: $0 = x_0 < x_1 < \ldots < x_n = x$, $0 = y_0 < y_1 < \ldots < y_n = y$ in such a way that $x_i - x_{i-1} < 1/n$ and $y_j - y_{j-1} < 1/n$

Darboux problem

for i, j = 1, ..., n. Put $D_{ij}(x, y) = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$, i, j = 1, ..., n. Since W is equicontinuous and uniformly bounded on every compact subset of $I \times I$, by Ambrosetti's Lemma [1] and the continuity of w there exists $(p_i, q_j) \in D_{ij}(x, y)$ such that

(8)
$$\alpha(W(D_{ij}(x,y))) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(p_i,q_j), \quad (x,y) \in I \times I. }} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(p_i,q_j), \quad (x,y) \in I \times I. }} \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(p_i,q_j), \quad (x,y) \in I \times I. }} \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(p_i,q_j), \quad (x,y) \in I \times I. }} \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(p_i,q_j), \quad (x,y) \in I \times I. }} \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s)) = \sup_{\substack{(t,s) \in D_{ij}(x,y) \\ = w(t,s) \in D_{ij}(x,y)}} \alpha(W(t,s))$$

From the mean value theorem, for every $z \in V$ we obtain

$$\begin{split} F(z)(x,y) &= \int\limits_{D(x,y)} f(t,s,z(t,s)) \, dt ds \\ &= \sum_{i,j=1}^n \int\limits_{D_{ij}(x,y)} f(t,s,z(t,s)) \, dt ds \\ &\in \sum_{i,j=1}^n \mu(D_{ij}(x,y)) \overline{\operatorname{conv}} f(D_{ij}(x,y) \times z(D_{ij}(x,y))), \quad (x,y) \in I \times I. \end{split}$$

Thus

$$F(V)(x,y) \subset \sum_{i,j=1}^{n} \mu(D_{ij}(x,y)) \overline{\operatorname{conv}} f(D_{ij}(x,y) \times V(D_{ij}(x,y))),$$

 $(x, y) \in I \times I.$

Hence, by the Lemma, the properties of α , (8) and (7) we have

$$\begin{split} w(x,y) &\leqslant \sum_{i,j=1}^{n} \mu(D_{ij}(x,y)) \alpha(f(D_{ij}(x,y)) \times V(D_{ij}(x,y))) \\ &\leqslant \sum_{i,j=1}^{n} \mu(D_{ij}(x,y)) h(\alpha(V(D_{ij}(x,y)))) \\ &\leqslant \sum_{i,j=1}^{n} \mu(D_{ij}(x,y)) h(\alpha(W(D_{ij}(x,y)))) \\ &= \sum_{i,j=1}^{n} \mu(D_{ij}(x,y)) h(w(p_i,q_j)) \quad (x,y) \in I \times I. \end{split}$$

If $n \to \infty$, by the continuity of h and w we obtain

$$w(x,y) \leqslant \int_{D(x,y)} h(w(t,s)) dt ds, \quad (x,y) \in I \times I.$$

Thus, by (6) w(x, y) = 0 and, therefore by (7), v(x, y) = 0 for every $(x, y) \in I \times I$. Hence V(x, y) is relatively compact for every $(x, y) \in I \times I$. In view of the generalisation of Ascoli's Theorem [4, p.81], V is relatively compact.

The operator F satisfies all the assumptions of Theorem 1 and, therefore, there exists $z \in D$ such that z = F(z). This completes the proof of Theorem 3.

D. Wójtowicz

3. An Aronszajn property

The aim of this Section is to prove the following Aronszajn type theorem.

THEOREM 4 Under the assumptions of Theorem 3 the set S of all solutions of (1) on $I \times I$ is an R_{δ} .

PROOF: Let $F: C \to C$ be the operator defined in the proof of Theorem 3 and let T = I - F, where I denotes the identity map. Obviously T is continuous mapping of C into itself. Now, we verify that T is 0-closed, that is, the following implication

$$0 \in \overline{T(V)} \Longrightarrow 0 \in T(V)$$

holds for every closed subset $V \subset C$. It is enough to verify that T is a proper map, that is, if Z is relatively compact, then $T^{-1}(Z)$ is relatively compact.

Let $Z \subset C$ be a relatively compact set and put $U = T^{-1}(Z)$. Consider the sequence (u_n) , where $u_n \in U$ for $n \in \mathbb{N}$. Set $V = \{u_n : n \in \mathbb{N}\}$. Since $V(x,y) \subset (I - F)(V)(x,y) + F(V)(x,y) \subset \overline{Z}(x,y) + F(V)(x,y), \ \alpha(V(x,y)) \leq \alpha(\overline{Z}(x,y)) + \alpha(F(V)(x,y)) = \alpha(F(V)(x,y)), \ (x,y) \in I \times I$.

By arguing similarly as in the proof of Theorem 3, we infer that V is relatively compact. Hence there exists a convergent subsequence (u_{n_k}) of (u_n) , so U is relatively compact.

Define

$$F_n(z)(x,y) = \int\limits_{D(r_n(x,y))} f(t,s,z(t,s)) dt ds, \quad (x,y) \in I \times I, \ z \in C, \ n \in \mathbb{N},$$

where

$$r_n(x,y) = \begin{cases} 0, & (x,y) \in K(1/n), \\ (1 - 1/(||(x,y)||)n) & (x,y), & (x,y) \in (I \times I) \setminus K(1/n), \end{cases}$$

 $K(1/n) = \{(x,y) : x \ge 0, y \ge 0, \sqrt{x^2 + y^2} \le 1/n\}.$

Obviously, the operators F_n map C into itself and are continuous. Put $T_n = I - F_n$, $n \in \mathbb{N}$. Now, we shall prove that T_n is a homeomorphism of C into itself for every $n \in \mathbb{N}$. Obviously the mappings T_n are continuous. Fix $n \in \mathbb{N}$. It is easy to see that for any $z_1, z_2 \in C$

(9)
$$T_n(z_1) = T_n(z_2) \Longrightarrow z_1 = z_2.$$

It is enough to prove the continuity of T_n^{-1} . Assume that $z_i, z_0 \in C$, $T_n(z_i) \to T_n(z_0)$, as $i \to \infty$. We have $F_n(z_i)(x, y) = F_n(z_0)(x, y) = 0$ for $(x, y) \in K(1/n)$, so $z_i \to z_0$ uniformly on K(1/n), as $i \to \infty$. Since $f(t, s, z_i(t, s)) \to f(t, s, z_0(t, s))$ uniformly on K(1/n), as $i \to \infty$,

$$\int_{D(r_n(x,y))} f(t,s,z_i(t,s)) dt ds \to \int_{D(r_n(x,y))} f(t,s,z_0(t,s)) dt ds$$

Darboux problem

for $(x, y) \in \overline{K(2/n) \setminus K(1/n)}$ (that is, to the closure of $K(2/n) \setminus K(1/n)$), as $i \to \infty$. Hence, it is clear that $z_i \to z_0$ uniformly on $\overline{K(2/n) \setminus K(1/n)}$. By arguing similarly to the above, we infer that $z_i \to z_0$ uniformly on every compact subset of $I \times I$, as $i \to \infty$. This proves the continuity of T_n^{-1} .

Now, we shall show that $\lim_{n\to\infty} T_n = T$ uniformly. Fix a set K(r), r > 0. Choose $n \in \mathbb{N}$ such that $K(1/n) \subset K(r)$. From the inequalities

$$\begin{aligned} \|F_n(z)(x,y) - F(z)(x,y)\| &= \left\| \int_{D(x,y)} f(t,s,z(t,s)) \, dt ds \right\| \\ &\leqslant M\left(\frac{1}{n},\frac{1}{n}\right) \frac{1}{n^2}, \quad \text{for } (x,y) \in K\left(\frac{1}{n}\right), \ z \in C, \end{aligned}$$

and

$$\begin{aligned} \|F_n(z)(x,y) - F(z)(x,y)\| \\ &= \left\| \int\limits_{D(r_n(x,y))} f(t,s,z(t,s)) \, dt ds - \int\limits_{D(x,y)} f(t,s,z(t,s)) \, dt ds \right\| \\ &\leqslant \frac{1}{n} \left(2r - \frac{1}{n} \right) M(r,r) \quad \text{for } (x,y) \in K(r) \setminus K\left(\frac{1}{n}\right), \ z \in C, \end{aligned}$$

it is clear that $F_n(z) \to F(z)$ uniformly in z, on every compact subset of $I \times I$.

Further, since $T^{-1}(0)$ is the set of all fixed points of F, by Theorem 3 it is nonempty. Let (z_k) be sequence such that $z_k \in T^{-1}(0)$ for $k \in \mathbb{N}$. Put $V = \{z_k : k \in \mathbb{N}\}$. Obviously V = F(V). By arguing similarly as in the proof of Theorem 3, we deduce that V is relatively compact. Hence $T^{-1}(0)$ is relatively compact. Since it is closed, it is compact.

To complete our proof, it is enough to show that 0 is an interior point of $\bigcap_{n=1}^{\infty} T_n(C)$. We shall prove that $C \subset (I - F_k)(C)$ for every $k \in \mathbb{N}$. Fix $k \in \mathbb{N}$ and $z \in C$. Define a sequence $(u_i), u_i \in C$ in the following way:

$$u_{1}(x,y) = z(x,y), \qquad (x,y) \in K\left(\frac{1}{k}\right)$$

$$\widetilde{u_{i}}(x,y) \text{ is a continuous extension of } u_{i}(x,y) \text{ from } K\left(\frac{i}{k}\right) \text{ to } I \times I,$$

$$u_{i+1}(x,y) = u_{i}(x,y) \qquad \text{for } (x,y) \in K\left(\frac{i}{k}\right),$$

$$u_{i+1}(x,y) = z(x,y) + F_{k}(\widetilde{u_{i}})(x,y) \quad \text{for } (x,y) \in K\left(\frac{i+1}{k}\right) \setminus K\left(\frac{i}{k}\right).$$

Put $u(x, y) = \lim_{i \to \infty} u_i(x, y)$. This convergence is uniform on every compact subset of $I \times I$. Hence in view of the continuity of F_k , we obtain $u = z + F_k(u)$, so $z \in (I - F_k)(C)$.

In view of Theorem 2 the set $T^{-1}(0)$ is an R_{δ} , which completes our proof.

References

 A. Ambrosetti, 'Un teorema di esistenza per le equazioni differenziali negli spazi di Banach', Rend. Sem. Math. Univ. Padova 39 (1967), 349-360.

[8]

- [2] J. Banaś and K. Goebel, 'Measures of noncompactnes in Banach spaces', in Lecture Notes in Pure and Appl. Math. 60 (Marcel Dekker, New York and Basel, 1980).
- [3] D. Bugajewski, 'Weak solutions of integral equations with weakly singular kernel in Banach spaces', Comm. Math. 34 (1994), 49–58.
- [4] J.L. Kelley and I. Namioka, Linear topological spaces (Van Nostrand, Princeton, 1963).
- [5] D. Ozdarska, 'On the equation x' = g(t, x, x') in Banach spaces', Rad. Mat. 2 (1991), 363-370.
- [6] B. Rzepecki, 'On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces', *Rend. Sem. Math. Univ. Padova* 76 (1986), 201-206.
- [7] S. Szufla, 'Solution sets on nonlinear equation', Bull. Acad. Polon. Scien. 11 (1973), 971–976.

Faculty of Mathematics and Computer Science A. Mickiewicz University Matejki 48/49 60-769 Poznań Poland e-mail: dbw@math.amu.edu.pl