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Nonlinear Electrostatic Equations for
Collisionless Plasmas

This monograph presents a perturbative nonlinear kinetic theory of plasma turbu-
lence, known as the weak turbulence theory. At the outset, it should be pointed out
that this book does not include the effects of ambient magnetic field. Plasmas in
real situations are usually magnetized, so that applications of the method discussed
in this book will be somewhat limited, but the purpose is to lay out the fundamental
methodology and conceptual foundations so that more general applications for
magnetized plasmas may be developed on the basis of this book. This book also
limits the discussions to spatially homogeneous plasma.

Plasma kinetic theory has a long history, and many early papers can be found
in the literature that discuss the perturbative nonlinear kinetic theory of plasma
turbulence – see, for example, papers by Vedenov and Velikhov (1962); Kovrizh-
nykh and Tsytovich (1964, 1965); Kovrizhnykh (1965); Gorbunov and Silin (1965);
Gorbunov et al. (1965); Tsytovich (1967); Rogister and Oberman (1968, 1969), to
name just several. These are merely sample papers, among those that personally
influenced the author of this book.

If one is interested in the general background on plasma kinetic theory, there
are some excellent early monographs, among which may be, for instance, those
by Montgomery and Tidman (1964); Kadomtsev (1965); Klimontovich (1967,
1982); Pitaevskii and Lifshitz (1981); Sagdeev and Galeev (1969); Tsytovich
(1970, 1977a,b); Davidson (1972); Ichimaru (1973); Krall and Trivelpiece (1973);
Akhiezer et al. (1975); Hasegawa (1975); Kaplan and Tsytovich (1973); Sitenko
(1967, 1982); Melrose (1980a, 1986); Nicholson (1983); Alexandrov et al. (1984);
Chen (1987), etc. This list is incomplete, but they represent some standard works
that treat the foundations of plasma kinetic theory and/or weak plasma turbulence
theory. More recent books are also available. See, for example, those by Musher
et al. (1995); Sitenko and Malnev (1995); Treumann and Baumjohann (1997);
Tsytovich (1995); Kono and Škorić (2010); Diamond et al. (2010), etc., which deal
with the subject of plasma kinetic theory and nonlinear phenomena.
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4 Nonlinear Electrostatic Equations for Collisionless Plasmas

So, as the readers may appreciate, there is an abundance of resources on the topic
of plasma kinetic theory, and one may ask why another book? The rationale for
this book is as follows: Discussions of nonlinear plasma theories, particularly those
concerning the weak turbulence theory found in many of the above-cited works, are
sometimes not so easy to follow, especially for young researchers. Moreover, many
of the monographs cover wide-ranging topics with generally brief descriptions for
each subject area without going much into in-depth discussions. It is the purpose
of this book to focus only on the kinetic theory of weak plasma turbulence, but to
present the detailed fundamental discussions and derivations as clearly as possible,
without sacrificing the intermediate mathematical steps. Talking of the latter, many
authors omit too many intermediate steps, which can be a source of much frustra-
tions for young scientists. This book does not spare the readers the mathematical
details. This strategy means that some materials in the book can be a bit lengthy, and
casual readers may get lost in the maths. However, if one approaches the material
with enough patience, he or she will be rewarded with the intimate knowledge on
how the weak turbulence theory actually works, what are the essential assumptions
behind the theory, and so forth. Owing to the space devoted to mathematical details,
some standard topics often included in the textbooks and monographs on nonlin-
ear plasma theory are left out. For instance, parametric instabilities, solitary wave
theory, coherent nonlinear structure formation in plasma, etc., are not covered in
this book.

This book is intended for advanced undergraduate, graduate students, or young
researchers who are already familiar with the introductory level of plasma kinetic
theory, but wishing to familiarize themselves with a more in-depth understanding
on nonlinear theory of weak plasma turbulence. In spite of this, this book expounds
on foundational principles at the conceptual level as much as possible without
assuming too much prior knowledge on the part of the readers.

1.1 Preamble: Fundamental Concepts

We are interested in physical phenomena that are described as turbulent, which
loosely means physical quantities that are fluctuating in space and time. In order
to characterize such fluctuations, we employ statistical methods and concepts. That
is, we deal with averages in time, space, or over hypothetical collection of different
possible states called the ensemble. One is particularly interested in how fluctuating
quantities measured in two or more different times or in two or more different
spatial locations are correlated. We begin by considering many-body correlations
associated with fluctuating physical quantities, and the spectral transformation of
such quantities in space and time.
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1.1 Preamble: Fundamental Concepts 5

The statistical correlation is an important concept that characterizes the nature of
turbulence. Suppose that one measures a particular physical quantity, say velocity or
electromagnetic field, in a turbulent medium at a given time. Suppose also that one
measures the same quantity at another time separated by an interval. If one repeats
such series of measurements over and over again, then if the physical quantities
are uncorrelated, that is, if there is no cause and effect relationship between the
two measurements, then on average, the product of two measurements made at two
different time intervals may be zero, since by the very nature of turbulence, velocity
or field may have random directions. On the other hand, if the first measurement
affects the second measurement because there exists an underlying cause-and-effect
relationship, then the average of the products may be finite. A systematic way to
characterize how the statistical average of the products of physical quantities, or
equivalently, their correlation function, behaves in space and time can thus be useful
for understanding and characterizing the turbulence. Consequently, in this book
we will be concerned with the description of how the statistical average of the
correlation of fluctuating (i.e., turbulent) quantity,

〈
δa2

〉
, dynamically evolves. Here,

δa represents any dynamical quantity, and the symbol 〈· · · 〉 denotes the statistical
average.

The convention adopted in this book for the definition of spatial Fourier trans-
formation and its inverse is

fk = (2π)−3
∫

dr f (r) e−ik·r, f (r) =
∫

dk fk eik·r. (1.1)

Here f (r) is any physical quantity, which is a function of spatial coordinate r, and
which is bounded in space. The Fourier transformation of a product of two functions
is represented by the convolution

(2π)−3
∫

dr f (r) g(r) e−ik·r =
∫

dk′ fk′ gk−k′ =
∫

dk′ fk−k′ gk′ . (1.2)

The proof of this “convolution theorem” is straightforward. All one has to do is to
insert for f (r) and g(r), their respective Fourier transformations, and make use of
the well-known delta function identity∫

dr eik·r = δ(k). (1.3)

Fourier transformation of a function f (r,t) in both space and time can be
defined by

fk,ω = (2π)−4
∫

dr
∫

dt f (r,t) e−ik·r+iωt,

f (r,t) =
∫

dk
∫

dω fk,ω eik·r−iωt . (1.4)
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6 Nonlinear Electrostatic Equations for Collisionless Plasmas

Convolution theorem for the spatio-temporal Fourier transformation is

(2π)−4
∫

dr
∫

dt f (r,t) g(r,t) e−ik·r+iωt

=
∫

dk′
∫

dω′ fk′,ω′ gk−k′,ω−ω′

=
∫

dk′
∫

dω′ fk−k′,ω−ω′ gk′,ω′ . (1.5)

When the angular frequency ω satisfies the dispersion relation ω = ωk+iγk, that
is, when (generally complex) ω is a function of k, then the Fourier representation
of function f (r,t) can be re-expressed by virtue of the fact that we may write the
spectral amplitude as

fk,ω = fkδ(ω − ωk − iγk), (1.6)

or

f (r,t) =
∫

dk fk exp(ik · r − iωkt + γkt). (1.7)

If f (r,t) is real then obviously f ∗(r,t) = f (r,t), where the asterisk ∗ represents
the complex conjugate. From this it follows that∫

dk f ∗
k exp(−ik · r + iωkt) =

∫
dk fk exp(ik · r − iωkt), (1.8)

which leads to the following symmetry relations:

f ∗
k = f−k, ω−k = −ωk, γ−k = γk. (1.9)

Let δf (r,t) represent a fluctuating quantity whose ensemble average is zero:

〈δf (r,t)〉 = 0. (1.10)

In our notation, any quantity preceded by δ indicates that this quantity is fluctuating
in space and time, that is, turbulent. By “ensemble average” we may mean an
average over phase, space, or time. Or it could mean an average over all possible
configurations. Turbulence is called “homogeneous” if the spatial dependence of
the two-body correlation is only upon the relative distance,

〈δf (r,t) δf (r′,t)〉 = 〈δf 2〉r−r′,t,t ′ = 〈δf 2〉r′−r,t,t ′, (1.11)

and “stationary” if the temporal two-body correlation is a function of relative time
difference,

〈δf (r,t) δf (r,t ′)〉 = 〈δf 2〉r,r′,t−t ′ = 〈δf 2〉r,r′,t ′−t . (1.12)
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1.1 Preamble: Fundamental Concepts 7

Thus, for homogeneous and stationary turbulence the two-body correlation function
is given by

〈δf (r,t) δf (r′,t ′)〉 = 〈δf 2〉r−r′,t−t ′ . (1.13)

It should be noted that not all fluctuating quantities in nature satisfy the zero ensem-
ble average property (1.10). Physical processes whose fluctuations satisfy (1.10)
are called “incoherent” phenomena, while “coherent” processes may be associated
with a nonvanishing ensemble average. For incoherent processes different phases
are uncorrelated such that when averaged over them, the result vanishes; hence,
such processes are characterized by the zero ensemble average property specified
by (1.10).

In a similar way, the three-body correlation function for homogeneous and sta-
tionary turbulence is a function of distances between any two points, say (r,t) and
(r′,t ′), among three points (r,t), (r′,t ′), (r′′,t ′′), in coordinate-time space:

〈δf (r,t) δf (r′,t ′) δf (r′′,t ′′)〉 = 〈δf 3〉r−r′,r−r′′;t−t ′,t−t ′′ . (1.14)

The four-body correlation function for homogeneous and stationary turbulence can
be defined likewise:

〈δf (r,t) δf (r′,t ′) δf (r′′,t ′′) δf (r′′′,t ′′′)〉
= 〈δf 2〉r−r′;t−t ′ 〈δf 2〉r′′−r′′′;t ′′−t ′′′ + 〈δf 2〉r−r′′;t−t ′′ 〈δf 2〉r′−r′′′;t ′−t ′′′

+ 〈δf 2〉r−r′′′;t−t ′′′ 〈δf 2〉r′−r′′;t ′−t ′′

+ 〈δf 4〉r−r′,r′−r′′,r′′−r′′′;t−t ′,t ′−t ′′′,t ′′−t ′′′ . (1.15)

Let us represent the two-body correlation function in spectral form:

〈δf (r,t) δf (r′,t ′)〉 =
∫

dk
∫

dω 〈δf 2〉k,ω eik·(r−r′)−iω(t−t ′)

=
∫

dk
∫

dω

∫
dk′

∫
dω′ 〈δfk,ω δfk′,ω′ 〉 eik·r+ik′·r′−iωt−iω′t ′,

(1.16)

where in the second line we have made use of the spectral representations for
individual functions δf (r,t) and δf (r′,t ′). From this, it is seen that the equality
can be obtained if the following condition is satisfied:

〈δfk,ω δfk′,ω′ 〉 = δ(k + k′) δ(ω + ω′) 〈δf 2〉k,ω. (1.17)

If we write the spectral component δfk,ω with an explicit phase factor,

δfk,ω = f̂k,ωeiφk,ω, (1.18)
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8 Nonlinear Electrostatic Equations for Collisionless Plasmas

where φk,ω represents the phase, then we have

〈δfk,ω δfk′,ω′ 〉 = 〈f̂k,ω f̂k′,ω′eiφk,ω+iφk′,ω′ 〉. (1.19)

For homogeneous and stationary turbulence the phase is assumed to be random (or
uncorrelated). As such, the ensemble average over random phases becomes nonzero
only if

φk,ω + φk′,ω′ = 0, (1.20)

which can be satisfied under the assumption that, if for k = −k′ and ω = −ω′, the
following is also satisfied:

φ−k,−ω = −φk,ω. (1.21)

This is but the rephrasing of condition (1.17). The assumption of homogeneous and
stationary turbulence is thus equivalent to the “random phase approximation.” In
short, the property

〈δf 2〉k,ω = 〈δfk,ω δf−k,−ω〉 (1.22)

is a useful spectral characteristic for homogeneous and stationary turbulence, or
equivalently, fluctuations with random phases.

Next, consider the three-body correlation, which we may write as

〈δf (r,t) δf (r′,t ′) δf (r′′,t ′′)〉 =
∫

dk
∫

dω

∫
dk′

∫
dω′ 〈δf 3〉k,ω;k′,ω′

× eik·(r−r′)+ik′·(r′−r′′)−iω(t−t ′)−iω′(t ′−t ′′)

=
∫

dk
∫

dω

∫
dk′

∫
dω′

∫
dk′′

∫
dω′′

× 〈δfk,ω δfk′,ω′ δfk′′,ω′′ 〉
× eik·r+ik′·r′+ik′′·r′′−iωt−iω′t ′−iω′′t ′′ . (1.23)

From this we obtain the identity

〈δfk,ω δfk′,ω′ δfk′′,ω′′ 〉 = δ(k + k′ + k′′) δ(ω + ω′ + ω′′) 〈δf 3〉k,ω;k+k′,ω+ω′ .
(1.24)

A similar analysis can be carried out for the four-body correlation. The derivation
is tedious but straightforward, and is thus omitted.

We summarize the general properties of the many-body correlations, or many-
body cumulants for homogeneous and stationary turbulence:

〈δfk,ω δfk′,ω′ 〉 = δ(k + k′) δ(ω + ω′)〈δf 2〉k,ω,

〈δfk,ω δfk′,ω′ δfk′′,ω′′ 〉 = δ(k + k′ + k′′)δ(ω + ω′ + ω′′)〈δf 3〉k,ω;k+k′,ω+ω′,
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1.2 Electrostatic Vlasov Equation 9

〈δfk,ω δfk′,ω′ δfk′′,ω′′ δfk′′′ω′′′ 〉 = δ(k + k′ + k′′ + k′′′) δ(ω + ω′ + ω′′ + ω′′′)

× [δ(k + k′) δ(ω + ω′) 〈δf 2〉k,ω 〈δf 2〉k′′,ω′′

+ δ(k + k′′) δ(ω + ω′′) 〈δf 2〉k,ω 〈δf 2〉k′,ω′

+ δ(k′ + k′′) δ(ω′ + ω′′) 〈δf 2〉k,ω 〈δf 2〉k′,ω′

+ 〈δf 4〉k,ω;k+k′,ω+ω′;k+k′+k′′,ω+ω′+ω′′]. (1.25)

An important consequence of this result is that an ensemble average of two fluctu-
ating quantities δf and δg, where they are related to each other, can be expressed
in terms of their spectral counterparts as follows:

〈δf (r,t) δg(r,t)〉 =
∫

dk
∫

dω 〈δfk,ω δg−k,−ω〉. (1.26)

1.2 Electrostatic Vlasov Equation

A simple and intuitive definition of plasma is that it is an ionized gas. Individual
electrons and ions that make up the plasma interact through collective electromag-
netic force. Collective behavior of a plasma is described by a statistical means.
In this book we are concerned with a fully ionized plasma. For partially ionized
plasma, atomic processes such as the recombination and collisions between charged
particles and neutrals cannot be ignored, which complicate the matter. Vlasov equa-
tion (Vlasov, 1938) describes the statistical property of a plasma governed by col-
lective processes. The system under consideration is a spatially uniform plasma
made of single-species ions (protons) and electrons, and there is no net electric or
magnetic field. We also assume zero average charge or current in the system. If we
make the simplifying approximation that the plasma particles interact primarily
through electrostatic field, then the dynamics can be described by the Vlasov–
Poisson system of equations(

∂

∂t
+ v · ∇ + ea

ma

E · ∂

∂v

)
fa = 0,

∇ · E = 4π
∑

a

ea

∫
dv fa, (1.27)

where ea and ma are charge and mass of species a (= e,i) for electrons and
ions (ea = e for protons and ea = −e for electrons). The one-particle distribu-
tion function fa(r,v,t) is the probability density of finding a collection of plasma
particles of species a, at a particular state in phase space (r,v) at a given time t .
Consequently, if we integrate fa(r,v,t) over v, or equivalently, if we collect all
possible configuration in velocity space, then the result becomes the density of
charged particle species labeled a,
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10 Nonlinear Electrostatic Equations for Collisionless Plasmas

ρa(r,t) =
∫

dv fa(r,v,t). (1.28)

Multiplying the charge ea and summing over all charged particle species leads to
the total charge density

ρ(r,t) =
∑

a

eaρa(r,t). (1.29)

Since fa(r,v,t) is the probability density, it is normalized to the ambient charged
particle number density na ,

1

V

∫
dr

∫
dv fa(r,v,t) = na, (1.30)

where V is the volume of the system. That is, if we collect all possible config-
urations in velocity space at a given time, and integrate over the entire volume
under consideration and divide by V , that is, take the spatial average, then the result
should be the total number of particles per volume, na = Na/V , or equivalently,
the ambient density. Since in the absence of source or sink, plasma particles cannot
be created or annihilated (that is, no recombination into neutrals or reionization),
the one-particle distribution function must be conserved. Hence,

dfa

dt
=
(

∂

∂t
+ ṙ · ∇ + v̇ · ∂

∂v

)
fa = 0. (1.31)

By virtue of the equation of motion,

ṙ = v and v̇ = ea

ma

E, (1.32)

we obtain the Vlasov equation in (1.27). Because of the charge neutrality condition,
the ambient density is the same for both ions and electrons,

ne = ni = n. (1.33)

Let us separate the physical quantities into average and fluctuating parts. The
average particle distribution function is independent of the spatial coordinate r
since we assume uniform plasma, and there is no average electric field, so that
we may write

fa(r,v,t) = naFa(v,t) + δfa(r,v,t),

E(r,t) = δE(r,t), (1.34)

where δ represents fluctuating quantities whose phases are supposed to be random.
When averaged over their phases, these quantities vanish. In (1.34) we have intro-
duced a normalized one-particle distribution function Fa(v,t) [

∫
dv Fa(v,t) = 1].

Inserting (1.34) back into the coupled Vlasov–Poisson equation, we obtain
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1.2 Electrostatic Vlasov Equation 11(
∂

∂t
+ ea

ma

δE · ∂

∂v

)
naFa+

(
∂

∂t
+ v · ∇ + ea

ma

δE · ∂

∂v

)
δfa = 0,

∇ · δE = 4π
∑

a

ea

∫
dv δfa .

(1.35)

Upon averaging (1.35) over random phases of the fluctuations, we obtain the formal
particle kinetic equation:

∂naFa

∂t
= − ea

ma

∂

∂v
· 〈δfa δE〉. (1.36)

Let us subtract the formal particle kinetic equation from the original equation in
order to obtain the equation for perturbed distribution function:(

∂

∂t
+ v · ∇

)
δfa = − ea

ma

δE · ∂naFa

∂v

− ea

ma

∂

∂v
· (δfa δE − 〈δfa δE〉) . (1.37)

Note that (1.37) is nonlinear since it contains terms of order O(δ2).
We assume that the fluctuations can be decomposed in the sense of Fourier–

Laplace transformation over the fast-time scales of fluctuations while the spectral
amplitudes may vary slowly in time:

δfa(r,v,t) =
∫

dk
∫

L

dω δf a
k,ω(v,t) eik·r−iωt,

δf a
k,ω(v,t) = 1

(2π)4

∫
dr

∫ ∞

0
dt δfa(r,v,t) e−ik·r+iωt,

δφ(r,t) =
∫

dk
∫

L

dω δφk,ω(t) eik·r−iωt,

δφk,ω(t) = 1

(2π)4

∫
dr

∫ ∞

0
dt δφ(r,t) e−ik·r+iωt, (1.38)

where we have assumed

δE(r,t) = −∇δφ(r,t), or δEk,ω = −ik δφk,ω, (1.39)

since we work under the electrostatic approximation. In (1.38), the integration∫
L

dω is taken along the path L that stretches from ω = −∞ + iσ to ω = ∞ + iσ

(σ > 0 and σ → 0). The infinitesimal positive imaginary part σ signifies that
we are only interested in causal solutions. The causality requirement is related to
the Laplace transformation being defined only over 0 < t < ∞ rather than the
entire integral domain, −∞ < t < ∞. The reason for the positive infinitesimal
imaginary part, σ > 0, in the ω integration along the path L, is to ensure the
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12 Nonlinear Electrostatic Equations for Collisionless Plasmas

temporal convergence for t → ∞, hence the causality. By the choice of posi-
tive integral

∫∞
0 dt , one is effectively breaking the time reversal symmetry, and

this forces physical processes to proceed in forward time, t > 0. That is, the
Laplace transformation in place of the symmetric temporal Fourier transformation
is equivalent to imposing the causal relationship to the otherwise time-reversible
Vlasov equation. In Appendix A we review the treatment of time-irreversible small
amplitude plasma perturbation, as discussed originally by Landau (1946). We also
discuss the notion of Landau damping in Appendix A.

In the Fourier–Laplace transformation defined in (1.38), we have made an
assumption that the spectral amplitudes δf a

k,ω(v,t) and δφk,ω(t) have slow and
adiabatic time dependence. These quantities are assumed to vary slowly in time,
while the temporal dependence dictated by exp(−iωt) is assumed to be fast. That
is, the time dependence of amplitudes is much weaker than that associated with the
wave time scale, δf , δφ ∼ O(tslow), where O(tslow) 
 O(ω−1). These amplitudes
are calculated as if they are independent of time on the fast wave time scale
(t ∼ ω−1).

Employing the transformation (1.38), the equation for fluctuating field, formal
particle kinetic equation, and the equation for perturbed distribution function are
expressed, respectively, as follows:

δφk,ω(t) =
∑

a

4πea

k2

∫
dv δf a

k,ω(v,t),

∂naFa(v,t)
∂t

= iea

ma

∫
dk

∫
dω

∫
dk′

∫
dω′

×
(

k′ · ∂

∂v

)
〈δφk′,ω′(t)δf a

k,ω(v,t)〉 ei(k+k′)·r−i(ω+ω′)t,

(
ω − k · v + i

∂

∂t

)
δf a

k,ω(v,t) = − ea

ma

δφk,ω(t) k · ∂naFa(v,t)
∂v

− ea

ma

∫
dk′

∫
dω′ k′ · ∂

∂v

× [
δφk′,ω′(t) δf a

k−k′,ω−ω′(v,t)

−〈δφk′,ω′(t) δf a
k−k′,ω−ω′(v,t)〉

]
. (1.40)

The present treatment of slow and adiabatic time dependence of spectral amplitudes
is not rigorous. Mathematically consistent treatment involves the multiple time-
scale analysis as employed by Davidson (1972). The present discussion resorts to
the shortcut approach, following the method employed in the standard literature,
for example, Sitenko (1982), Akhiezer et al. (1975), etc.
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1.3 Fast-Time Scale Solution 13

1.3 Fast-Time Scale Solution

Formal solutions for the fast-time scale quantities necessitate the inversion of dif-
ferential operator, ω − k · v + i∂/∂t . To simplify the matter, we temporarily ignore
the adiabatic time derivative by absorbing the time derivative as part of the “new”
definition for ω,

ω + i ∂/∂t → ω, (1.41)

within the definition for ω − k · v + i0 + i∂/∂t . We will reinstitute the explicit
slow-time derivative when we discuss the wave kinetic equation later. Meanwhile,
let us define

gk,ω ≡ − ea

ma

1

ω − k · v + i0

∂

∂v
. (1.42)

Note that +i0 is meant to indicate that the angular frequency ω is always to be
interpreted as having an infinitesimally small but positive imaginary part, which is
intimately related to the causality condition associated with the Laplace transfor-
mation, and discussed in Appendix A. The notion of ω having positive imaginary
part arises from the asymptotic treatment associated with the analytic continuation,
and it is further discussed in detail in Appendix B. Then the equation for perturbed
particle distribution function in (1.40) is re-expressed as follows:

δf a
k,ω = k · gk,ω naFa δφk,ω (1.43)

+
∫

dk′
∫

dω′ k′ · gk,ω

[
δφk′,ω′ δf a

k−k′,ω−ω′ − 〈δφk′,ω′ δf a
k−k′,ω−ω′ 〉

]
.

To solve the equation for δf a
k,ω, we expand δf a

k,ω in a formal perturbation series with
successive terms proportional to increasing powers of δφk,ω:

δf a
k,ω = δf

a(1)
k,ω + δf

a(2)
k,ω + δf

a(3)
k,ω + · · · , (1.44)

where δf
a(n)
k,ω scales as O(δφn

k,ω). It is not so difficult to see why δf
a(n)
k,ω should

scale as O(δφn
k,ω). If we ignore the nonlinear coupling term in (1.43), then it is

readily obvious that the perturbed distribution function δf a
k,ω is proportional to the

perturbed wave amplitude δφk,ω. From this it logically follows that the expansion
parameter should scale as δφk,ω. This consideration also leads to the conceptu-
ally “necessary” condition for the validity of so-called weak turbulence expansion
(1.44). If we consider that the characteristic energy associated with the average
particle distribution naFa is the thermal energy,

Eparticle =
∑

a

na

∫
dv

mav
2

2
Fa(v) =

∑
a

namav
2
T a

2
=
∑

a

naTa, (1.45)
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14 Nonlinear Electrostatic Equations for Collisionless Plasmas

and that the perturbed distribution function, which is defined by δfa = fa − naFa ,
scales as the wave amplitude, δfa ∝ δφ, then in order for perturbative expansion
(1.44) to converge, the characteristic energy associated with the perturbed distribu-
tion function, which is proportional to the wave energy density,

∑
a

∫
dv

mav
2

2
δfa(v) ∝ Ewave =

〈
δE2

〉
8π

, (1.46)

where δE = −∇δφ, must be sufficiently lower than the thermal energy. In short, the
following condition must be satisfied for the weak turbulence expansion to be valid:

Eparticle 
 Ewave. (1.47)

This is the general requirement for the validity of weak turbulence theory.
Inserting the series expansion (1.44) to the original equation for δf a

k,ω(v), we
readily obtain, order by order,

δf
a(1)
k,ω = k · gk,ω naFa δφk,ω,

δf
a(2)
k,ω =

∫
dk′

∫
dω′ k′ · gk,ω

[
δφk′,ω′ δf

a(1)

k−k′,ω−ω′ − 〈δφk′,ω′ δf
a(1)

k−k′,ω−ω′ 〉
]
,

δf
a(3)
k,ω =

∫
dk′

∫
dω′ k′ · gk,ω

[
δφk′,ω′ δf

a(2)

k−k′,ω−ω′ − 〈δφk′,ω′ δf
a(2)

k−k′,ω−ω′ 〉
]
,

· · · (1.48)

etc. Iterative solutions for δf
a(2)
k,ω and δf

a(3)
k,ω are given below:

δf
a(2)
k,ω =

∫
dk′

∫
dω′ (k′ · gk,ω)

[
(k − k′) · gk−k′,ω−ω′

]
× naFa

(
δφk′,ω′ δφk−k′,ω−ω′ − 〈δφk′,ω′ δφk−k′,ω−ω′ 〉) ,

δf
a(3)
k,ω =

∫
dk′

∫
dω′

∫
dk′′

∫
dω′′ (k′ · gk,ω) (k′′ · gk−k′,ω−ω′)

× [
(k − k′ − k′′) · gk−k′−k′′,ω−ω′−ω′′

]
naFa

× (
δφk′,ω′ δφk′′,ω′′ δφk−k′−k′′,ω−ω′−ω′′

− δφk′,ω′ 〈δφk′′,ω′′ δφk−k′−k′′,ω−ω′−ω′′ 〉
− 〈δφk′,ω′ δφk′′,ω′′ δφk−k′−k′′,ω−ω′−ω′′ 〉) . (1.49)

Let us introduce the following simplified notations:∑
k1+k2=k

=
∫

dk1

∫
dk2 δ(k1 + k2 − k),

∑
ω1+ω2=ω

=
∫

dω1

∫
dω2 δ(ω1 + ω2 − ω),
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1.3 Fast-Time Scale Solution 15∑
k1+k2+k3=k

=
∫

dk1

∫
dk2

∫
dk3 δ(k1 + k2 + k3 − k),

∑
ω1+ω2+ω3=ω

=
∫

dω1

∫
dω2

∫
dω3 δ(ω1 + ω2 + ω3 − ω), (1.50)

etc. Then, the series solution for δf a
k,ω is given by

δf a
k,ω = k · gk,ω naFa δφk,ω

+
∑

k1+k2=k

∑
ω1+ω2=ω

(k1 · gk,ω) (k2 · gk2,ω2) naFa

× (δφk1,ω1 δφk2,ω2 − 〈δφk1,ω1 δφk2,ω2〉)
+

∑
k1+k2+k3=k

∑
ω1+ω2+ω3=ω

(k1 · gk,ω) (k2 · gk2+k3,ω2+ω3)

× (k3 · gk3,ω3) naFa (δφk1,ω1 δφk2,ω2 δφk3,ω3

− δφk1,ω1 〈δφk2,ω2 δφk3,ω3〉 − 〈δφk1,ω1 δφk2,ω2 δφk3,ω3〉).
... . (1.51)

The right-hand side of (1.51) is not symmetric with respect to the interchange of
dummy variables, (k1,ω1) and (k2,ω2). The second-order nonlinear term should
be symmetrized with respect to variables (k1,ω1) and (k2,ω2), while for the third-
order term, the symmetrization should be implemented with respect to (k2,ω2) and
(k3,ω3). The interchange of these dummy variables leaves (1.51) intact. When the
above quantities are symmetrized with respect to these variables, then the correct
symmetrized expression emerges,

δf a
k,ω = α(k,ω) naFa δφk,ω

+
∑

k1+k2=k

∑
ω1+ω2=ω

α(2)(k1,ω1|k2,ω2) naFa

× (δφk1,ω1 δφk2,ω2 − 〈δφk1,ω1 δφk2,ω2〉)
+

∑
k1+k2+k3=k

∑
ω1+ω2+ω3=ω

α(3)(k1,ω1|k2,ω2|k3,ω3) naFa

×
(
δφk1,ω1 δφk2,ω2 δφk3,ω3 − δφk1,ω1 〈δφk2,ω2 δφk3,ω3〉

−〈δφk1,ω1 δφk2,ω2 δφk3,ω3〉
)
, (1.52)

where

α(k,ω) = k · gk,ω,

α(2)(k1,ω1|k2,ω2) = 1

2
[(k1 · gk1+k2,ω1+ω2) (k2 · gk2,ω2)

+ (k2 · gk1+k2,ω1+ω2) (k1 · gk1,ω1)],
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16 Nonlinear Electrostatic Equations for Collisionless Plasmas

α(3)(k1,ω1|k2,ω2|k3,ω3) = 1

2
(k1 · gk1+k2+k3,ω1+ω2+ω3)

× [ (k2 · gk2+k3,ω2+ω3) (k3 · gk3,ω3)

+ (k3 · gk2+k3,ω2+ω3) (k2 · gk2,ω2) ], (1.53)

1.4 Perturbed Wave Equation

We insert the iterative solution for δf a
k,ω (1.52) to the right-hand side of perturbed

Poisson equation in (1.40),

0 =
(

1 −
∑

a

4πeana

k2

∫
dv α(k,ω) Fa

)
δφk,ω

−
∑

k1+k2=k

∑
ω1+ω2=ω

∑
a

4πeana

k2

∫
dv α(2)(k1,ω1|k2,ω2) Fa

× (
δφk1,ω1 δφk2,ω2 − 〈δφk1,ω1 δφk2,ω2〉

)
−

∑
k1+k2+k3=k

∑
ω1+ω2+ω3=ω

∑
a

4πeana

k2

∫
dv Fa α(3)(k1,ω1|k2,ω2|k3,ω3)

× (
δφk1,ω1 δφk2,ω2 δφk3,ω3 − 〈δφk1,ω1 δφk2,ω2 δφk3,ω3〉

− δφk1,ω1 〈δφk2,ω2 δφk3,ω3〉
)

. (1.54)

Let us define the linear dielectric response function,

ε(k,ω) = 1 + χ(k,ω) = 1 +
∑

a

χa(k,ω)

= 1 + 4π

ω
σ(k,ω) = 1 + 4π

ω

∑
a

σa(k,ω),

χa(k,ω) = 4π

ω
σa(k,ω) = −4πeana

k2

∫
dv α(k,ω) Fa, (1.55)

where χ(k,ω) is the linear dielectric susceptibility and σ(k,ω) is the linear dielec-
tric conductivity. The second-order nonlinear response function, or equivalently,
the second-order nonlinear susceptibility, is likewise defined

χ(2)(k1,ω1|k2,ω2) =
∑

a

χ(2)
a (k1,ω1|k2,ω2),

χ(2)
a (k1,ω1|k2,ω2) = − 4πieana

k1 k2 |k1 + k2|
∫

dv α(2)(k1,ω1|k2,ω2) Fa, (1.56)
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1.4 Perturbed Wave Equation 17

and the third-order nonlinear response function, or third-order nonlinear suscepti-
bility, may also be defined

χ̄ (3)(k1,ω1|k2,ω2|k3,ω3) =
∑

a

χ̄ (3)
a (k1,ω1|k2,ω2|k3,ω3),

χ̄ (3)
a (k1,ω1|k2,ω2|k3,ω3) = 4πeana

k1 k2 k3 |k1 + k2 + k3|
×

∫
dv α(3)(k1,ω1|k2,ω2|k3,ω3) Fa,

χ(3)(k1,ω1|k2,ω2|k3,ω3) = 1

3
[ χ̄ (3)(k1,ω1|k2,ω2|k3,ω3)

+ χ̄ (3)(k2,ω2|k1,ω1|k3,ω3)

+ χ̄ (3)(k3,ω3|k2,ω2|k1,ω1) ]. (1.57)

To sum up, the linear and nonlinear susceptibilities can be expressed as

χa(k,ω) = −4πeana

k2

∫
dv k · gk,ω Fa, (1.58)

χ(2)
a (k1,ω1|k2,ω2) = −1

2

4πieana

k1 k2 |k1 + k2|
∫

dv gk1+k2,ω1+ω2

· [ k1 (k2 · gk2,ω2) + k2 (k1 · gk1,ω1) ] Fa, (1.59)

χ̄ (3)
a (k1,ω1|k2,ω2|k3,ω3) = 1

2

4πeana

k1 k2 k3 |k1 + k2 + k3|
×
∫

dv (gk1+k2+k3,ω1+ω2+ω3 · k1)gk2+k3,ω2+ω3

· [k2 (k3 · gk3,ω3) + k3 (k2 · gk2,ω2)
]

Fa . (1.60)

After explicitly writing out the various objects, making use of their respective
definitions, we may also rewrite the susceptibilities in concrete forms as follows:

χa(k,ω) = ω2
pa

k2

∫
dv

k · ∂Fa/∂v
ω − k · v + i0

, (1.61)

χ(2)
a (k1,ω1|k2,ω2) = −i

2

ea

ma

ω2
pa

k1 k2 |k1 + k2|
×
∫

dv
1

ω1 + ω2 − (k1 + k2) · v + i0
(1.62)

×
[

k1 · ∂

∂v

(
k2 · ∂Fa/∂v

ω2 − k2 · v + i0

)

+ k2 · ∂

∂v

(
k1 · ∂Fa/∂v

ω1 − k1 · v + i0

)]
,
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18 Nonlinear Electrostatic Equations for Collisionless Plasmas

χ̄ (3)
a (k1,ω1|k2,ω2|k3,ω3) = (−i)2

2

e2
a

m2
a

ω2
pa

k1 k2 k3 |k1 + k2 + k3|
×
∫

dv
1

ω1 + ω2 + ω3 − (k1 + k2 + k3) · v + i0

× k1 · ∂

∂v

{
1

ω2 + ω3 − (k2 + k3) · v + i0
(1.63)

×
[

k2 · ∂

∂v

(
k3 · ∂Fa/∂v

ω3 − k3 · v + i0

)

+ k3 · ∂

∂v

(
k2 · ∂Fa/∂v

ω2 − k2 · v + i0

)]}
,

where

ωpa =
(

4πnae
2
a

ma

)1/2

(1.64)

is the plasma frequency for species a. In (1.64), we again iterate that the positive
infinitesimal imaginary part associated with the angular frequency within the reso-
nant denominators is the result of imposing the causality condition in the Laplace
transformation (1.38) – see also Appendix B. Various linear and nonlinear suscep-
tibilities in (1.55)–(1.63) are known by their respective names:

• ε(k,ω); linear dielectric constant

• χ(k,ω); linear dielectric susceptibility

• σ(k,ω); linear dielectric conductivity

• χ(2)(k1,ω1|k2,ω2); second-order nonlinear susceptibility

• χ̄ (3)(k1,ω1|k2,ω2|k3,ω3); partial third-order nonlinear susceptibility

• χ(3)(k1,ω1|k2,ω2|k3,ω3); fully symmetrized third-order nonlinear susceptibility.

These definitions and designation of conventions (and even the notations) follow
Sitenko (1982). In terms of these susceptibilities, (1.54) can be written compactly as

0 = k ε(k,ω) δφk,ω − i
∑

k1+k2=k

∑
ω1+ω2=ω

k1 k2 χ(2)(k1,ω1|k2,ω2)

× (
δφk1,ω1 δφk2,ω2 − 〈δφk1,ω1 δφk2,ω2〉

)
−

∑
k1+k2+k3=k

∑
ω1+ω2+ω3=ω

k1 k2 k3 χ̄ (3)(k1,ω1|k2,ω2|k3,ω3)

× (
δφk1,ω1 δφk2,ω2 δφk3,ω3 − 〈δφk1,ω1 δφk2,ω2 δφk3,ω3〉

− δφk1,ω1 〈δφk2,ω2 δφk3,ω3〉
)

. (1.65)

Recall that in the statistical theory of turbulence we are interested in the corre-
lation function,

〈
δφ2

〉
. We may construct the equation for correlation from (1.65).
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1.4 Perturbed Wave Equation 19

Let us therefore multiply δφk′,ω′ to (1.65), and take the ensemble average of the
resulting equation:

0 = k ε(k,ω) 〈δφk,ω δφk′,ω′ 〉
−i

∑
k1+k2=k

∑
ω1+ω2=ω

k1 k2 χ(2)(k1,ω1|k2,ω2) 〈δφk1,ω1 δφk2,ω2 δφk′,ω′ 〉

−
∑

k1+k2+k3=k

∑
ω1+ω2+ω3=ω

k1 k2 k3 χ̄ (3)(k1,ω1|k2,ω2|k3,ω3)

× (〈δφk1,ω1 δφk2,ω2 δφk3,ω3 δφk′,ω′ 〉
− 〈δφk1,ω1 δφk′,ω′ 〉 〈δφk2,ω2 δφk3,ω3〉

)
. (1.66)

This equation relates the two-body electric field amplitude correlation 〈δφ2〉 to
three- and four-body correlations 〈δφ3〉 and 〈δφ4〉. As a consequence, (1.66) is not
closed, but instead forms an infinite chain, or hierarchy, of correlations. To break the
hierarchy one must introduce certain assumptions. This is the “closure problem.” To
break the hierarchy, we write the four-body cumulant 〈δφ4〉 as the sum of products
of two body cumulants while ignoring the irreducible four-body correlation. This
is equivalent to ignoring the last term on the right-hand side of (1.15). Let us thus
consider the third-order nonlinear term associated with χ̄ (3). Making use of the
shorthand notations,

K = (k,ω), 1 ≡ K1 = (k1,ω1),

2 ≡ K2 = (k2,ω2), 3 ≡ K3 = (k3,ω3), (1.67)

we may write

〈δφ1 δφ2 δφ3 δφK ′ 〉 − 〈δφ1 δφK ′ 〉 〈δφ2 δφ3〉
= δ(1 + 2 + 3 + K ′)

[
δ(1 + 2) 〈δφ2〉1 〈δφ2〉3

+ δ(1 + 3) 〈δφ2〉1 〈δφ2〉2
]
, (1.68)

where we have ignored the irreducible four-body correlation. This leads to∑
1+2+3=K

k1 k2 k3 χ̄ (3)(1|2|3) (〈δφ1 δφ2 δφ3 δφK ′ 〉 − 〈δφ1 δφK ′ 〉 〈δφ2 δφ3〉)

=
∑

1+2+3=K

k1 k2 k3 χ̄ (3)(1|2|3) δ(1 + 2 + 3 + K ′)

× (
δ(1 + 2) 〈δφ2〉1 〈δφ2〉3 + δ(1 + 3) 〈δφ2〉1 〈δφ2〉2

)
= 2δ(K + K ′)

∑
1

k k2
1 χ̄ (3)(1| − 1|K) 〈δφ2〉1 〈δφ2〉K . (1.69)
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20 Nonlinear Electrostatic Equations for Collisionless Plasmas

Thus, (1.66) simplifies

0 = k ε(k,ω) 〈δφ2〉k,ω δ(k + k′) δ(ω + ω′)

− i
∑

k1+k2=k

∑
ω1+ω2=ω

k1 k2 χ(2)(k1,ω1|k2,ω2) 〈δφk1,ω1 δφk2,ω2 δφk′,ω′ 〉

−2 δ(k + k′) δ(ω + ω′)
∑
k′,ω′

k k′2

× χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δφ2〉k′,ω′ 〈δφ2〉k,ω. (1.70)

In deriving this result, we have made use of the properties of homogeneous and
stationary turbulence (1.25) to write

〈δφk,ω δφk′,ω′ 〉 = δ(k + k′) δ(ω + ω′) 〈δφ2〉k,ω,〈δφk,ω δφk′,ω′ δφk′′,ω′′ δφk′′′,ω′′′ 〉
= δ(k + k′ + k′′ + k′′′) δ(ω + ω′ + ω′′ + ω′′′)

× [ δ(k + k′) δ(ω + ω′) 〈δφ2〉k,ω 〈δφ2〉k′′,ω′′

+ δ(k + k′′) δ(ω + ω′′) 〈δφ2〉k,ω 〈δφ2〉k′,ω′

+ δ(k′ + k′′) δ(ω′ + ω′′) 〈δφ2〉k,ω 〈δφ2〉k′,ω′

+ 〈δφ4〉kω;k+k′,ω+ω′;k+k′+k′′,ω+ω′+ω′′ ], (1.71)

and after having done so, we ignored the irreducible four-body correlation
〈δφ4〉kω;k+k′,ω+ω′;k+k′+k′′,ω+ω′+ω′′ in order to truncate the hierarchy of correlations.

The resultant wave equation (1.70) still contains the three-body correlation
〈δφk1,ω1 δφk2,ω2 δφ−k,−ω〉, hence, not completely closed yet. To compute this three-
body correlation, we return to (1.65) and consider up to second-order nonlinearity,

0 = k ε(k,ω) δφk,ω − i
∑

k1+k2=k

∑
ω1+ω2=ω

k1 k2 χ(2)(k1,ω1|k2,ω2)

× (
δφk1,ω1 δφk2,ω2 − 〈δφk1,ω1 δφk2,ω2〉

)
. (1.72)

The third-order nonlinear term makes contributions to higher-order corrections
only, thus can be ignored at the outset. We impose the iterative solution of (1.72),

δφk,ω = δφ
(0)
k,ω + δφ

(1)
k,ω + · · · (1.73)

If we ignore the nonlinear correction in (1.72), and truncate the solution by δφk,ω =
δφ

(0)
k,ω, then we have

0 = ε(k,ω) δφ
(0)
k,ω. (1.74)

The solution δφ
(0)
k,ω represents a sinusoidal (or plane wave) solution, which is uncor-

related with other spectral components. For such a plane-wave solution, ensemble
averages of all odd moments of δφ

(0)
k,ω are zero:
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1.4 Perturbed Wave Equation 21

〈δφ(0)
k,ω〉 = 0, 〈δφ(0)

k,ω δφ
(0)

k′,ω′ δφ
(0)

k′′,ω′′ 〉 = 0, . . . (1.75)

This is because the plane-wave solution has a phase dependence of the form
δφ

(0)
k,ω ∼ φ̂k,ωeiϕk,ω , so that odd moments are associated with odd products of

sinusoidal functions each with phase ϕk,ω. When integrated over ϕk,ω, odd moments
thus disappear. When the iterative solution (1.73) is inserted to (1.72), the next order
solution emerges:

δφ
(1)
k,ω = i

k ε(k,ω)

∑
k1+k2=k

∑
ω1+ω2=ω

k1 k2 χ(2)(k1,ω1|k2,ω2)

×
(
δφ

(0)
k1,ω1

δφ
(0)
k2,ω2

− 〈δφ(0)
k1,ω1

δφ
(0)
k2,ω2

〉
)

. (1.76)

The three-body correlation of interest can be approximately expressed as
follows:

〈δφk1,ω1 δφk2,ω2 δφk′,ω′ 〉 = 〈δφ(1)
k1,ω1

δφ
(0)
k2,ω2

δφ
(0)

k′,ω′ 〉
+ 〈δφ(0)

k1,ω1
δφ

(1)
k2,ω2

δφ
(0)

k′,ω′ 〉 + 〈δφ(0)
k1,ω1

δφ
(0)
k2,ω2

δφ
(1)

k′,ω′ 〉
+ · · · . (1.77)

Upon making use of solution (1.76) and substituting for δφ
(1)
k1,ω1

, δφ(1)
k2,ω2

, and δφ
(1)

k′,ω′ ,
it can be shown that the result is (the intermediate steps are somewhat tedious but
straightforward)

〈δφk1,ω1 δφk2,ω2 δφk′,ω′ 〉
= 2i k |k − k1| χ(2)(−k + k1, − ω + ω1|k,ω)

k1 ε(k1,ω1)
〈δφ2〉k−k1,ω−ω1 〈δφ2〉k,ω

+ 2i k k1 χ(2)(−k1, − ω1|k,ω)

|k − k1| ε(k − k1,ω − ω1)
〈δφ2〉k1,ω1 〈δφ2〉k,ω (1.78)

− 2i k1 |k − k1| χ(2)∗(k1,ω1|k − k1,ω − ω1)

k ε∗(k,ω)
〈δφ2〉k1,ω1 〈δφ2〉k−k1,ω−ω1,

where we have deleted the superscripts “(0)” after everything is said and done, and
have made use of the symmetry properties,

ε(−k, − ω) = ε∗(k,ω),

χ(2)(−k1, − ω1| − k2, − ω2) = −χ(2)∗(k1,ω1|k2,ω2),

χ(2)(k1,ω1|k2,ω2) = χ(2)(k2,ω2|k1,ω1). (1.79)

We have not yet discussed these symmetry properties associated with various sus-
ceptibilities, although the complex conjugate properties can be easily deduced from
definitions (1.61)–(1.64). In the subsequent section we will discuss the symmetries
as well as other properties associated with the susceptibilities in detail.
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22 Nonlinear Electrostatic Equations for Collisionless Plasmas

With (1.78) the wave equation (1.70) is now written as

0 = ε(k,ω) 〈 k2 δφ2〉k,ω + 2
∑
k′,ω′

[
χ(2)(k′,ω′|k − k′,ω − ω′)

×
(

χ(2)(−k + k′, − ω + ω′|k,ω)

ε(k′,ω′)
〈 |k − k′|2 δφ2〉k−k′,ω−ω′

+ χ(2)(−k′, − ω′|k,ω)

ε(k − k′,ω − ω′)
〈 k′2 δφ2〉k′,ω′

)
〈 k2 δφ2〉k,ω (1.80)

− |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈 k′2 δφ2〉k′,ω′ 〈 |k − k′|2 δφ2〉k−k′,ω−ω′

]
− 2

∑
k′,ω′

χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈 k′2 δφ2〉k′,ω′ 〈 k2 δφ2〉k,ω.

This equation is known as the nonlinear spectral balance equation since the linear
term, which appears as the first term on the right-hand side of the equality, is
balanced by the rest that represents nonlinear response. We may rewrite the (1.80)
by noting that the electrostatic potential correlation can be rewritten as the electric
field correlation

〈 k2δφ2〉k,ω = 〈δE2〉k,ω, (1.81)

where 〈δE2〉 is related to the spectral electric field energy density, Ewave = 〈δE2〉/
(8π). As a consequence, (1.80) is equivalently written as

0 = ε(k,ω) 〈δE2〉k,ω + 2
∑
k′,ω′

[
χ(2)(k′,ω′|k − k′,ω − ω′)

×
(

χ(2)(−k + k′, − ω + ω′|k,ω)

ε(k′,ω′)
〈δE2〉k−k′,ω−ω′

+ χ(2)(−k′, − ω′|k,ω)

ε(k − k′,ω − ω′)
〈δE2〉k′,ω′

)
〈δE2〉k,ω (1.82)

− |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈δE2〉k′,ω′ 〈δE2〉k−k′,ω−ω′

]
− 2

∑
k′,ω′

χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δE2〉k′,ω′ 〈δE2〉k,ω.

To determine the adiabatic time evolution of the spectral wave energy density, we
now reinstitute the slow time dependence implicit in the wave-particle resonance
denominator:

(ω − k · v + i0 + i∂/∂t)−1.
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1.4 Perturbed Wave Equation 23

Recall that in deriving the final spectral balance equation (1.82), we had “absorbed”
the derivative i∂/∂t in the “new definition” of ω – see (1.41). This resulted in
turning the differential equation (1.40) into an algebraic equation. After the desired
equation (1.82) has now been obtained, we reintroduce the factor i∂/∂t in the argu-
ments of the response functions. As a consequence, various dielectric susceptibility
response functions become operators in the slow time t of the amplitude evolution.
However, i∂/∂t was present in the original equation (1.40) only on the left-hand
side, while the angular frequency ω appeared on both sides. Consequently, when
we reintroduce the slow-time derivative i∂/∂t to the angular frequency, we do so
by treating this object as a small correction, and we introduce it only to the leading
term, which is the linear response function. To reiterate, this whole procedure is
heuristic, and as we noted already, the proper way to treat this type of problem is
via multiple time scale analysis (Davidson, 1972). In this book, we take the present
shortcut method nonetheless. When the slow-time derivative is thus reintroduced,
the linear term is modified as

ε(k,ω) 〈δE2〉k,ω → ε

(
k,ω + i

∂

∂t

)
〈δE2〉k,ω

→
(

ε(k,ω) + i

2

∂ε(k,ω)

∂ω

∂

∂t

)
〈δE2〉k,ω, (1.83)

where 1/2 in front of the time derivative in the last expression stems from the
fact that

∂ δE−k,−ω(t)

∂t
= ∂ δEk,ω(t)

∂t
. (1.84)

Recall that the slow-time derivative originally affects only δf a
k,ω, which automati-

cally implies that i∂/∂t is meant to operate on δEk,ω or δE−k,−ω separately, but not
on their products. Consequently, when the slow-time derivative is reintroduced, the
proper procedure is as follows:

ε(k,ω) 〈δE2〉k,ω = 〈
δE−k,−ω ε(k,ω) δEk,ω

〉
→

〈
δE−k,−ω ε

(
k,ω + i

∂

∂t

)
δEk,ω

〉

=
〈
δE−k,−ω

(
ε(k,ω) + i

∂ε(k,ω)

∂ω

∂

∂t

)
δEk,ω

〉
= ε(k,ω)

〈
δE2

〉
k,ω

+ i

2

∂ε(k,ω)

∂ω

〈
δE−k,−ω

∂δEk,ω

∂t
+ δEk,ω

∂δE−k,−ω

∂t

〉
.

After making use of (1.84), then we readily arrive at (1.83).
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24 Nonlinear Electrostatic Equations for Collisionless Plasmas

This procedure results in the formal wave kinetic equation

0 = ε(k,ω) 〈δE2〉k,ω + i

2

∂ε(k,ω)

∂ω

∂ 〈δE2〉k,ω

∂t

+ 2
∑
k′,ω′

[
χ(2)(k′,ω′|k − k′,ω − ω′)

×
(

χ(2)(−k + k′, − ω + ω′|k,ω)

ε(k′,ω′)
〈δE2〉k−k′,ω−ω′ (1.85)

+ χ(2)(−k′, − ω′|k,ω)

ε(k − k′,ω − ω′)
〈δE2〉k′,ω′

)
〈δE2〉k,ω

− |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈δE2〉k′,ω′ 〈δE2〉k−k′,ω−ω′

]
− 2

∑
k′,ω′

χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δE2〉k′,ω′ 〈δE2〉k,ω.

This equation is further manipulated by separating the linear dielectric function
ε(k,ω) into real and imaginary parts,

ε(k,ω) = Re ε(k,ω) + i Im ε(k,ω), (1.86)

where it is assumed that

|Im ε(k,ω)|  |Re ε(k,ω)|. (1.87)

This assumption is equivalent to the weak growth/damping approximation. The
imaginary part of the derivative, ∂ Im ε(k,ω)/∂ω, which couples with the slow-
time derivative ∂/∂t , is also ignored. Before we present the final result, let us invoke
another useful symmetry property associated with the second-order nonlinear sus-
ceptibility,

χ(2)(k1,ω1|k2,ω2) = χ(2)(k1 + k2,ω1 + ω2| − k2, − ω2), (1.88)

which will be derived in the next section. Then (1.85) can be expressed as

0 = i

2

∂ Re ε(k,ω)

∂ω

∂

∂t
〈δE2〉k,ω + Re ε(k,ω) 〈δE2〉k,ω + i Im ε(k,ω) 〈δE2〉k,ω

+ 2
∫

dk′
∫

dω′
[

{χ(2)(k′,ω′|k − k′,ω − ω′) }2

×
(〈δE2〉k−k′,ω−ω′

ε(k′,ω′)
+ 〈δE2〉k′,ω′

ε(k − k′,ω − ω′)

)
〈δE2〉k,ω (1.89)

−|χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈δE2〉k′,ω′ 〈δE2〉k−k′,ω−ω′

]

− 2
∫

dk′
∫

dω′ χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δE2〉k′,ω′ 〈δE2〉k,ω.
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1.4 Perturbed Wave Equation 25

The real part of this equation,

0 =
{

Re ε(k,ω) + 2 Re
∫

dk′
∫

dω′
[

{χ(2)(k′,ω′|k − k′,ω − ω′) }2

×
(〈δE2〉k−k′,ω−ω′

ε(k′,ω′)
+ 〈δE2〉k′,ω′

ε(k − k′,ω − ω′)

)

−χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δE2〉k′,ω′

]}
〈δE2〉k,ω (1.90)

− 2 Re
∫

dk′
∫

dω′ |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈δE2〉k′,ω′ 〈δE2〉k−k′,ω−ω′,

determines the wave dispersion relation, ω = ωk, while the imaginary part,

0 = 1

2

∂ Re ε(k,ω)

∂ω

∂

∂t
〈δE2〉k,ω + Im ε(k,ω) 〈δE2〉k,ω

+ 2 Im
∫

dk′
∫

dω′
[

{χ(2)(k′,ω′|k − k′,ω − ω′) }2

×
(〈δE2〉k−k′,ω−ω′

ε(k′,ω′)
+ 〈δE2〉k′,ω′

ε(k − k′,ω − ω′)

)
〈δE2〉k,ω (1.91)

− |χ(2)(k′,ω′|k − k′,ω − ω′)|2
ε∗(k,ω)

〈δE2〉k′,ω′ 〈δE2〉k−k′,ω−ω′

]

− 2 Im
∫

dk′
∫

dω′ χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δE2〉k′,ω′ 〈δE2〉k,ω,

corresponds to the wave kinetic equation. In general, (1.90) is not quite a
“dispersion equation” yet, since in the last term different spectral components
are inexorably coupled. However, if we ignore the non-diagonal term, 〈δE2〉k′,ω′

〈δE2〉k−k′,ω−ω′ , that is, if we approximate (1.90) by

0 =
{

Re ε(k,ω) + 2 Re
∫

dk′
∫

dω′
[

{χ(2)(k′,ω′|k − k′,ω − ω′) }2

×
(〈δE2〉k−k′,ω−ω′

ε(k′,ω′)
+ 〈δE2〉k′,ω′

ε(k − k′,ω − ω′)

)

−χ̄ (3)(k′,ω′| − k′, − ω′|k,ω) 〈δE2〉k′,ω′

]}
〈δE2〉k,ω

≡ Re ε̃(k,ω) 〈δE2〉k,ω, (1.92)

then (1.92) represents nonlinear dispersion equation in the proper sense. If we are
concerned with a situation where the waves excited in the plasma can be character-
ized by linear dispersion relation, but where we are interested in waves interacting
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26 Nonlinear Electrostatic Equations for Collisionless Plasmas

with the particles and among themselves via linear and nonlinear wave-particle
and wave-wave interactions, then one may simplify the real part of the spectral
balance equation, namely, (1.92), by simply ignoring nonlinear mode coupling
terms altogether,

Re ε(k,ω) 〈δE2〉k,ω = 0. (1.93)

In Appendix C, we discuss the result of retaining the nonlinear correction terms
in (1.92), but in the main body of this book we focus on linear eigenmodes and
nonlinear interactions among the linear modes and the particles.

1.5 Formal Wave Kinetic Equation for Eigenmodes

Linear wave equation (1.93) implies that the angular frequency is a function of
wave vector, that is, ω and k satisfy a “dispersion relation.”

ω = ωα
k, (1.94)

where α designates the eigenmode. There could be more than a single solution,
hence the superscript α. Equation (1.93) implies that the spectral electric field wave
energy density can be represented in terms of the wave intensity

〈δE2〉k,ω =
∑

α=L,S

[ I+α
k δ(ω − ωα

k) + I−α
k δ(ω + ωα

k) ]. (1.95)

In this equation, I±α
k represents the intensity of electrostatic waves associated with

eigenmode α, propagating in forward/backward (±) direction. We will discuss the
linear wave properties later, but it is well known that linear electrostatic eigenmodes
of a uniform, unmagnetized plasma are high-frequency Langmuir wave (α = L)
and low-frequency ion-sound (or ion acoustic) wave (α = S). It is important to
distinguish the forward versus backward propagation, as nonlinear interactions of
these modes depend on the wave propagation direction.

Inserting (1.95) to the wave kinetic equation (1.91) we have

0 =
∑

α

∑
σ=±1

(
1

2

∂ Re ε(k,σωα
k)

∂σωα
k

∂Iσα
k

∂t
+ Im ε(k,σωα

k) I σα
k

)
δ(ω − σωα

k)

+ 2 Im
∑

α

∑
σ=±1

∫
dk′

(∑
γ

∑
σ ′′=±1

× {χ(2)(k′,σωα
k − σ ′′ωγ

k−k′ |k − k′,σ ′′ωγ

k−k′) }2

ε(k′,σωα
k − σ ′′ωγ

k−k′)
I

σ ′′γ
k−k′
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1.5 Formal Wave Kinetic Equation for Eigenmodes 27

+
∑

β

∑
σ ′=±1

{χ(2)(k′,σ ′ωβ

k′ |k − k′,σωα
k − σ ′ωβ

k′) }2

ε(k − k′,σωα
k − σ ′ωβ

k′)
I

σ ′β
k′

⎞
⎠ I σα

k δ(ω − σωα
k)

− 2 Im
∑
β,γ

∑
σ ′,σ ′′=±1

∫
dk′ |χ(2)(k′,σ ′ωβ

k′ |k − k′,σ ′′ωγ

k−k′)|2
ε∗(k,σ ′ωβ

k′ + σ ′′ωγ

k−k′)

× I
σ ′β
k′ I

σ ′′γ
k−k′ δ(ω − σ ′ωβ

k′ − σ ′′ωγ

k−k′)

− 2 Im
∑
α,β

∑
σ,σ ′=±1

∫
dk′ χ̄ (3)(k′,σ ′ωβ

k′ | − k′, − σ ′ωβ

k′ |k,σωα
k)

× I
σ ′β
k′ I σα

k δ(ω − σωα
k), (σ = ±1). (1.96)

Let us focus on the quantity [ε(k,ω)]−1. If ω lies in the vicinity of linear
eigenmode, ω ∼ σωα

k , where Re ε(k,σωα
k) = 0, since we had assumed that

|Im ε(k,ω)|  |Re ε(k,ω)|, we may approximately express

1

ε(k,ω)
≈ 1

Re ε(k,ω)

≈
∑

α

∑
σ=±1

1

(ω − σωα
k + i0) [∂Re ε(k,ω)/∂ω]ω=σωα

k

= −
∑

α

∑
σ=±1

iπ δ(ω − σωα
k)

∂Re ε(k,σωα
k)/∂σωα

k
, (1.97)

where we have taken the series expansion,

Re ε(k,ω) ≈
∑

σ

∑
α

(ω − σωα
k + i0)

∂Re ε(k,ω)

∂ω

∣∣∣∣
ω=σωα

k

. (1.98)

In the second line of (1.97) we have summed over all possible poles. If we include
contributions from those ω’s that are sufficiently far away from linear eigenmodes
in the complex frequency space, then we must add the principal part contribution
to the right-hand side of (1.97) as well:

1

ε(k,ω)
= P

1

ε(k,ω)
−
∑

α

∑
σ=±1

iπ δ(ω − σωα
k)

∂Re ε(k,σωα
k)/∂σωα

k
.

1

ε∗(k,ω)
= P

1

ε∗(k,ω)
+
∑

α

∑
σ=±1

iπ δ(ω − σωα
k)

∂Re ε(k,σωα
k)/∂σωα

k
. (1.99)
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28 Nonlinear Electrostatic Equations for Collisionless Plasmas

Principal value P is meant to exclude those ω’s in the vicinity of linear eigen-
modes, ω = ±ωα

k .
Making use of (1.99), the wave kinetic equation (1.96) is now expressed as

follows:

0 =
∑

α

∑
σ=±1

(
1

2

∂ Re ε(k,σωα
k)

∂σωα
k

∂Iσα
k

∂t
+ Im ε(k,σωα

k) I σα
k

)

+ 2 Im
∑
α,β

∑
σ,σ ′=±1

∫
dk′

(
2 {χ(2)(k′,σ ′ωβ

k′ |k − k′,σωα
k − σ ′ωβ

k′) }2

× P
1

ε(k − k′,σωα
k − σ ′ωβ

k′)

− χ̄ (3)(k′,σ ′ωβ

k′ | − k′, − σ ′ωβ

k′ |k,σωα
k)

)
I

σ ′β
k′ I σα

k

− 2 Im
∑
β,γ

∑
σ ′,σ ′′=±1

∫
dk′ |χ(2)(k′,σ ′ωβ

k′ |k − k′,σ ′′ωγ

k−k′)|2

× P
1

ε∗(k,σ ′ωβ

k′ + σ ′′ωγ

k−k′)
I

σ ′β
k′ I

σ ′′γ
k−k′ δ(σωα

k − σ ′ωβ

k′ − σ ′′ωγ

k−k′)

+ 2π
∑
α,β,γ

∑
σ,σ ′,σ ′′=±1

∫
dk′ |χ(2)(k′,σ ′ωβ

k′ |k − k′,σωα
k − σ ′ωβ

k′)|2

×
(

I
σ ′′γ
k−k′ I

σα
k

∂Re ε(k′,σ ′ωβ

k′)/∂σ ′ωβ

k′
+ I

σ ′β
k′ I σα

k

∂Re ε(k − k′,σ ′′ωγ

k−k′)/∂σ ′′ωγ

k−k′

− I
σ ′β
k′ I

σ ′′γ
k−k′

∂Re ε(k,σωα
k)/∂σωα

k

)
δ(σωα

k − σ ′ωβ

k′ − σ ′′ωγ

k−k′). (1.100)

In deriving this result, we have invoked the fact that, to the leading order, χ(2) is
purely imaginary so that

{χ(2)(k1,ω1|k2,ω2)}2 ≈ −|χ(2)(k1,ω1|k2,ω2)|2, (1.101)

which we imposed for the last term that contains the three-wave resonance delta
function condition δ(σωα

k − σ ′ωβ

k′ − σ ′′ωγ

k−k′). This property will be discussed in

the subsequent section. In (1.100), the principal part, P[1/ε∗(k,σ ′ωβ

k′ +σ ′′ωγ

k−k′)],

and the condition, σωα
k = σ ′ωβ

k′ + σ ′′ωγ

k−k′ , where σωα
k satisfies ε∗(k,σωα

k) = 0,
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1.6 Formal Particle Kinetic Equation 29

are mutually exclusive. Thus, by definition, this term is zero. This leaves us with∑
α

∑
σ=±1

∂ Re ε(k,σωα
k)

∂σωα
k

∂Iσα
k

∂t

= −
∑

α

∑
σ=±1

2 Im ε(k,σωα
k) I σα

k

− 4
∑

k′

∑
α,β

∑
σ,σ ′=±1

Im

(
2 {χ(2)(k′,σ ′ωβ

k′ |k − k′,σωα
k − σ ′ωβ

k′)}2

× P
1

ε(k − k′,σωα
k − σ ′ωβ

k′)
(1.102)

− χ̄ (3)(k′,σ ′ωβ

k′ | − k′, − σ ′ωβ

k′ |k,σωα
k)

)
I

σ ′β
k′ I σα

k

− 4π
∑

k′

∑
α,β,γ

∑
σ,σ ′,σ ′′=±1

|χ(2)(k′,σ ′ωβ

k′ |k − k′,σωα
k − σ ′ωβ

k′)|2

×
(

I
σ ′′γ
k−k′ I

σα
k

∂Re ε(k′,σ ′ωβ

k′)/∂σ ′ωβ

k′
+ I

σ ′β
k′ I σα

k

∂Re ε(k − k′,σ ′′ωγ

k−k′)/∂σ ′′ωγ

k−k′

− I
σ ′β
k′ I

σ ′′γ
k−k′

∂Re ε(k,σωα
k)/∂σωα

k

)
δ(σωα

k − σ ′ωβ

k′ − σ ′′ωγ

k−k′).

This equation is the formal wave kinetic equation governing the dynamics of linear
eigenmodes as they undergo nonlinear interactions among themselves as well as
with the plasma particles. At this stage in the development of formalism, however,
the result is not practically useful since the various susceptibilities are expressed
at a formal level. These quantities are yet to be explicitly calculated in forms that
readily lend themselves to further analysis.

1.6 Formal Particle Kinetic Equation

Formal particle kinetic equation (1.40) can be further manipulated by considering
the quantity given in (1.103), which follows from (1.52),

〈δf a
k,ω δφk′,ω′ 〉 = δ(k + k′) δ(ω + ω′) α(k,ω) 〈δφ2〉k,ω naFa

+
∑

k1+k2=k

∑
ω1+ω2=ω

α(2)(k1,ω1|k2,ω2)

×〈δφk1,ω1 δφk2,ω2 δφk′,ω′ 〉 naFa

+ 2 δ(k + k′) δ(ω + ω′)
∑

k1

∑
ω1

α(3)(k1,ω1| − k1, − ω1|k,ω)

×〈δφ2〉k1,ω1 〈δφ2〉k,ω naFa . (1.103)
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30 Nonlinear Electrostatic Equations for Collisionless Plasmas

Upon making use of (1.78), we have

〈δf a
k,ω δφk′,ω′ 〉 = δ(k + k′) δ(ω + ω′)

{
α(k,ω) 〈δφ2〉k,ω

+
∑
k1ω1

2i

k k1 |k − k1| α(2)(k1,ω1|k − k1,ω − ω1)

×
(

χ(2)(k1,ω1|k − k1,ω − ω1)

ε(k1,ω1)
|k − k1|2 k2

×〈δφ2〉k−k1,ω−ω1 〈δφ2〉k,ω

+ χ(2)(k1,ω1|k − k1,ω − ω1)

ε(k − k1,ω − ω1)
k2

1 k2 〈δφ2〉k1,ω1 〈δφ2〉k,ω

− χ(2)∗(k1,ω1|k − k1,ω − ω1)

ε∗(k,ω)
k2

1 |k − k1|2

×〈δφ2〉k1,ω1 〈δφ2〉k−k1,ω−ω1

)

+ 2
∑
k1,ω1

α(3)(k1,ω1| − k1, − ω1|k,ω) 〈δφ2〉k1,ω1 〈δφ2〉k,ω.

(1.104)

Substituting (1.104) to the right-hand side of formal particle kinetic equation in
(1.40), we obtain

∂ Fa

∂t
= − iea

ma

∫
dk

∫
dω k · ∂

∂v

{
α(k,ω)

〈δE2〉k,ω

k2

+ 2i

∫
dk′

∫
dω′ α(2)(k′,ω′|k − k′,ω − ω′)

M(k′,ω′|k − k′,ω − ω′)
k k′ |k − k′|

+ 2
∫

dk′
∫

dω′ α(3)(k′,ω′| − k′, − ω′|k,ω)
〈δE2〉k′,ω′ 〈δE2〉k,ω

k2 k′2

}
Fa,

(1.105)

where

M(k1,ω1|k2,ω2) = χ(2)(k1,ω1|k2,ω2)

(〈δE2〉k2,ω2

ε(k1,ω1)
+ 〈δE2〉k1,ω1

ε(k2,ω2)

)
〈δE2〉k1+k2,ω1+ω2

− χ(2)∗(k1,ω1|k2,ω2)

ε∗(k1 + k2,ω1 + ω2)
〈δE2〉k1,ω1 〈δE2〉k2,ω2 . (1.106)

It is instructive to rewrite this equation explicitly by making use of (1.53). Taking
the real part only we obtain
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∂Fa

∂t
= −Im

e2
a

m2
a

∫
dk

∫
dω

k
k

· ∂

∂v
〈δE2〉k,ω

ω − k · v
k
k

· ∂Fa

∂v

+ Re
e3
a

m3
a

∫
dk

∫
dω

∫
dk′

∫
dω′ k

k
· ∂

∂v
M(k′,ω′|k − k′,ω − ω′)

ω − k · v

×
(

k′

k′ · ∂

∂v
1

ω − ω′ − (k − k′) · v
(k − k′)
|k − k′| · ∂

∂v

+ (k − k′)
|k − k′| · ∂

∂v
1

ω′ − k′ · v
k′

k′ · ∂

∂v

)
Fa

+ Im
e4
a

m4
a

∫
dk

∫
dω

∫
dk′

∫
dω′ k

k
· ∂

∂v
〈δE2〉k′,ω′ 〈δE2〉k,ω

ω − k · v
k′

k′ · ∂

∂v

× 1

ω − ω′ − (k − k′) · v

(
k′

k′ · ∂

∂v
1

ω − k · v
k
k

· ∂

∂v

− k
k

· ∂

∂v
1

ω′ − k′ · v
k′

k′ · ∂

∂v

)
Fa . (1.107)

We will make explicit use of the spectral wave energy density (1.95) in (1.107),
thereby eliminating ω and ω′ integrals by virtue of the delta functions. This will
be done later in Chapter 4. For now, we treat (1.107) as constituting the formal
particle kinetic equation, and as an interlude, we next discuss the properties of
various dielectric susceptibility response functions.

1.7 Linear and Nonlinear Susceptibilities

Linear and nonlinear susceptibilities have already been introduced in (1.55)–(1.64).
It is instructive to rewrite these response functions by means of partial integrations,

χa(k,ω) = −ω2
pa

∫
dv

Fa

(ω − k · v + i0)2
, (1.108)

χ(2)
a (k1,ω1|k2,ω2) = −

∫
dv Fa

1

(ω1 − k1 · v + i0)(ω2 − k2 · v + i0)

× 1

ω1 + ω2 − (k1 + k2) · v + i0

×
(

k2
1 k2 · (k1 + k2)

ω1 − k1 · v + i0
+ k2

2 k1 · (k1 + k2)

ω2 − k2 · v + i0

+ (k1 + k2)
2(k1 · k2)

ω1 + ω2 − (k1 + k2) · v + i0

)
, (1.109)
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χ̄ (3)
a (k1,ω1|k2,ω2|k3,ω3) = 1

2

e2
a

m2
a

ω2
pa [k1 · (k1 + k2 + k3)]

k1 k2 k3 |k1 + k2 + k3|

×
∫

dv Fa

1

(ω2 − k2 · v + i0) (ω3 − k3 · v + i0)

× 1

[ω1 + ω2 + ω3 − (k1 + k2 + k3) · v + i0]2

×
[

2

ω1 + ω2 + ω3 − (k1 + k2 + k3) · v + i0

×
(

3 [k2 · (k1 + k2 + k3)] [k3 · (k1 + k2 + k3)]

ω1 + ω2 + ω3 − (k1 + k2 + k3) · v + i0

+ k2
2 [k3 · (k1 + k2 + k3)]

ω2 − k2 · v + i0

+ k2
3 [k2 · (k1 + k2 + k3)]

ω3 − k3 · v + i0

)

+ 1

ω2 + ω3 − (k2 + k3) · v + i0

×
(

2 (k2 · k3) [(k2 + k3) · (k1 + k2 + k3)]

ω1 + ω2 + ω3 − (k1 + k2 + k3) · v + i0

+ k2
2 [k3 · (k2 + k3)]

ω2 − k2 · v + i0
+ k2

3 [k2 · (k2 + k3)]

ω3 − k3 · v + i0

+ (k2 + k3)
2(k2 · k3)

ω2 + ω3 − (k2 + k3) · v + i0

)]
. (1.110)

1.7.1 Symmetry Relations

The first useful symmetry property involves the permutation of arguments. The
second- and third-order susceptibilities, χ(2)(k1,ω1|k2,ω2) and χ(3)(k1,ω1|k2,

ω2|k3,ω3), are fully symmetric with respect to permutations of arguments. How-
ever, the partial third-order susceptibility χ̄ (3)(k1,ω1|k2,ω2|k3,ω3) is symmetric
only with respect to the permutation of the last two sets of arguments:

χ(2)(k2,ω2|k1,ω1) = χ(2)(k1,ω1|k2,ω2),

χ̄ (3)(k1,ω1|k3,ω3|k2,ω2) = χ̄ (3)(k1,ω1|k2,ω2|k3,ω3), (1.111)

χ(3)(k1,ω1|k2,ω2|k3,ω3) = χ(3)(k1,ω1|k3,ω3|k2,ω2)

= χ(3)(k2,ω2|k1,ω1|k3,ω3) = χ(3)(k2,ω2|k3,ω3|k1,ω1)

= χ(3)(k3,ω3|k2,ω2|k1,ω1) = χ(3)(k3,ω3|k1,ω1|k2,ω2).
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The next useful symmetry property involves arguments of opposite signs:

ε(−k, − ω) = ε∗(k,ω),

χ(2)(−k1, − ω1| − k2, − ω2) = −χ(2)∗(k1,ω1|k2,ω2), (1.112)

χ̄ (3)(−k1, − ω1| − k2, − ω2| − k3, − ω3) = χ̄ (3)∗(k1,ω1|k2,ω2|k3,ω3),

χ(3)(−k1, − ω1| − k2, − ω2| − k3, − ω3) = χ(3)∗(k1,ω1|k2,ω2|k3,ω3).

These symmetry relations can easily be checked from definitions (1.62)–(1.64) or
(1.108)–(1.110). If the small positive imaginary part in the resonant denominator is
ignored, then we obtain a useful approximate symmetry relation from (1.109),

χ(2)(k1,ω1|k2,ω2) = χ(2)(k2,ω2|k1,ω1)

= χ(2)(k1 + k2,ω1 + ω2| − k2, − ω2), (1.113)

which we have already invoked in (1.88).

1.7.2 Linear Dielectric Susceptibility

In the long-wavelength limit (k2 → 0), the linear dielectric function χa(k,ω) takes
on the limiting form,

χa(0,ω) = −ω2
pa

ω2
. (1.114)

To include thermal corrections, we expand the resonant denominator for small
argument, k · v/ω  1, to obtain

χa(k,ω) ≈ −ω2
pa

ω2

(
1 + 3k2Ta

maω2

)

− iπ
ω2

pa

k2

∫
dv k · ∂Fa

∂v
δ(ω − k · v), (1.115)

where we have defined the kinetic temperature,

Ta = ma

∫
dv v2Fa = mav

2
T a

2
. (1.116)

Here, vT a = √
2Ta/ma represents the thermal speed for species a. In deriving

(1.115) we assumed that the plasma species a has zero net drift,
∫

dv v Fa ≈ 0.
The expression (1.115) assumes the so-called fast-wave condition, ω 
 kvT a . For
the opposite case when ω  kvT a is satisfied (the slow-wave condition), we may
approximate the principal part of the resonant denominator by

P
1

ω − k · v + i0
≈ − 1

k · v
. (1.117)
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If we assume that the distribution Fa is given by a quasi-Maxwellian form so that
we may write

∂Fa

∂v
≈ −2(k · v) Fa

v2
T a

, (1.118)

then this leads to the top-and-bottom cancelation of the factor k · v within the
velocity integral. The resulting linear dielectric susceptibility is

χa(k,ω) = 2ω2
pa

k2v2
T a

− iπ
ω2

pa

k2

∫
dv k · ∂Fa

∂v
δ(ω − k · v). (1.119)

For isotropic thermal equilibrium distribution, the linear dielectric function is
given in terms of the plasma dispersion function Z(z), as

ε(k,ω) = 1 −
∑

a

ω2
pa

ω2
ζ a2

k,ω Z′(ζ a
k,ω), (1.120)

where

ζ a
k,ω = ω

kvT a

, v2
T a = 2Ta

ma

, (1.121)

and

Z(z) =
∫ ∞

−∞

dx√
π

e−x2

x − z
= 2i e−z2

∫ iz

−∞
dt et2

,

Z′(z) = −2[1 + z Z(z)]. (1.122)

The plasma dispersion function and its properties are well known, for example, see
Huba (2009). Series and asymptotic expansions of Z(z) are given by

Z(z) = i
√

π e−z2 − 2z + 4z3

3
− 8z5

15
+ 16z7

105
+ · · · , (z2 < 1),

Z(z) = i
√

π σ e−z2 − 1

z
− 1

2z3
− 3

4z5
− 15

8z7
+ · · · , (z2 > 1), (1.123)

where σ = 0 if Imz > 1/Rez, σ = 1 if |Imz| < 1/Rez, and σ = 2 if −Imz >

1/Rez. The plasma dispersion or Fried–Conte function (Fried and Conte, 1961) and
its properties are further discussed in Appendix D.

Making use of the asymptotic expansion we obtain an approximate expression
for the linear dielectric response function for thermal equilibrium,
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ε(k,ω) = 1 −
∑

a

ω2
pa

ω2

(
1 + 3k2Ta

maω2

)

+ 2iπ1/2
∑

a

ω2
paω

k3v3
T a

exp

(
− ω2

k2v2
T a

)
. (1.124)

As it turns out, this expression, derived under the assumption of fast wave condition,
is applicable to high-frequency Langmuir waves where both conditions, ω 
 kvT e

and ω 
 kvT i , are valid. For ion-sound waves, on the other hand, ω  kvT e (slow-
wave condition for electrons), while ω 
 kvT i (fast wave condition for protons).
In this case, we have

ε(k,ω) = 1 + 2ω2
pe

k2v2
T e

− ω2
pi

ω2

(
1 + 3k2Ti

miω2

)

+ 2iπ1/2
∑

a

ω2
paω

k3v3
T a

exp

(
− ω2

k2v2
T a

)
. (1.125)

These properties will be used later when we review the linear wave theory.

1.7.3 Second-Order Nonlinear Susceptibility

The following limiting forms for the second-order susceptibility can easily be
derived:

χ(2)
a (0,ω1|0,ω2) = 0,

χ(2)
a (k1,0|k2,0) = − iea

Ta

ω2
pa

k1 k2 |k1 + k2|
1

v2
T a

. (1.126)

If the fast-wave condition is satisfied for all frequencies and wave numbers,

ω1 
 k1vT a, ω2 
 k2vT a, ω1 + ω2 
 |k1 + k2|vT a, (1.127)

then the approximate second-order nonlinear susceptibility can be obtained by
assuming that the temperature is zero (Ta → 0), or equivalently by choosing
Fa(v) = δ(v):

χ(2)
a (k1,ω1|k2,ω2) = −i

2

ea

ma

ω2
pa

ω1 ω2 (ω1 + ω2)

1

k1 k2 |k1 + k2|
×
(

k2
1

ω1
k2 · (k1 + k2) + k2

2

ω2
k1 · (k1 + k2)

+ (k1 + k2)
2

ω1 + ω2
k1 · k2

)
. (1.128)
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If one of the frequencies, say ω1, does not satisfy the fast-wave condition while
ω2 and ω1 + ω2 are characterized by ω2 
 k2vT a and ω1 + ω2 
 |k1 + k2|vT a ,
then we may obtain the following expression:

χ(2)
a (k1,ω1|k2,ω2) = i

2

ea

ma

ω2
pa

ω2 (ω1 + ω2)

1

k1 k2 |k1 + k2|
× k2 · (k1 + k2)

∫
dv

k1 · ∂Fa/∂v
ω1 − k1 · v + i0

, (1.129)

where we have made use of the identity∫
dv

Fa

(ω1 − k1 · v + i0)2
= − 1

k2
1

∫
dv

k1 · ∂Fa/∂v
ω1 − k1 · v + i0

, (1.130)

and have invoked the fast wave conditions to ignore terms k2
2/ω and (k1 +

k2)
2/(ω1 + ω2). The velocity integral is related to the linear response function

so that we have

χ(2)
a (k1,ω1|k2,ω2) = i

2

ea

ma

k1

ω2 (ω1 + ω2)

k2 · (k1 + k2)

k2 |k1 + k2| χa(k1,ω1). (1.131)

If we further assume that ω1  k1vT a , that is, the slow-wave condition for ω1, then
we obtain

χ(2)
a (k1,ω1|k2,ω2) = i

2

ea

ma

ω2
pa

ω2 (ω1 + ω2)

k2 · (k1 + k2)

k1 k2 |k1 + k2|
×
(

2

v2
T a

− iπ

∫
dv k1 · ∂Fa

∂v
δ(ω1 − k1 · v)

)
. (1.132)

If ω2 represents an arbitrary wave, then by following the same steps as in the
previous case, we may derive the following result:

χ(2)
a (k1,ω1|k2,ω2) = i

2

ea

ma

k2

ω1 (ω1 + ω2)

k1 · (k1 + k2)

k1 |k1 + k2| χa(k2,ω2)

≈ i

2

ea

ma

ω2
pa

ω1 (ω1 + ω2)

k1 · (k1 + k2)

k1 k2 |k1 + k2|
×
(

2

v2
T a

− iπ

∫
dv k2 · ∂Fa

∂v
δ(ω2 − k2 · v)

)
. (1.133)

Finally, if ω1 +ω2 represents the low frequency while ω1 and ω2 satisfy the fast-
wave condition (which becomes possible if ω1 and ω2 have opposite signs), then
we have
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χ(2)
a (k1,ω1|k2,ω2) = i

2

ea

ma

|k1 + k2|
ω1 ω2

k1 · k2

k1 k2
χa(k1 + k2,ω1 + ω2)

= i

2

ea

ma

ω2
pa

ω1 ω2

k1 · k2

k1 k2 |k1 + k2|
(

2

v2
T a

(1.134)

− iπ

∫
dv (k1 + k2) · ∂Fa

∂v
δ[ω1 + ω2 − (k1 + k2) · v]

)
.

If we ignore the resonant contribution to the second-order nonlinear susceptibil-
ity, then it becomes evident that the leading order expression satisfies

{χ(2)(k1,ω1|k2,ω2)}2 ≈ −|χ(2)(k1,ω1|k2,ω2)|2, (1.135)

which we have invoked in (1.101).

1.7.4 Third-Order Nonlinear Susceptibility

To simplify the discussion, herewith we only consider the third-order susceptibility
of the form, χ̄ (3)

a (k′,ω′| − k′, − ω′|k,ω):

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω) = −1

2

e2
a

m2
a

ω2
pa

k2 k′2

∫
dv

1

ω − k · v + i0

× k′ · ∂

∂v

{
1

ω − ω′ − (k − k′) · v + i0

×
[

k · ∂

∂v

(
k′ · ∂Fa/∂v

ω′ − k′ · v + i0

)

− k′ · ∂

∂v

(
k · ∂Fa/∂v

ω − k · v + i0

)]}
, (1.136)

or equivalently (after partial integrations)

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω) = 1

2

e2
a

m2
a

ω2
pa (k · k′)

k2 k′2

×
∫

dv
Fa

(ω − k · v + i0)3(ω′ − k′ · v + i0)

×
[

2k2

ω − k · v + i0

(
4 (k · k′)

ω − k · v + i0

+ k′2

ω′ − k′ · v + i0

)
+ 1

ω − ω′ − (k − k′) · v + i0
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×
(

2 (k × k′)2 + 3 k2 [k′ · (k − k′)]
ω − k · v + i0

+ k′2 [k · (k − k′)]
ω′ − k′ · v + i0

+ |k − k′|2(k · k′)
ω − ω′− (k − k′) · v + i0

)]
.

(1.137)

It is straightforward to obtain the following limiting expressions:

χ̄ (3)
a (k′,0| − k′,0|k,0) = − e2

a

T 2
a

ω2
pa

k2 k′2
k · k′

k2

1

v2
T a

,

χ̄ (3)
a (0,ω′|0, − ω′|0,ω) = 0. (1.138)

The first expression is obtained from (1.136), while the second result follows from
(1.137).

When all three frequencies, ω, ω′, and ω − ω′, satisfy the fast-wave conditions
ω 
 kvT a , ω′ 
 k′vT a , ω − ω′ 
 |k − k′|vT a , then we have

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω) = 1

2

e2
a

m2
a

ω2
pa

ω3 ω′
k · k′

k2 k′2

(
2 k2 k′2

ω ω′ + k′2 [k · (k − k′)]
ω′ (ω − ω′)

+ 8 k2 (k · k′)
ω2

+ 2 (k × k′)2 + 3k2 [k′ · (k − k′)]
ω (ω − ω′)

+ (k − k′)2(k · k′)
(ω − ω′)2

)
. (1.139)

If ω′ represents an arbitrary wave frequency, but the fast-wave condition is
applicable for other two frequencies, ω 
 kvT a and ω − ω′ 
 |k − k′| vT a , then
we obtain

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω)

= −1

2

e2
a

m2
a

ω2
pa

ω3

k · k′

k2 k′2

(
2 k2

ω
+ k · (k − k′)

ω − ω′

)∫
dv

k′ · ∂Fa/∂v
ω′ − k′ · v + i0

= − 1

2ω3

e2
a

m2
a

k · k′

k2

(
2 k2

ω
+ k · (k − k′)

ω − ω′

)
χa(k′,ω′). (1.140)

Note that this result can be alternatively expressed as

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω)

= i

ω3

ea

ma

(k · k′) |k − k′|
k k′ [k · (k − k′)]

{ 2k2(ω − ω′) + [k · (k − k′)] ω }

×χ(2)
a (k′,ω′|k − k′,ω − ω′). (1.141)
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Next, let us consider the case when ω − ω′ represents an arbitrary frequency,
while the other two frequencies satisfy the fast-wave condition. In this case, we
have

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω)

= −1

2

e2
a

m2
a

ω2
pa

ω3 ω′
(k · k′)2

k2 k′2

∫
dv

(k − k′) · ∂Fa/∂v
ω − ω′ − (k − k′) · v + i0

= −1

2

e2
a

m2
a

|k − k′|2
ω3 ω′

(k · k′)2

k2 k′2 χa(k − k′,ω − ω′), (1.142)

which can be alternatively expressed as

χ̄ (3)
a (k′,ω′| − k′, − ω′|k,ω) = iea

ma

k · k′

k k′
|k − k′|

ω2
χ(2)

a (k′,ω′|k − k′,ω − ω′).

(1.143)

1.8 Linear Waves and Weak Instabilities

In this section we review the textbook theory of small amplitude electrostatic
(linear) waves and weak instabilities operative in unmagnetized plasmas, which
includes the electron beam-plasma (or bump-on-tail) instability. Linear dispersion
relation is determined from the solvability condition of (1.93),

Re ε(k,ω) = 1 + Re
∑

a

ω2
pa

k2

∫
dv

k · ∂Fa/∂v
ω − k · v + i0

= 0. (1.144)

Let us assume that isotropic thermal Maxwellian forms represent the bulk electron
and ion distributions but a tenuous electron beam may also exist. For Langmuir
waves satisfying the fast wave condition for both electrons and ions, |ωL

k |/k vT e 

1 and |ωL

k |/k vT i 
 1, where vT a is the thermal speed defined via (1.116), upon
making use of (1.115) Re ε(k, ± ωL

k ) is approximately given by

Re ε(k, ± ωL
k ) = 1 − ω2

pe

ωL2
k

(
1 + 3k2Te

meω
L2
k

)
, (1.145)

where ω = ωL
k denotes the Langmuir wave dispersion relation. By setting Re ε(k,±

ωL
k ) equal to zero one readily obtains the following:

ωL
k = ωpe

(
1 + 3

2
k2λ2

De

)
, ωL

−k = −ωL
k , (1.146)

where Te is the electron bulk temperature and

λ2
De = Te

4πne2
= v2

T e

2ω2
pe

, (1.147)

https://doi.org/10.1017/9781316771259.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316771259.003


40 Nonlinear Electrostatic Equations for Collisionless Plasmas

is the square of the electron Debye length. In (1.146) the symmetry property (1.9)
is invoked in order to have the relation ωL

−k = −ωL
k .

For ion-sound mode characterized by |ωS
k |/k vT e  1 and |ωS

k |/k vT i ≥ 1, upon
combining (1.115) and (1.119) we have

Re ε(k, ± ωS
k) = 1 + 1

k2λ2
De

− ω2
pi

ωS2
k

(
1 + 3k2Ti

miω
S2
k

)
, (1.148)

where Ti is the ion (proton) temperature and ωS
k denotes the ion-sound wave dis-

persion relation. Setting Re ε(k, ± ωS
k) equal to zero leads to

ωS
k = kcS (1 + 3Ti/Te)

1/2

(1 + k2λ2
De)

1/2
, ωS

−k = −ωS
k, (1.149)

where

cS =
√

Te

mi

(1.150)

is the ion sound (or ion acoustic) speed.
It is useful to evaluate the derivatives of real parts of the dielectric constants,

ε′(k, ± ωL
k ) ≡ ∂ Re ε(k, ± ωL

k )

∂(±ωL
k )

= 2

(±ωL
k )

,

ε′(k, ± ωS
k) ≡ ∂ Re ε(k, ± ωS

k)

∂(±ωS
k)

= 2

(±ωL
k )

1

μk
,

μk = k3λ3
De

(
me

mi

)1/2 (
1 + 3Ti

Te

)1/2

. (1.151)

Figure 1.1 displays the three basic plasma eigenmodes (normal modes) of

unmagnetized plasma. These are the transverse modes ωT
k =

√
ω2

pe + c2k2, which

we did not discuss under the present electrostatic approximation (we will deal
with the transverse mode in later chapters), and Langmuir and ion acoustic (or ion
sound) modes, which we have already covered.

The instability (or damping) of plasma eigenmodes can be discussed on the basis
of the imaginary part of dielectric response function

Im ε(k,ω) = −
∑

a

πω2
pa

k2

∫
dv k · ∂Fa

∂v
δ(ω − k · v). (1.152)

Consider the linear term in the formal wave kinetic equation (1.102),

∂Iσα
k

∂t
= −2

Imε(k,σωα
k)

∂Reε(k,σωα
k)/∂σωα

k
I σα

k ≡ 2γ α
k I σα

k . (1.153)
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Transverse EM

Langmuir

Ion acoustic

wk
S = kcs(1 + 3Ti/Te)

1/2
 /(1 + k2lD2)1/2

wpe

w

wk
L = (wpe

2 + 3k2lD2)1/2

k

wk
T = (wpe

2 + c2k2)1/2

Figure 1.1 Three basic eigenmodes of unmagnetized plasma; transverse mode
ωT

k , which we could not discuss under the present electrostatic treatment, and
Langmuir and ion acoustic (or ion sound) modes, ωL

k and ωS
k , respectively.

In this equation we have introduced the linear “growth rate” or equivalently
“Landau damping rate,” – see Appendix A;

γ α
k = − Imε(k,σωα

k)

∂Reε(k,σωα
k)/∂σωα

k
. (1.154)

Depending on whether the sign of γ α
k is positive or negative, the quantity γ α

k denotes
either the growth rate for instabilities or the damping rate associated with waves.

The gentle electron beam-plasma or bump-on-tail instability will play a crucial
role as a test bed for weak turbulence theory to be developed in the present
monograph. The weak (or gentle) electron beam-plasma instability has been studied
since the beginning of modern plasma physics, and there is a substantive body of
literature on the topic, so that it is practically impossible to cite them all, but some
selective references are those by Vedenov and Velikhov (1962); Drummond and
Pines (1962); Frieman and Rutherford (1964); Bernstein and Engelmann (1966);
Dawson and Shanny (1968); Morse and Nielson (1969); Vahala and Montgomery
(1970); Roberson et al. (1971); Joyce et al. (1971) among earlier works, and Appert
et al. (1976); Ivanov et al. (1976); Grognard (1982); Dum (1990); Muschietti and
Dum (1991); Tsunoda et al. (1987); Nishikawa and Cairns (1991); Dum and
Nishikawa (1994), to cite some representative papers up to the mid-1990s. Since
the decade of 1990s, researches on beam-plasma interaction have moved on to more
application-oriented topics, so that problems on pure or fundamental aspects of the
beam-plasma instability, especially in relations to linear or quasilinear aspects,
seem to have been exhausted. However, as we shall see later in this book, certain
fundamental aspects associated with the electron beam-plasma interaction in the
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weak turbulence regime are still being investigated. These relate to the electron
acceleration by Langmuir turbulence and the radiation generation.

Let us focus on the Langmuir wave, α = L, in (1.154), and restrict ourselves
to the forward propagation, σ = +1. Here, the directionality of forward versus
backward is with respect to the beam propagation direction. Making use of (1.151)
and (1.152), the growth rate (1.154) for forward-propagating Langmuir wave is
given by

γ L
k = πωL

k

2

ω2
pe

k2

∫
dv k · ∂Fe

∂v
δ(ωL

k − k · v), (1.155)

where we have omitted the plus sign and have retained the electron terms only in
Im ε(k,ω). For isotropic Maxwellian, Fe = (πvT e)

−3 exp(−v2/v2
T e), it is obvious

that γ L
k < 0. That is, Langmuir waves for thermal plasma is subject to Landau

damping. If, on the other hand, we consider that the electron distribution is com-
posed of a core thermal population plus an energetic but tenuous beam, take for
instance, the drifting Gaussian beam distribution,

Fe(v) =
(

1 − nb

n0

)
e−v2/v2

T e

π3/2 v3
T e

+ nb

n0

e−(v−Vb)
2/v2

T b

π3/2 v3
T b

, (1.156)

where vT b = √
2Tb/me is the thermal spread (or beam temperature), and where we

assume

nb  n0, (1.157)

then by assuming that the background population largely determines the real fre-
quency, we may determine the damping (or growth) rate:

γ L
k = −π1/2 ωL

k

ω2
pe

k2

[
v‖
v3

T e

(
1− nb

n0

)
e

−v2
‖/v2

T e

+ (v‖−Vb)

v3
T b

nb

n0
e−(v‖−Vb)

2/v2
T b

]
v‖=ωL

k /k

. (1.158)

In (1.158) we have decomposed the velocity vector into components perpendicular
and parallel to the beam vector, and without loss of generality, we have taken the k
vector to be directed along the beam.

In the absence of electron beam (1.158) reduces to

γ L
k = −π1/2

ω2
pe(ω

L
k )2

k3v3
T e

exp

(
−(ωL

k )2

k2v2
T e

)

= −π1/2ω4
pe

k3v3
T e

(
1 + 3k2v2

T e

2ω2
pe

)
exp

(
−3

2
− v2

T e

k2ω2
pe

)
. (1.159)
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Figure 1.2 Normalized Landau damping rate � versus normalized wave
number q.

This is the Landau damping rate for thermal plasma. Plotted in Figure 1.2 is the
normalized Landau damping rate � = γ L

k /ωpe versus normalized wave number
q = kvT e/ωpe. Notice that the damping rate exponentially decreases in magnitude
for k → 0.

Suppose that the background electrons are cold, vT e  vT b. In such a case, the
damping rate associated with the background component can be ignored, and the
beam electrons determine the net growth/damping rate only,

γ L
k ≈ π1/2 nb

n0

ω3
pe

k3v3
T b

(kVb − ωpe) exp

(
−(kVb − ωpe)

2

k2 v2
T b

)
. (1.160)

This shows that γ L
k > 0 over the unstable range of k corresponding to

k >
ωpe

Vb

. (1.161)

The instability of Langmuir wave driven by a gentle (or weak) electron beam is
called the bump-on-tail instability, and (1.160) represents the approximate growth
rate for the said instability.

In the low-frequency regime similar processes involving ion-acoustic wave with
its associated damping phenomena as well as instabilities may be operative. It is a
straightforward exercise to obtain the Landau damping rate for ion acoustic wave,

γ S
k = −ωpi

π1/2

23/2

kλD (1 + 3Ti/Te)

(1 + k2λ2
D)2

[√
me

mi

exp

(
− me

2mi

1 + 3Ti/Te

1 + k2λ2
D

)

+
(

Te

Ti

)3/2

exp

(
− Te

2Ti

1 + 3Ti/Te

1 + k2λ2
D

)]
. (1.162)
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If we approximate that me/mi ≈ 0, and introduce the dimensionless variables,

� = 23/2

π1/2

γk

ωpi

, κ = kλD, τ = Ti

Te

, (1.163)

then we have

� = −κ (1 + 3τ)

(1 + κ2)2

1

τ 3/2
exp

(
− 1

2τ

1 + 3τ

1 + κ2

)
. (1.164)

Damping generally increases for increasing κ , so let us focus on small κ behavior.
If we consider �/κ for κ  1, we have

�

κ
≈ −1 + 3τ

τ 3/2
exp

(
−1 + 3τ

2τ

)
. (1.165)

Below in Figure 1.3 is the plot of −�/κ versus τ = Ti/Te in horizontal logarithmic
scale. As one can see, if Ti  Te then the damping rate becomes exponentially
small, and ion sound wave may propagate in a plasma undamped. For Ti  Te, the
ion-sound speed c2

S = Te/mi is much higher than ion thermal speed v2
T i = 2Ti/mi ,

but lower than electron thermal speed v2
T e = 2Te/me, so that√

2Ti

mi

<
ωS

k

k
<

√
2Te

me

. (1.166)

In this case the ion-sound mode does not suffer Landau damping by ions as the
wave phase speed is sufficiently higher than ion thermal speed. On the other hand,

Figure 1.3 Normalized ion acoustic wave damping rate −�/κ versus Ti/Te.
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the wave also does not suffer from electron Landau damping since the electron
distribution is practically constant over the velocity range corresponding to the
ion acoustic speed. This shows that the excitation and persistence of ion sound
wave requires hot electrons. Note that the ion sound damping rate is maximum for
Ti ∼ Te.

Ion acoustic mode can become unstable when there is a net mild drift between
the ions and electrons. Let us consider the stationary ions and drifting Gaussian
electrons (without loss of generality, we assume the electron drift direction to be
along z axis), where the electron drift speed is significantly lower than electron
thermal speed,

Fi(v) = 1

π3/2 v3
T i

exp

(
− v2

v2
T i

)
,

Fe(v) = 1

π3/2 v3
T e

exp

(
−(v − Veẑ)2

v2
T e

)
. (1.167)

Then, assuming k = kẑ, and for Te/Ti 
 1 and me/mi  1, we obtain the growth
rate for ion acoustic instability,

γ S
k = π1/2

23/2

(
me

mi

)1/2
⎛
⎝Ve

cS

− 1√
1 + k2λ2

De

⎞
⎠ k2c2

S

(1 + k2λ2
De)

2
. (1.168)

If electron drift speed Ve is higher than the ion acoustic speed cS , the ion sound
mode becomes unstable.
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