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GENERALIZED HILBERT–KUNZ FUNCTION IN
GRADED DIMENSION 2

HOLGER BRENNER and ALESSIO CAMINATA

Abstract. We prove that the generalized Hilbert–Kunz function of a graded

module M over a two-dimensional standard graded normal K-domain over

an algebraically closed field K of prime characteristic p has the form

gHK(M, q) = egHK(M)q2 + γ(q), with rational generalized Hilbert–Kunz mul-

tiplicity egHK(M) and a bounded function γ(q). Moreover, we prove that if R is

a Z-algebra, the limit for p→ +∞ of the generalized Hilbert–Kunz multiplicity

e
Rp

gHK(Mp) over the fibers Rp exists, and it is a rational number.

Introduction

Let R be a d-dimensional standard graded K-domain over a perfect field

K of characteristic p > 0 that is F -finite. For every finitely generated R-

module M and every natural number e, we denote by F e∗(M) =M ⊗R eR

the eth iteration of the Frobenius functor given by base change along the

Frobenius homomorphism. In particular, if I is an ideal of R, we have that

F e∗(R/I)∼=R/I [pe]. We denote by q = pe a power of the characteristic. Let

M be a graded R-module. The function

gHK(M, q) := lR(H0
R+

(F e∗(M)))

and the limit

egHK(M) := lim
e→+∞

lR(H0
R+

(F e∗(M)))

qd

are called the generalized Hilbert–Kunz function and the generalized Hilbert–

Kunz multiplicity of M , respectively. If I is an R+-primary ideal, then

gHK(R/I, q) and egHK(R/I) coincide with the classical Hilbert–Kunz

function and multiplicity. For a survey on the classical Hilbert–Kunz

function and multiplicity, see [10].
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2 H. BRENNER AND A. CAMINATA

The generalized Hilbert–Kunz function and multiplicity were first intro-

duced, under a different name and notation, by Epstein and Yao in [8],

and studied in detail by Dao and Smirnov in [6], where they proved the

existence of egHK(M) under some assumptions, for example if M is a

module over a Cohen–Macaulay isolated singularity. In the same paper, they

studied the behavior of the function gHK(M, q) and compared it with the

classical Hilbert–Kunz function. Further study of the generalized Hilbert–

Kunz function and multiplicity has been made by Dao and Watanabe in

[7], where they computed egHK(M) if M is a module over a ring of finite

Cohen–Macaulay type, or it is an ideal of a normal toric singularity.

In this paper, we study the function gHK(M, q) for a graded module

M over a two-dimensional standard graded normal domain over an alge-

braically closed field. In [3], Brenner proved that if I is a homogeneous

R+-primary ideal, then the Hilbert–Kunz function of I has the following

form:

HK(I, q) = eHK(I)q2 + γ(q),

where eHK(I) is a rational number and γ(q) is a bounded function, which

is eventually periodic if K is the algebraic closure of a finite field. In [6,

Example 6.2], Dao and Smirnov exhibited numerical evidence that in this

setting also the generalized Hilbert–Kunz function has the same form. Using

an extension of the methods of Brenner, we are able to prove their claim. In

fact, we obtain in Theorem 3.2 that the generalized Hilbert–Kunz function

of a graded module M has the form

gHK(M, q) = egHK(M)q2 + γ(q),

where γ(q) is a bounded function, which is eventually periodic if K is the

algebraic closure of a finite field. Moreover, we give an explicit formula for

egHK(M) in terms of the Hilbert–Kunz slope of certain locally free sheaves

on the projective curve Y = ProjR. As a consequence of this fact, we obtain

that the generalized Hilbert–Kunz multiplicity egHK(M) exists, and it is a

rational number.

Furthermore, in the last section of the paper, we consider the follow-

ing problem. Assume that R is a standard graded Z-domain of relative

dimension 2, and M is a graded R-module. For each prime number p,

we may consider the reduction Rp of R mod p and the extended module

Mp :=M ⊗R Rp. For this module, we compute the generalized Hilbert–Kunz
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GENERALIZED HILBERT–KUNZ FUNCTION IN GRADED DIMENSION 2 3

multiplicity e
Rp

gHK(Mp), and we ask whether the limit

lim
p→+∞

e
Rp

gHK(Mp)

exists. Using a result of Trivedi [12], we are able to prove (Theorem 4.4)

that the previous limit exists, and it is in fact a rational number, assuming

that the rings Rp are normal two-dimensional domains for almost all prime

numbers.

After submitting the first version of this paper, the referee and

Asgharzadeh pointed us to a recent paper of Vraciu [13]. There, she provides

another method to prove Theorem 3.2 for ideals by showing that under

suitable conditions, which are fulfilled in our situation, the generalized

Hilbert–Kunz function of a homogeneous ideal can be expressed as a Z-linear

combination of the classical Hilbert–Kunz function of R+-primary ideals.

The relevant condition is called the (LC) property, and was introduced by

Hochster and Huneke in [9]. This condition is known to hold in some special

cases, but it is an open problem whether it holds in a more general setting

(see [1]).

§1. Reflexive modules

We recall some preliminary facts concerning reflexive modules. Let R be

a two-dimensional normal domain with homogeneous maximal ideal m, and

let U be the punctured spectrum of R; that is, U = SpecR \ {m}.
We denote by (−)∗ the functor HomR(−, R). If M is an R-module, then

the module M∗∗ is called the reflexive hull of M . There is a canonical map

λ :M →M∗∗.

If λ is injective, M is said to be torsionless; if λ is an isomorphism,

then M is called reflexive. Finitely generated projective modules are

reflexive, but the converse does not hold in general. We recall the following

geometric characterization of the reflexive hull in the normal situation (cf.

[5, Proposition 3.10]):

(1) M∗∗ ∼= Γ(U, M̃),

where M̃ denotes the coherent sheaf associated to the module M . It follows

that the restriction of this sheaf to the punctured spectrum M̃ |U coincides

with the sheaf M̃∗∗|U on U . Moreover, if M is reflexive, the sheaf M̃ |U is

locally free.
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4 H. BRENNER AND A. CAMINATA

The following lemma is a well-known fact (see [4, Proposition 1.4.1]). We
give a proof here for the sake of completeness.

Lemma 1.1. Let R be a normal domain of dimension at least 2 with
homogeneous maximal ideal m, and let I be a reflexive submodule of Rn.
Then,

H0
m(Rn/I) = 0.

Proof. We consider the short exact sequence 0→ I →Rn→Rn/I → 0,
and we apply the local cohomology functor H0

m(−). We obtain a long exact
sequence

· · · →H0
m(Rn)→H0

m(Rn/I)→H1
m(I)→ · · · .

Since Rn and I are reflexive modules over a normal domain, they have
depth at least 2. It follows that H0

m(Rn) =H1
m(I) = 0, hence H0

m(Rn/I) = 0
too.

We mention also the following result (cf. [7, Proposition 2.2]), concerning
the generalized Hilbert–Kunz multiplicity of reflexive ideals.

Proposition 1.2. Let R be a standard graded domain of dimension 2,
and let I be a homogeneous reflexive ideal of R. Then, egHK(R/I) = 0 if
and only if I is principal.

The fact that principal reflexive ideals have generalized Hilbert–Kunz
multiplicity 0 holds also in dimension > 2, and is a consequence of Lemma
1.1. In fact, if I is a principal ideal, then I [pe] is again principal, and in
particular reflexive. It follows that H0

R+
(F e∗(R/I))∼=H0

R+
(R/I [pe]) = 0, so

egHK(R/I) = 0.

Lemma 1.3. Let R be a normal K-domain of dimension d> 2 over an
algebraically closed field K of prime characteristic p. Let I be a nonzero
homogeneous ideal of R such that egHK(R/I) exists, and let f 6= 0 be a
homogeneous element of R. Then,

egHK(R/fI) = egHK(R/I).

Proof. From the short exact sequence 0→ I →R→R/I → 0 and the
corresponding long exact sequence of local cohomology modules with
support in m :=R+, we obtain that H0

m(R/I)∼=H1
m(I). It follows that the

generalized Hilbert–Kunz multiplicity can be seen as

egHK(R/I) = lim
e→+∞

lR
(
H1

m(I [q])
)

qd
.

Then, the R-module isomorphism f qI [q] ∼= I [q] implies the claim.
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Remark 1.4. Let [I] be an element of the divisor class group Cl(R)

of R, and let I be a homogeneous reflexive ideal representative of this

element. If R is a standard graded normal K-domain of dimension 2,

with K algebraically closed and of positive characteristic, we obtain a

function egHK(−) : Cl(R)→Q, [I] 7→ egHK(R/I). Thanks to Theorem 3.2

and Lemma 1.3, this function is well defined, and we have egHK([R]) = 0.

This does not mean that the generalized Hilbert–Kunz multiplicity for all

ideals I that are invertible on the punctured spectrum depends only on [I].

For example, the homogeneous maximal ideal m and its reflexive hull m∗∗ =

R define the same element in the class group, but egHK(R/m) = eHK(m) 6= 0

in general, while egHK(R/R) = 0. Moreover, Proposition 1.2 implies that the

preimage of 0 is trivial. This does not mean that the function egHK(−) is

injective, since in general it is not a group homomorphism as in the case of

Example 3.6.

Therefore, the following question makes sense.

Question 1.5. Given two homogeneous reflexive ideals I and J , is there

a formula for egHK([IJ ]) in terms of egHK([I]) and egHK([J ])?

§2. The Hilbert–Kunz slope

Let Y be a smooth projective curve over an algebraically closed field with

a very ample invertible sheaf of degree degOY (1) = deg Y . We recall some

classical notions of vector bundles, and some definitions from [2] and [3].

We refer to these papers for further details and explanations.

Let S be a locally free sheaf of rank r over X. The degree of S is defined as

the degree of the corresponding determinant line bundle degS = deg
∧r S.

The slope of S is µ(S) = deg S/r. The degree is additive on short exact

sequences, and moreover µ(S ⊗ T ) = µ(S) + µ(T ).

The sheaf S is called semistable if for every locally free subsheaf T ⊆ S,

the inequality µ(T ) 6 µ(S) holds. If the strict inequality µ(T )< µ(S) holds

for every proper subsheaf T ⊂ S, then S is called stable.

For any locally free sheaf S on Y , there exists a unique filtration,

called Harder–Narasimhan filtration, S1 ⊆ · · · ⊆ St = S, with the following

properties:

• Sk is locally free;

• Sk/Sk−1 is semistable;

• µ(Sk/Sk−1)> µ(Sk+1/Sk).
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6 H. BRENNER AND A. CAMINATA

If the base field has positive characteristic, we can consider the abso-

lute Frobenius morphism F : Y → Y on the curve and its iterates F e.

In general, the pullback via F e of the Harder–Narasimhan filtration of

S is not the Harder–Narasimhan filtration of F e∗S, since the quotients

F e∗(Sk)/F e∗(Sk−1) need not be semistable.

In [11], Langer proved that for q� 0, there exists the so-called strong

Harder–Narasimhan filtration of F e∗(S). In fact, there exists a natural

number e0 such that the Harder–Narasimhan filtration of F e0∗(S),

0⊆ Se0,1 ⊆ · · · ⊆ Se0,t = F e0∗(S),

has the property that the quotients F e∗(Se0,k)/F e∗(Se0,k−1) of the pull-

back along F e are semistable. Thus, for e> e0, we have F e∗(S) =

F (e−e0)∗(F e0∗(S)), and the Harder–Narasimhan filtration of F e∗(S) is given

by

F (e−e0)∗(Se0,1)⊆ · · · ⊆ F (e−e0)∗(Se0,t) = F e∗(S).

For ease of notation, we put Se,k := F (e−e0)∗(Se0,k) for every e> e0 and

0 6 k 6 t. The length t of such a sequence and the ranks of the quotients

Se,k/Se,k−1 are independent of e, while the degrees are not. We define the

following rational numbers:

• µ̄k = µ̄k(S) =
µ(Se,k/Se,k−1)

pe , where µ(−) denotes the usual slope of the

bundle;

• rk = rank(Se,k/Se,k−1);

• νk =− µ̄k
degY .

Remark 2.1. We point out that the numbers µ̄, rk and νk are

rational and independent from e for e� 0. In fact, we have that∑t
k=1 rkµ(Se,k/Se,k−1) = deg(F e∗S) = pe deg S, which implies the relation

t∑
k=1

rkµ̄k = deg S.

Definition 2.2. Let S be a locally free sheaf over a projective curve

over an algebraically closed field of prime characteristic, and let µ̄ and rk
be as above. The Hilbert–Kunz slope of S is the rational number

µHK(S) =

t∑
k=1

rkµ̄
2
k.
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This notion was introduced by the first author in [3], where he also proved

Theorem 2.5 below.

Example 2.3. Let L be a line bundle, then L is semistable of

slope µ(L) = deg L. The pullback along Frobenius is again a line bundle,

F e∗L= Lq = L⊗q, with q = pe. It follows that 0⊆ L is the strong Harder–

Narasimhan filtration of L, and the Hilbert–Kunz slope is just

µHK(L) = (deg L)2.

Example 2.4. Let d1 < d2 < · · ·< dm be nonnegative integers, and let

T :=
⊕m

i=1 O(−di)⊕ri , where O :=OY and ri ∈ N. The Harder–Narasimhan

filtration of T is

0⊆O(−d1)⊕r1 ⊆O(−d1)⊕r1 ⊕O(−d2)⊕r2 ⊆ · · · ⊆
m⊕
i=1

O(−di)⊕ri .

The quotients are direct sums of line bundles of the same degree, so

their pullbacks under Frobenius are semistable. Hence, this is also the

strong Harder–Narasimhan filtration of T with invariants rk, and µ̄k =

degO(−dk) =−dk degOY (1) =−dk deg Y . Then, the Hilbert–Kunz slope

of T is

µHK(T ) = (deg Y )2
m∑
k=1

rkd
2
k.

Theorem 2.5. (Brenner [3]) Let Y denote a smooth projective curve of

genus g over an algebraically closed field of positive characteristic p, and let

q = pe for a nonnegative integer e. Let 0→S → T →Q→ 0 denote a short

exact sequence of locally free sheaves on Y . Then, the following hold.

(1) For every nonnegative integer e, the alternating sum of the dimensions

of the global sections is∑
m∈Z

(
h0(F e∗S(m))− h0(F e∗T (m)) + h0(F e∗Q(m))

)
=

q2

2 deg Y
(µHK(S)− µHK(T ) + µHK(Q)) +O(q0).

(2) If the field is the algebraic closure of a finite field, then the O(q0)-term

is eventually periodic.

The alternating sum in Theorem 2.5 is, in fact, a finite sum for every q.

For m� 0, the locally free sheaves have no global sections, so all of the
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8 H. BRENNER AND A. CAMINATA

terms are 0, and for m� 0, we have H1(Y, F e∗S(m)) = 0, and the sum is 0.

Moreover, the sum is the dimension of the cokernel∑
m∈Z

dim(Γ(Y, F e∗Q(m)))/im(Γ(Y, F e∗T (m))).

In [3], Brenner uses Theorem 2.5 to prove that the Hilbert–Kunz function

of a homogeneous R+-primary ideal I in a normal two-dimensional standard

graded K-domain R has the following form:

HK(I, q) = eHK(I)q2 + γ(q),

where eHK(I) is a rational number and γ(q) is a bounded function, which is

eventually periodic if K is the algebraic closure of a finite field. In particular,

if I is generated by homogeneous elements f1, . . . , fn of degrees d1, . . . , dn,

and rk, µ̄k denote the numerical invariants of the strong Harder–Narasimhan

filtration of the locally free sheaf Syz(f1, . . . , fn) on the curve Y = ProjR,

then the Hilbert–Kunz multiplicity of I is given by

eHK(I) =
1

2 deg Y

(
t∑

k=1

rkµ̄
2
k − (deg Y )2

n∑
i=1

d2
i

)
.

In Section 3, we apply this method to deduce a similar result for the

generalized Hilbert–Kunz function, and answer a question of Dao and

Smirnov [6, Example 6.2].

§3. The generalized Hilbert–Kunz function in dimension 2

Lemma 3.1. Let R be a two-dimensional normal K-domain of positive

characteristic p with homogeneous maximal ideal m. We denote by U =

SpecR \ {m} the punctured spectrum. Let M be a finitely generated graded

R-module with a presentation

(2) 0→ I →Rn→M → 0.

Let J = I∗∗ be the reflexive hull of I (considered inside Rn), and let L be

the coherent sheaf corresponding to J on U , that is, L= J̃ |U , then

gHK(M, q) = lR (Γ(U, F e∗L)/imF e∗I)

= lR ((F e∗J)∗∗/imF e∗I) ,(3)

where q = pe, and imF e∗I denotes the image of the map F e∗I → F e∗Rn

∼=Rn.
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Before proving the lemma, we explain the right-hand side of the equal-

ity (3).

First of all, in virtue of (1), we have Γ(U, F e∗L) = (F e∗J)∗∗, so the

second equality is clear. Then, the inclusion I ↪→Rn factors through the

reflexive module J . Applying the Frobenius functor to these maps, we get

a commutative diagram

(4)

Since the functor F e∗ is not left exact in general, the maps in (4) are not

injective. For this reason, we consider the image imF e∗I ⊆Rn.

Since R is normal, U is smooth, and the absolute Frobenius morphism

F e : U → U is exact on U . Therefore, we pull back along F e the inclusion

L ↪→OnU , and we take sections on U , obtaining the inclusion

Γ(U, F e∗L) ↪→ Γ(U, F e∗OnU )∼= Γ(U,OnU ) =Rn.

Therefore, the quotient Γ(U, F e∗L)/imF e∗I is a quotient of submodules

of Rn.

Proof. We apply the functor F e∗ to the short exact sequence (2), and

we get F e∗I →Rn→ F e∗M → 0. Therefore, we have

(5) F e∗M =Rn/imF e∗I.

Then, we consider the short exact sequence

0→ Γ(U, F e∗L)/imF e∗I →Rn/imF e∗I →Rn/Γ(U, F e∗L)→ 0.

Taking local cohomology yields

0→H0
m (Γ(U, F e∗L)/imF e∗I)→H0

m (Rn/imF e∗I)→H0
m (Rn/Γ(U, F e∗L)) .

The module Γ(U, F e∗L) is reflexive by (1), then by Lemma 1.1 the last

module of the previous sequence is 0. Therefore, we get the following

isomorphism:

H0
m (Rn/imF e∗I) ∼= H0

m (Γ(U, F e∗L)/imF e∗I)

= Γ(U, F e∗L)/imF e∗I.(6)
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10 H. BRENNER AND A. CAMINATA

The last equality holds because the module Γ(U, F e∗L)/imF e∗I has support

in m, since the sheaves L and Ĩ coincide on U . Then, the desired formula

follows from (5) and (6).

Theorem 3.2. Let R be a two-dimensional normal standard graded K-

domain over an algebraically closed field K of prime characteristic p, and let

M be a finitely generated graded R-module. Then, the generalized Hilbert–

Kunz function of M has the form

gHK(M, q) = egHK(M)q2 + γ(q),

where egHK(M) is a rational number and γ(q) is a bounded function.

Moreover, if K is the algebraic closure of a finite field, then γ(q) is an

eventually periodic function. In particular, given a graded presentation of

M
n⊕
i=1

R(−di)
ψ−→

m⊕
j=1

R(−ej)→M → 0

and the corresponding short exact sequence of locally free sheaves on the

curve Y = ProjR

(7) 0→S := k̃erψ→T :=
n⊕
i=1

OY (−di)→Q := ĩmψ→ 0,

then the generalized Hilbert–Kunz multiplicity of M is

egHK(M) =
1

2 deg Y

(
µHK(S)− (deg Y )2

n∑
i=1

d2
i + µHK(Q)

)
.

Proof. Let u1, . . . , um be homogeneous generators of M of degrees

e1, . . . , em, respectively, and let

0→ I →
m⊕
j=1

R(−ej)
u1,...,um−−−−−→M → 0

be the corresponding short exact sequence. Let f1, . . . , fn be homogeneous

generators of I of degrees d1, . . . , dn respectively and let

0→N →
n⊕
i=1

R(−di)
f1,...,fn−−−−−→ I → 0
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GENERALIZED HILBERT–KUNZ FUNCTION IN GRADED DIMENSION 2 11

be the corresponding graded short exact sequence. This last sequence

induces the short exact sequence (7) on Y , and the short exact sequence

(8) 0→E := Ñ |U →F :=

n⊕
i=1

OU (−di)→ Ĩ|U → 0

on the punctured spectrum U . The modulesN and I are submodules of finite

free R-modules, so they are torsion-free. It follows that the corresponding

sheaves E and Ĩ|U on U are locally free, since U is regular. Moreover, if

J = I∗∗ is the reflexive hull of I, and L is the coherent sheaf corresponding

to J on U , we have that L= Ĩ|U as sheaves on U .

From Lemma 3.1, the generalized Hilbert–Kunz function of M is given

by

gHK(M, q) = lR (Γ(U, F e∗L)/imF eI) =
∑
m∈Z

lR ((Γ(U, F e∗L)/imF eI)m) .

To compute the last sum, we consider the sequence (7), we pull it back

along the eth absolute Frobenius morphism on Y and we tensor withOY (m),

for an integer m. We obtain an exact sequence

0→ F e∗S(m)→ F e∗T (m)→ F e∗Q(m)→ 0.

Then, we take global sections Γ(Y,−) of the last sequence and we get

0→ Γ(Y, F e∗S(m))→ Γ(Y, F e∗T (m))
ϕm−−→ Γ(Y, F e∗Q(m))→ . . . .

We are interested in the cokernel of the map ϕm. Its image is clearly

(imF eI)m. For the evaluation of the sheaf F e∗Q(m) on Y , we consider the

sequences (7) and (8), and we obtain

Γ(Y, F e∗Q(m))∼= Γ(U, F e∗L)m.

Therefore, we get

Coker(ϕm) = Γ(U, F e∗L)m/(imF
eI)m = (Γ(U, F e∗L)/imF eI)m .

It follows that

gHK(M, q) =
∑
m∈Z

Coker(ϕm).

We compute the last sum with Theorem 2.5, and we obtain the desired

formula for the generalized Hilbert–Kunz function.

For the generalized Hilbert–Kunz multiplicity, it is enough to notice that

µHK(T ) = (deg Y )2
∑n

i=1 d
2
i , by Example 2.4.
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12 H. BRENNER AND A. CAMINATA

Corollary 3.3. Let I be a nonzero ideal generated by homogeneous

elements f1, . . . , fn of degrees d1, . . . , dn, respectively, and let d be the

degree of the ideal sheaf associated to I on Y = ProjR. Then, the generalized

Hilbert–Kunz multiplicity of R/I is given by

egHK(R/I) =
1

2 deg Y

(
t∑

k=1

rkµ̄
2
k − (deg Y )2

n∑
i=1

d2
i + d2

)
,

where rk, µ̄k and t are the numerical invariants of the strong Harder–

Narasimhan filtration of the syzygy bundle Syz(f1, . . . , fn).

Proof. In this case, the presenting sequence of R/I is just 0→ I →R→
R/I → 0, and the sequence (7) is then

0→ Syz(f1, . . . , fn)→
n⊕
i=1

OY (−di)
f1,...,fn−−−−−→Q→ 0.

Therefore, by Theorem 3.2, the generalized Hilbert–Kunz multiplicity of

R/I is given by

1

2 deg Y

(
µHK(Syz(f1, . . . , fn))− (deg Y )2

n∑
i=1

d2
i + µHK(Q)

)
.

In this situation, Q is a line bundle, so by Example 2.3, µHK(Q) =

(degQ)2 = d2, and by definition, µHK(Syz(f1, . . . , fn)) =
∑t

k=1 rkµ̄
2
k.

Example 3.4. Let h be a homogeneous element of degree a > 0, and let

I = (h). Then, we have 0→OY (−a)
'−→L→ 0; hence, Syz(h) = 0. Since I

is principal, the degree of the ideal sheaf associated to I is a · deg Y . The

generalized Hilbert–Kunz multiplicity is then

egHK(R/I) =
1

2 deg Y

(
−(deg Y )2a2 + (deg Y )2a2

)
= 0,

in accordance with Proposition 1.2.

Example 3.5. Let I be a prime ideal of height 1 generated by two

homogeneous elements f and g of degrees a and b, respectively. Then, the

syzygy sequence is

0→ Syz(f, g)→OY (−a)⊕OY (−b)→Q→ 0,
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with Q the line bundle of, say, degree d associated to the ideal I. From

this sequence, we see that the syzygy bundle has rank 1 and degree

deg Y (−a− b)− d. Therefore, we have

egHK(R/I) =
1

2 deg Y

(
(deg Y (−a− b)− d)2 − (deg Y )2(a2 + b2) + d2

)
=

1

2 deg Y

(
2d2 + (deg Y )2(a2 + b2) + 2ab(deg Y )2

+ 2d deg Y (a+ b)− (deg Y )2(a2 + b2)
)

=
1

deg Y

(
d2 + ab(deg Y )2 + d(a+ b) deg Y

)
=

d2

deg Y
+ ab deg Y + d(a+ b).

Example 3.6. Let P be a point of the smooth projective curve Y =

ProjR, and let I ⊆R be the corresponding homogeneous prime ideal of

height 1. The ideal I is minimally generated by two linear forms f and g. In

fact, f and g correspond to two hyperplanes in the projective space where

Y is embedded which meet transversally in P . Then, using the notations

of Example 3.5, we have a= b= 1, and d=−1, since the line bundle Q
associated to the ideal I is a subsheaf of OY . Therefore, we obtain

egHK(R/I) =
1

deg Y
+ deg Y − 2 =

(deg Y − 1)2

deg Y
.

§4. The limit of generalized Hilbert–Kunz multiplicity

Let R be a standard graded domain flat over Z such that almost all fiber

rings Rp =R⊗Z Z/pZ are geometrically normal two-dimensional domains.

We define R0 :=R⊗Z Q and the corresponding projective curve Y0 :=

ProjR0 over the generic point. We denote by Yp := ProjRp the projective

curve over the prime number p. This is a smooth projective curve for almost

all primes. If S is a sheaf over the curve Y := ProjR, we denote by Sp (resp.

S0) the corresponding restriction to the curves Yp (resp. Y0).

Remark 4.1. In our setting, the curves Y0 and Yp are not defined over

an algebraically closed field. However, we may consider the curves Y 0 :=

Y0 ×Q Q and Y p := Yp ×Z/pZ Z/pZ, which are smooth projective curves over

the algebraic closures. We can consider the definitions of degree, slope,
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semistable, HN filtration and strong HN filtration for these curves, and

transfer them to the original curves Y0 and Yp. Therefore, we move to the

algebraic closure and back whenever this is convenient.

Let M be a graded R-module. For every prime p, we can consider the

reduction to characteristic p, Mp :=M ⊗R Rp ∼=M ⊗Z Z/pZ, and compute

the generalized Hilbert–Kunz multiplicity e
Rp

gHK(Mp) of the Rp-module Mp.

Since the projective curve Yp is smooth for almost all primes p, by Theorem

3.2, we know that e
Rp

gHK(Mp) exists, and that it is rational for these primes.

We are interested in the behavior of e
Rp

gHK(Mp) for p→+∞.

We introduce the following characteristic zero version of the Hilbert–Kunz

slope.

Definition 4.2. Let S be a locally free sheaf over a projective curve over

an algebraically closed field of characteristic zero, and let S1 ⊆ · · · ⊆ St = S
be the Harder–Narasimhan filtration of S. For every k = 1, . . . , t, we set

µ̄k = µ̄k(S) = µ(Sk/Sk−1) and rk = rank(Sk/Sk−1). The Hilbert–Kunz slope

of S is the rational number

µHK(S) =

t∑
k=1

rkµ̄
2
k.

The name Hilbert–Kunz slope is justified by the following result of Trivedi

(cf. [12, Lemma 1.14]).

Lemma 4.3. (Trivedi) Let h ∈ Z+, let Y be a smooth projective curve

over SpecZh, and let S be a locally free sheaf over Y . We denote by S0 and

Sp the restrictions of S to Y0 and Yp, for p - h. Then,

lim
p→+∞
p-h

µHK(Sp) = µHK(S0).

Theorem 4.4. Let R be a standard graded domain flat over Z such

that almost all fiber rings Rp =R⊗Z Z/pZ are geometrically normal two-

dimensional domains. Let M be a graded R-module with a graded presenta-

tion
n⊕
i=1

R(−di)
ψ−→

m⊕
j=1

R(−ej)→M → 0,

and corresponding short exact sequence of locally free sheaves 0→S0→
T0→Q0→ 0 on the generic fiber Y0 = ProjR0, with notations as above.
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Then, the limit

lim
p→+∞

e
Rp

gHK(Mp)

exists, and it is equal to the rational number

1

2 deg Y0
(µHK(S0)− µHK(T0) + µHK(Q0)) .

Proof. Let u1, . . . , um be homogeneous generators of M as R-module,

and let f1, . . . , fn be homogeneous generators of I := Syz(u1, . . . , um). We

obtain two short exact sequences

0→ I →
m⊕
j=1

R(−ej)
u1,...,um−−−−−→M → 0 and

0→N →
n⊕
i=1

R(−di)
f1,...,fn−−−−−→ I → 0.(9)

Tensoring these sequences with the flat Z-module Q, we obtain exact

sequences of R0-modules. On the other hand, if we apply the functor −⊗Z
Z/pZ to the sequences (9), exactness is preserved for all primes except for a

finite number of them. Let h be the product of those primes, and we consider

the smooth projective curve Y = ProjRh over SpecZh.

Let U =D(Rh+) denote the relative punctured spectrum. The sheaf Ĩ|U
restricts to U0 = U ∩ SpecR0 as a locally free sheaf. By possibly shrinking

the set D(h), we may assume that Ĩ|U is locally free. By further shrinking,

we may assume that E := Ñ |U is also locally free. Then, for almost all p, Ip
and Np are locally free on Up.

Let S, T , Q be the locally free sheaves on Y corresponding to E ,⊕n
i=1 R(−di), Ĩ|U , which, by the second sequence of (9), form an exact

sequence 0→S → T →Q→ 0 on Y . Its restrictions give the short exact

sequences 0→S0→T0→Q0→ 0 on the generic fiber Y0, and 0→Sp→
Tp→Qp→ 0 on the fiber Yp, for p - h.

Let p be a prime number not dividing h, then we are in the situation of

Theorem 3.2, so we obtain

e
Rp

gHK(Mp) =
1

2 deg Yp
(µHK(Sp)− µHK(Tp) + µHK(Qp)) .

Then, taking the limit for p→+∞ and applying Lemma 4.3, we conclude

the proof.
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