
5 
Fermions 

In this chapter we turn to a subject that is still not completely understood, 
the lattice formulation offermionic fields. These complications with spinor 
particles are already present at the free-field level; a straightforward 
generalization of the ideas in the last chapter does not give a simple particle 
spectrum. The action needs additional terms which vanish in the naive 
continuum limit. These terms, needed to eliminate certain lattice artifacts, 
tend to mutilate the classical symmetries of the theory. The extent to which 
this is necessary is still an open question. 

Before proceeding to these topics, we must introduce the concepts of 
anticommuting numbers and integration over these variables. The path 
integral is no longer a sum, but a particular linear operation from functions 
of anticommuting variables into the complex numbers. We will also 
introduce anticommuting sources for the dynamical fields. A differentiation 
with respect to these sources gives the Green's functions, as in the last 
chapter. Both integration and differentiation with anticommuting variables 
have useful analogous properties to ordinary integrals and derivatives; 
however, there are some amusing distinctions. In particular, fermionic 
integrals and derivatives involve essentially the same operation. 

As in the previous chapter, we begin with the continuum Lagrangian 
density for a free field, in this case a four-component Dirac spinor 

!l' = /ft(¢ +m)!/F. (5.1) 

A slash through a four-vector represents the usual sum 

II = PI' "II" (5.2) 

where they I' are a set of four-by-four Euclidian Dirac matrices satisfying 
the algebra 

As usual, we define 

[1'1"1'.]+ = 1'1'1'"+1'"1'1' = 281'" 

"I! = 1'1" 

For future use we also introduce 

1'5 = 1'11'.21'31'4 = 1'1· 
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(5.3) 

(5.4) 

(5.5) 

(5.6) 
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A convenient representation for these matrices is 

Yi = ei O"~) i = 1,2,3, 

Y4 = (~ 

Ys = (~ 

(5.7) 

(5.8) 

(5.9) 

The matrix elements here are themselves two-by-two matrices and the O"i 
are the usual Pauli matrices (0 I) 

0"1= 10' (5.10) 

0"2=G -~), (5.1I) 

0"3 = (~ _~). (5.12) 

Note that this Lagrangian is invariant under the substitution 

l/t-+e I81/t. (5.13) 
This symmetry is directly related to the conservation of fermion number. 
When the mass m vanishes, the theory also has a • chiral' or' Ys' symmetry 
under (5.14) 

In a naive canonical treatment, these symmetries are generated by the 
currents 

(5.15) 

and jt=h"ysl/t. (5.16) 

Careful perturbative analysis (Adler, 1969; Bell and lackiw, 1969) 
indicates the impossibility of maintaining conservation of both these 
currents in the four-dimensional quantum theory. This' anomaly' will not 
be derived here; we only note that it is deeply related to the difficulties 
encountered in the lattice formulation, which naively preserves these 
symmetries (Chodos and Healy, 1977; Nielsen and Ninomiya, 1981a, b; 
Kerler, 1981a; Becher and 100s, 1982; Rabin, 1982). 

As in the previous chapter, we introduce a four-dimensional hypercubic 
lattice of N' sites. With each site m we associate an independent four­
component spinor variable I/t m' To keep the lattice action simple we define 
the derivative symmetrically 

I 
o"I/t-+2a(l/tm.+a". -l/tm.-8"J (5.17) 
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22 Quarks, gluons and lattices 

Summing the Lagrangian over all sites gives the lattice action 

s= ~ /frmMmntjfn, 
m,n 

where M = la3~y (~ -~ )+a4m84 . mn 2 It m v +81'1I,nv mv-8,uv,nv mn 
p 

(5.18) 

(5.19) 

Note that the symmetries ofeq. (5.13) and, when m = 0, eq. (5.14) are still 
manifest. We now put this action into a path integral 

Zo = f [dtjf d/frl e-s . (5.20) 

Unlike in the scalar case, this is not an ordinary integral, and needs further 
definition. We will first discuss such integrals for quadratic actions of the 
form ofeq. (5.18) with an arbitrary matrix M. Later we will return to the 
specific theory in eq. (5.19). 

We begin by requiring the integration variables to anticommute 

[~, tjf~]+ = [tjf~, tjf~]+=[~,J, tjf~]+ = 0, (5.21) 

where a and f1 are the usually suppressed spinor indices. This equation 
contrasts sharply with the canonical relations for Dirac operators in 
Hilbert space. In the path integral tjf and tjft are independent fermionic 
objects. As in the previous chapter, our integral is of an exponentiated 
quadratic form. We will see that its evaluation again reduces to knowing 
the determinant of M. Before proceeding, however, we find it advantageous 
at this point to introduce the concept of sources for the fermionic fields. 

As our fields anticommute, any sources coupled to them should behave 
similarly. We consider separate sources /Pm and ~ for ~ and ~, 
respectively. Suppressing repeated site and spinor indices, we generalize the 
action to 

(5.22) 

We adopt the convention that all the spinor quantities tjf, /fr, band c 
anticommute with themselves and each other. We wish to define the 
fermionic path integral such that the linear source terms can be eliminated 
by a simple completion of the square and a shift of the integration 
variables, in analogy to an ordinary integral. Thus we demand 

Z = Zoexp( -bM-1c), (5.23) 

where Zo is the sourceless integral from eq. (5.20). For the free field 
considered here, the overall factor of Zo is irrelevant to the evaluation of 
Green's functions. In particular, the fermion propagator is given, as for 
scalar fields, by the inverse of the kinetic matrix M. However, in more 
general applications, i.e. with gauge fields, one may wish to have M to 
depend on other interacting fields. In this case we need the explicit 
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functional dependence of Zo on this matrix. We will now demonstrate that 
Zo is simply the determinant of M (Matthews and Salam, 1954). 

To proceed, we need the concept of derivatives with respect to our 
fermionic sources. Such derivatives should satisfy 

(5.24) 

and a corresponding equation for the e's. This generalizes ordinary 
differentiation, where one would have a commutator. Note that these 
anticommutation relations are precisely those of the creation and anni­
hilation operators for fermions on the sites of our lattice 

[b;;, b~]+ = omn oa-fl. (5.25) 

We can realize these relations on a Fock space of states created by 

(5.26) 

on a 'vacuum' satisfying 
lPmlO) = &m10) = O. (5.27) 

Operating on this vacuum is equivalent to turning off the sources. This 
'Euclidian vacuum' should not be confused with the conventional Hilbert 
space state in Minkowski space, as found in the transfer matrix formalism 
discussed in the first chapter. We use a creation operator notation here for 
compactness and to avoid confusion from the fact that d/db is not really 
a usual derivative. 

Our path integral with sources is an operator in this space. Operating 
on the vacuum from the right, we define the useful state 

(ZI =(OIZ(b,e). (5.28) 

Fermion Green's functions are matrix elements between this state and the 
vacuum 

f [dV d~] e-s~i, ... ~in Vi! ... Vin = (Z let··· ct. bi, ... br.1 0). (5.29) 

Our creation operators produce the ends of the external lines in a general 
correlation function. 

Continuing toward our goal of evaluating Zo, we now present a useful 
identity on exponentials of quadratic forms in creation and annihilation 
operators. Let F and G be N4-by-N4 symmetric matrices. We would like 
to take the expression 

(V(A.) I = (0 I ebFc eAbtact (5.30) 

and manipulate the creation operators to the left to obtain a single 
exponential of a quadratic form in the annihilation operators alone. 
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24 Quarks, gluons and lattices 

Straightforward manipulations, which we invite the reader to perform, 
yield the identities 

(lfr(A) 1 bt = - (lfr(A) 1 (F-l_ AG)-le, (5.31) 

(lfr(A) 1 et = + (lfr(A) 1 (F-l_ AG)-lb. (5.32) 

Using these in the derivative of expression (5.30) with respect to the 
parameter A gives a differential equation 

~(lfr 1 = (lfr 1 [-Tr(G(F-l_AG)-l)+b(F-l_AG)-lG(F-l-AG)-le). 
dA 

With the initial condition 

(lfr(A = 0) 1 = (01 ebFc, 

we can integrate to obtain 

(lfrl = I/-AFGI(Olexp(b(F-I-AG)-le). 

(5.33) 

(5.34) 

(5.35) 

To verify that this is indeed a solution of eq. (5.33), make use of the 
well-known identity 

1 FI = exp [Tr (In F»). (5.36) 

With eq. (5.33) in hand, we return to our path integral and write 

M=I+(M-/), (5.37) 

where 1 is the identity matrix. Treating M -I as a perturbation, we have 

(ZI = (Olf[dlfrd~]e-?n/r-b",+y,.,exp(et(l-M)bt). (5.38) 

As before, the integral can be done by completing the square; however, 
now the normalization is truly arbitrary. We define 

Thus we have 
f[dlfrd~)e-?n/r = l. 

(ZI = (0 1 e-bc e-btu- M) ct. 

(5.39) 

(5.40) 

This is exactly in the form needed for the identity in eq. (5.33), which gives 

the final result (ZI = IMI(0Ie-bM-1c. (5.41) 

Turning off the sources, we see that Zo is precisely the determinant of M 

1 MI = f[dlfrdVF)e-~M"'. (5.42) 

Note the similarity of this with the boson result in eq. (4.22). The 
anticommuting fermion fields have moved the determinant from the 
denominator to the numerator. For scalar fields there is also an operator 
formalism parallel to that presented here. We invite the reader to work 
out the Bose analog of eq. (5.35). 

This discussion paid no attention to the precise form of the kinetic matrix 
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M; we only used the quadratic nature of the fermion action. We now return 
to the specific case in eq. (5.19) and study the propagator 

Smn = Z01 f[dlfrd¥Je-iliMvlfrm ¥n. (5.43) 

In our operator formalism we have 

Smn = Z01(ZI bk 410) = (M-1)mn: (5.44) 

As in the last chapter, M is diagonalized and inverted with a Fourier 
transform. This gives 

(M-1)mn = a-4N-4 l: £1-,;1 e21Tik '(m-n)/N, 
k 

(5.45) 

where £1k = m+ia-1I; YJl sin (21Tk/N). (5.46) 
Jl 

Still following the last chapter, we let our lattice size become large and 
replace sums over k with integrals 

qJl = 21TkJl /(Na), 

a-4N-4 t --* f d4q/(21T)4, 

(5.47) 

(5.48) 

£1k = m+ia-1I;yJl sin(aqJl)' (5.49) 
Jl 

If we now consider small lattice spacing and expand in powers of a, we 

find £1k = m+ig+0(a2). (5.50) 

It thus appears that we have recovered the usual continuum fermion 
propagator. Unfortunately, more care is needed at the upper limits of the 
momentum integrals. When qJl is 1T / a, the periodic sine function in eq. (5.49) 
vanishes. Here the 0(a2) terms cannot be neglected. Indeed, the propagator 
has no supression of momentum values near 1T / a; therefore we must expect 
rapid variations in the fields from site to neighboring site. This precludes 
the above simple continuum limit and will also destroy any attempt to 
formulate a transfer matrix along the lines of chapter 3. 

To isolate the large momentum region, consider one component of qJl 

and replace it with qJl = qJl-1T/a (5.51) 

over half the integration region 

f 1T/a dqJl £1-,;1 = f1T/2a (dqJl + dqJl) £1-,;1. (5.52) 
-1T/a -1T/2a 

For small lattice spacing, a finite range of the integration variables 
dominates each of these terms. Now an approximation along the lines of 
eq. (5.50) is valid. For each space-time dimension we have two independent 
regions where the theory gives a free fermion propagator in the continuum 
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limit. We actually have 24 = 16 independent fermion species, even though 
we initially seemed to have but one. 

This multiplicity in the spectrum arose because we have implemented 
a regularization scheme that, when m = 0, keeps an exact Ys symmetry at 
all stages. It therefore cannot possess the known chiral anomaly. The 
theory has created extra species which cancel this phenomenon. Note that 
the new fermions use different y matrices; i.e. when we shift as in eq. (5.51), 
the sine function gives an extra negative sign 

y"sin(q"a) = -y" sin (t/I' a). (5.53) 
This sign is absorbed by redefining Yl' and therefore Ys as well. Those 
fermions associated with an odd number of components of q being shifted 
bY7T/a will transform under the conjugate of the rotation in eq. (5.14). We 
have equal numbers of states with each chirality. 

Several solutions exist for this' doubling' problem. Perhaps the simplest 
is to ignore it and say that the theory is automatically generating a large 
number of fermion 'flavors.' Indeed, real quarks do appear to come in 
several species. Nonetheless, it seems a bit far fetched to use an artifact 
of the lattice formulation to explain this degeneracy. 

Observing that the problem only occurs when the magnitude of q is large, 
one might try artificially to exclude large components. In general this is 
dangerous because of completeness in the Fourier transform. Here, 
however, we can use the spinor index to partially do precisely this. By 
associating only a single spinor component with each site and putting 
different components on separate classes of sites, one effectively puts the 
components on smaller sublattices. This reduces the effective upper limit 
of the momentum integrals and thereby reduces some of the unwanted 
degeneracy. Such techniques have had considerable success in a Hamil­
tonian formulation of the lattice theory, where continuous time removes 
half of the unwanted states (Kogut and Susskind, 1975; Banks et al., 1977). 

The multiplicity problem arises from the periodic nature of the sine 
function appearing in the Fourier transform of the nearest-neighbor form 
for the lattice derivative. In a continuum theory, a derivative is simply a 
factor of the momentum in Fourier space. Thus another solution to the 
lattice degeneracy is to replace the sin of the momentum with the 
momentum itself. This defines a new lattice derivative which immediately 
kills the extra states. On returning to position space, this derivative no 
longer involves just nearby sites, but includes products of site variables 
with arbitrary separations. This keeps an apparent chiral symmetry; to see 
the anomaly requires a careful and somewhat controversial treatment of 
limits (Orell, Weinstein and Yankielowicz, 1976; Karsten and Smit, 1981). 
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A utilitarian approach to the doubling problem is to add to the naive 
action new terms which suppress the extra states while vanishing in a 
continuum limit with the desired fermion species. To keep the action as 
local as possible, we require the new terms to involve nearest-neighbor 
pairs of lattice sites. This means that in momentum space these terms will 
involve only simple trigonometric functions of the momentum. An addition 
which accomplishes our needs replaces M k with 

Mk = m+ia-1 ~ Y" sin (aq,,)+ra- 1 ~ (I-cos (aq,,». (5.54) 

" " Here r is an arbitrary parameter. Note that for small momentum the new 
term is of order the cutoff and thus drops out. However, when a component 
of q is near 1T / a, the addition increases the mass of the unwanted state by 
2r / a. In the continuum limit all the extra states go to infinite mass and 
only one species of mass m survives. Setting r to unity (Wilson, 1977), we 
obtain the position space form 

Mmn = (ttm +4a3) 84mn 

+la3~[(l+y,,)o:n +0 n +(l-y,,)84m -& nl· (5.55) 
f1 v pv' v v JiV' v 

Whenever a quark moves from one site to the next, its wave function picks 
upa factor of I ±Y" rather than they" fromeq. (5.19). Note that(l ±Y,,)/2 
is a rank two projection 

(l(l ±Y,,»2 = HI ±y,,), 
Tr(i(l ±Y,,» = 2. 

(5.56) 

(5.57) 

Thus part of the spinor field no longer propagates. This reduces the 
degeneracy by a factor of two for each dimension, exactly as needed to 
remove the extra states. This method is referred to as the projection 
operator technique of Wilson. 

The simplicity of this method is convenient for calculation. However, 
it totally mutilates the chiral symmetry of the theory because the added 
piece is like a mass term for the unwanted fermions. This is probably more 
of a mutilation than necessary; with several flavors not all currents need 
to have an anomaly. Consequences of the related symmetries, such as 
Goldstone bosons, are masked in the projection operator formalism until 
one reaches the continuum. The extent to which these latent symmetries 
can survive in a lattice theory is still unclear. 
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Problems 

1. Derive the analog of eq. (5.35) for bosonic operators. 
2. For a single pair offermionic variables 1/f and lfr, derive the formulae 

f d1/f dlfr 1 = f d1/f dlfr 1/f = 

f d1/f dlfr lfr = 0 

f d1/f dlfr 1/flfr = 1. 

3. Rescale the fields to put eq. (5.55) in the form 

M mn = 8:"n + KL ((1 +YI,) 8:"vHJLV, nv +(l-Y,J 8:"v-8JLV,n), 
I' 

where the' hopping constant' K approaches 1/8 for a continuum limit. This 
represents a critical point where the correlation length diverges when 
expressed in units of the lattice spacing. 

4. We have discussed periodic boundary conditions. Is there any 
motivation for antiperiodic boundary conditions for fermionic fields? 
(Hint: what sign does a fermion loop wrapping around the lattice give to 
eq. (3.32)?) 
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