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A THEOREM ON POWER SERIES WITH APPLICATIONS TO
CLASSICAL GROUPS OVER FINITE FIELDS

ANDREW J. SPENCER

For some of the classical groups over finite fields it is possible to express the proportion
of eigenvalue-free matrices in terms of generating functions. We prove a theorem on
the monotonicity of the coeflicients of powers of power series and apply this to the
generating functions of the general linear, symplectic and orthogonal groups. This
proves a conjecture on the monotonicity of the proportions of eigenvalue-free elements
in these groups.

1. INTRODUCTION

In this paper we state and prove a result giving conditions for the coefficients of
a power series raised to a power to decrease monotonically in size. This result has
interesting consequences when used in conjunction with the results of Neumann and
Praeger [1], on the proportion of eigenvalue-free matrices in the classical groups over
finite fields.

We proceed as follows: Section 2 states and proves the main theorem of the paper;
Section 3 introduces a function that was studied by Euler and states how this relates to the
classical groups; Section 4 shows how we can use the techniques developed in Section 2
to work with the generating functions encountered in the previous section; Section 5
concludes with a result on the proportions of eigenvalue-free matrices in the general
linear, symplectic and orthogonal groups over finite fields. Unless stated otherwise, all of
our power series have real coefficients.

2. A THEOREM ON POWER SERIES

THEOREM 2.1. Suppose that A € R and A > 1. Let A(z) = f: an2", where
n=0

eg=1and0< a, € ay—1/) forn > 1. If r is an integer such that 1 < < X and aﬁf) Is
the coefficient of z" in (A(z))" then

0 < al" <a$:ll <1

forn 2 2.
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We postpone the proof as it relies on the following lemma.

(e 00
LEMMA 2.2. Let R(z) = 3 rp2" and S(z) = 3_ s,2" where all r,, s, > 0 and

n=0 n=0
the sequence (Tn)n>1 decreases strictly monotonically. Let T(z) = R(z)S(z) and write
00

T(z) as 3 tnz". Forn > 2 if
n=0
ToSn + T18n—1 & T0Sn-1

then t, < t,_;.
PROOF: By definition,

t, = 7T08n + T1Sp-1+ +*+TnS0

and
th-1 = T0Sp-1 + T1Sp-2+ -+ + Th_150.

Since the coefficients of R(z) are strictly montonically decreasing, for 2 € i < n we have
TiSn—i < Ti—15n_;. The result follows. 0

PROOF OF THEOREM 2.1: Let 1 € r £ A. We first deal with the coefficients a(()')
and a{”. Tt is clear that a{”’ = 1 and we can show by induction that a{” = ra;. As
a; € 1/Aand 1 € r € X we see that a({) < 1. Note that aY’ = 1 precisely when r = A
and a; = 1/

We shall now use induction on 7, up to A, to show that for 1 < r < X and for all
n > 2, the inequality a{” < af.'ll holds. For r = 1 we are just considering the power
series A(z) for which the coefficients decrease strictly monotonically. Assume now that
for some r < A— 1 and for all n > 2 we have ol < a{|. We apply Lemma 2.2 with
R(z) = (A(2))" and S(2) = A(z). 1t follows that, for n > 2 if

(1) ag')an + a({)an_l < ag')a,,_l

then
alrth) < g,

Therefore showing that (1) holds would complete the inductive step. Now a((,r) =1 and
a(lr) = ra,. Furthermore, by assumption, a, < a,—1/A,and 7 £ A -1, so0

1 1 -1
o an +a{"an 1 < 10n-1 + @181 < Gnmy (— + —) = an_1a,

A A

as required. : 0
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3. GENERATING FUNCTIONS RELATED TO SOME CLASSICAL GROUPS OVER FINITE
FIELDS

We adopt the notation used by Neumann and Praeger in [1]. For a complex number
z with |z| > 1 we define the function

G(z;2) = ﬁ(l - z7%2).
=1

(=]
It is shown in [1] that G(z;2) = )_ an,z™ where gy =1 and forn > 1,
n=0
-1)"
e I
[ (z* - 1)

For m > 1, we shall be considering the classical groups GL(m,q), Sp(2m,q),
0*(2m,q) and O~ (2m, q) over the finite field F,. For G € {GL,Sp,0*,0~} we define
v(G;m, q) to be the proportion of eigenvalue-free matrices in the corresponding group of
appropriate dimension. When dealing with the orthogonal groups we define

v¥(0;m, q) = v(0*;m,q) £v(07;m,q).

Considering these proportions as probabilities we define the associated generating func-
tions .
V(Gig,2) =1+ v(Gim,q)z",
) m=1
and .
V%(0;9,2) =1+ Y_ v*(0;m, q)z™
m=1
It follows that

V(0*;q,2) = - (V*(0;4q,2) + V(O;q, z))

BN -

and 1
V(07;q,2) = 3 (V*(054,2) =V~ (054,2)) .

The results in Table 1 are proved in [1], expressing the generating functions in terms of
the function G(z; z).

4. RESULTS ON THE GENERATING FUNCTIONS

For G € {GL,Sp, 0%, 0~} we now have expressions for V(G; ¢, z) in the form

V(Gig,2) = (1-9)7'Y an"

n=0
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Generating function Related function

V(GL; g, 2) (1-2)"'G(g; 2)*!

V(Sp; g, 2) (1 -2)7'G(¢% q2)*G(g; 2)372, q odd
(1-2)7'G(q% 92)G(g; 2)9~272, g even

V*(0;4,2) (1-2)7'G(¢% q2)*G(g; 2)=3/2, g 0dd

(1-2)7'G(¢% ¢2)G(g; )"/, g even

V-(0;q,2) G(g%2)?G(g; 2)@3/2, g 0dd
G(q%2)G(g; 2)99/2, g even

Table 1:

In this section we shall study these functions neglecting the factor (1 — 2)~! and prove
results on the sequence (@,)nzo. We say that the sequence (@n)n3n, is positive alternat-
ing if the sequence ((—1)""‘°a,.)n>n0 has all terms greater than zero. We extend this
definition to power series and define the class of positive alternating power series to be

C= {A(z) l A(z) = Z(—l)"a,.z", a, > 0 for all n}.
n=0

It is not hard to show that C is closed under multiplication. For ¢ > 2 the functions
G(q; 2), G(¢?% qz) and G(g?%;2) all lie in C and it follows that any product of these must
also lie in C. In particular, from Table 1, we see that (1—2)V(GL; ¢, z), (1-2)V(Sp; ¢, 2),
(1 — 2)V*(0;q,z) and V~=(0O;q, 2) all lie in C.

If we have a positive alternating power series A(z) = Y (—1)"a,2" where all a, > 0,

: n=0

o0
then A(—z) = 3 a,2z". Hence to prove results on the monotonicity of the absolute value
n=0

of the coefficients of A(z) we can work with the coefficients of A(—z) where all terms are
positive.
o
THEOREM 4.1. Let(1- 2)V(GL;q,2) = Y. (-1)"w,2". Then wy = w, and the

n=0
sequence (Wn)n31 is strictly monotonically decreasing.

o0
PRrROOF: Consider the power series G(g; —2)7"!. This is equal to Y w,2", where all
. n=0
wy, > 0. It is clear that wg = 1 and induction on the power of G(gq; —z) gives w; = 1.

If ¢ = 2 then G(g;—2)7"! = G(2;—2). In this case (wp)n31 is strictly monotonically
decreasing and so we may assume that ¢ > 3. Let a, be the coefficient of 2" in G(g; —=z).
We know that for all n > 1,
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and so we apply Theorem 2.1 to G(g; —z) with A = ¢ — 1. This gives w, < wy,_; for all

n > 2, as required. ‘ 0
o0

THEOREM 4.2. Let (1 — 2)V(Sp;q,2) = >_(—1)"wnz". Then the sequence

n=0
(Wn)n3o is strictly monotonically decreasing.

PROOF: We just prove the case when ¢ > 3 and ¢ is odd. A similar argument works
for even g. We know that

(1= 2)V(Sp; q, 2) = G(q% q2)*G(g; 2) ™3/,
We shall work with the function
G(¢%; —q2)*Gg; —2)@9)?

which has coefficients (ws)n30 that are all positive. We first show that the coefficients of
G(q?% —qz)G(q; —2)"9~%/2 decrease strictly monotonically. If ¢ = 3 this is clear and we
consider ¢ > 5. Let

[e ]
A(z) = G(g; —2)9 /2 = Za,,z", B(z) = G(¢% —qz) Zb,.z
n=0 n=0
From Theorem 2.1 we know that the terms of the sequence (@;)n»o decrease strictly
monotonically. We can use this together with Lemma 2.2 to see that A(z)B(z) has
coefficients which decrease strictly monotonically if, for n > 1, agb, + a1b,—1 < agb,_;.
Induction gives that

-3 3
a
'T2g-1)
and we know that .
bn = b"-l ﬁ
Therefore we need to show that
q q-3

<1
q”—1+2@—U

This certainly holds for » > 1 and ¢ > 5. Having proved that the coefficients of
G(¢? —q2)G(g; —2)19~3/2 are strictly monotonically decreasing we repeat the technique.
This time let A(z) = G(¢% —q2)G(g; —2)"9~3/2 and B(z) = G(¢*; —qz), again with coef-
ficients (an)nzo and (b,)nzo. Calculations give that ag = 1 and

q g-3
21" 2q-1)
Therefore to prove that A(z)B(z) has coefficients that decrease strictly monotonically we
must show that for n 2 1, agb, + a1bn-1 < agbn_,, that is,

q q q9-3
-1 @1 2q-1

a; =

<1
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This can be seen to hold for all ¢ > 3 and n > 1. The coefficients of A(z)B(z) are
precisely the sequence (ws)n30, and so the proof is complete. 0

THEOREM 4.3. Let (1 - z)V(0%;q,2) Z wyz". Then the sequence (Wn)n3o
is positive alternating, wy = |w;| =1 and (|w,,|) decreases strictly monotonically.
We omit the proof as it is similar to that of the next theorem.

THEOREM 4.4. Let (1-2)V(07;¢,2) = E wn2z". Then the sequence (Wy)n>1
is positive alternating, wy = 0 and (|w,,|) decreases strictly monotonically.

Before we prove this we obtain some informatlon about the power series G(¢?; z)2.

LEMMA 4.5. Let a, be the coeficient of z" in the power series G(q%; 2)?. For
> 3 and n > 1 we have

|an-1] > ¢"|an|.

PROOF: Let us denote the coefficient of 2™ in the power series G(g%; —z) by ¢,. It

follows that n
lanl =) cicns.
i=0

Suppose that n is odd and n > 3. Here we have

|an| = 2¢ocn + 2€16n-1 + * + + + 2C(n=1)/2C(n+1)/21

[@n—1] = 2cocn—1 + 2¢1Cn-2 + - - - + 2C(n-3)/2C(n+1)/2 + C(n-1)/2C(n-1)/2-

We compare these equations term by term and claim that forn > 3and 1 < i < (n+1)/2
we have ¢,—; > 2¢"cp—i+1. To prove this claim we note that

_ Cn—i
Cn—itl = —qZ(n—i+l) 1

and so
i1 =1 — L )
Cn—i g Cn-it1 = q2("‘i+1) 1 Cp—i-
Now ¢,—; > 0 and for 7 and n in the range above,

2¢"

=+ _ 1 <l

Hence ¢,_; — 2¢™cy-i+1 > 0 as required. The case when n is even is similar and checking
that |ag| > glai| completes the proof. 0

PROOF OF THEOREM 4.4: Suppose first that g is even and ¢ > 2. In this case

V(07;g,2) = %(1 - 2)7G(g; )"V (Glg% 42) — (1 —2)G(d% 2)) -
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Let H(q; z) = G(g%gz) — (1 — 2)G(¢?; ) with coefficients (hn)nxo. It is not difficult to
show that hg = 0 and forn > 1,

(" -1)
Il (g% - 1)

Clearly (hn)n3 is positive alternating and for n > 2,

lhal _ q <
[hnoal (" +1)(g"' - 1)

hn — (_l)n—l

1,
telling us that the sequence (|h,,])n>l is strictly monotonically decreasing. Writing
1
(1-2)V(0754,2) = 5G(q;2) " H(g; 2)

o

as ) w,2" we see that wy = 0 and (wy)a»1 is positive alternating. If ¢ = 2 then
n=0

(1-2)V(07;q, z) = H(g;2)/2, the coefficients of which satisfy the required monotonicity

conditions. We may therefore assume that ¢ > 4. We know from Theorem 2.1 that
G(g; —2)\9~2/? has coefficients that decrease strictly monotonically. With a little work
we can apply Lemma 2.2 to G(g; —2)©92/2 and —H{(g;—z) to see that the sequence
(lwﬂl)@l decreases strictly montonically.

Suppose now that ¢ > 3 and g is odd. Here

V(07;q,2) = %(1 — 2)7'G(q; 2)97 32 (G(g% q2)* — (1 — 2)G(¢% 2)?) .

Let H(g;2z) = G(¢%¢qz)? — (1 — 2)G(¢? z)? with coefficients (h,,),,;o and let a, be the
coefficient of 2" in G(g?%; z)?. It is clear that hy = 0 and for n > 1,

hn = q"an — an + an_1.

We know that the sequence (a,)n30 is positive alternating and for all n > 1, Lemma 4.5
tells us that |a,—_1| > ¢*|an|. Therefore h, has the same sign as a,_; and

(2) [hnl = |an-1]| = (¢" — 1)]an|.
If n > 2, Equation 2 gives
|hn1] = |hnl = lan_2| — ¢ Han_1] + (¢" — 1)|an].

It is clear that (¢g" — 1)|a,| > 0 and Lemma 4.5 tells us that |an_2| > ¢"!|a,_;|. Hence
for all n > 2, |hy| < |hn-1| and so (|h,,|)">l is strictly monotonically decreasing. This
proves the theorem in the case ¢ = 3 as here (1 — 2)V(07;q,2) = H(g; z)/2. Assuming
that ¢ > 5, we consider the power series G(g; 2)93/2H(q; z). Since hy = 0, it is clear
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that the first coeflicient in this power series is equal to zero, and after this the coefficients
are positive alternating. Let us define

F(z) = -H(g;-2), E(z)=G(g;-2)=) eu".
n=0
We shall work with E(z){9~3/2F(z) as, neglecting sign, it has the same coefficients as
G(g; 2)9"3/2H(q; z), that is 2(1 — z2)V(07;q,2). Therefore, it remains to prove that
E(2)9~3/2F(z) has coefficients that, after the first, decrease strictly monotonically in
size. For 0 < k € (g — 3)/2 we define

S®(2) = E(2)F(2)

and we denote its coefficients by (ss.k)),.zo. For k > 0 we see that

(k) _ ® _g-1 w_ 1 k
So —0, 8 —m and32 —m'*‘ﬁ—l

We want to use induction on k up to (¢ — 3)/2 to prove that the sequence (ss.k)),,zl is
strictly monotonically decreasing. By definition S®(z) = F(z) = —H(q; —z) which we
have already studied. Suppose that for some &, 0 < k < (g —5)/2, the sequence (ss.k))@l
is strictly monotonically decreasing. We want to prove the condition for S*+1(z). An
argument similar to that in the proof of Lemma 2.2 shows that for n 2 2, if

(k)

(3) s((,k)en + sg")e,,_l + sg‘)en_g < 8y (k)

en-1+S] €n_2

then s&*Y < sf,k_ﬂl). Observing that e,_; = e;_2/(¢""" — 1) and substituting the values

of sf)k), sgk) , and _sgk) we see that Equation 3 holds for n and % in the ranges specified.
This completes the induction and the proof. 0

It is worth noting that we can find values of ¢ for which the coefficients of the power
series (1-2)V (U, g, 2), associated with the unitary groups U(m, ¢), are neither alternating
in sign nor monotonically decreasing in absolute value. In [1, p.579], there are a couple
of mistakes. Firstly G(—q; —z)9"'G(g% 2)~@"~9-2/2 is written in two places instead of
G(—gq; —2z)7*1G(g?; 2)@~9=D/2, Secondly the assertion is made that the coefficients of
(1 — 2)V(U; g, 2) alternate in sign for ¢ > 4. As stated above, this is false.

5. CONCLUDING REMARKS

From the fact that the generating function V~(0; ¢, z) € C, we deduce ihat for even

v(0*;m,q) > v(07;m,q)

and for odd m
v(0*;m,q) < v(07;m,q).
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Suppose that we fix a prime power ¢ and G € {GL,Sp,0%,07}. For m > 1 we define
vm = v(G;m,q). It is proved in [1] that these probabilities all tend to limits as m — co

and we write v, = lim vy,.
m—00

THEOREM 5.1. IfG € {GL,Sp,0"} then
V2m-1 < V2m+1 < Voo < U2m+2 < U2m.

If G = O~ then
V2m-1 > Vam+1 > Voo > V2my2 > VUam:

PRoOF: Suppose that we write the generating function V(G; g, z) in the form

(4) V(Gig,2) = (1-2)"" i wa2",

n=0
then for all m 2 1,
m
VUm = Z W;.
=0
Furthermore, if the sequence (wy)n3¢ is positive alternating, the terms of (wn)n31 decrease
strictly monotonically in absolute value, and the series Y w, converges, then

V2m-1 < V2m+1 < Voo < Vomt2 < U2m-

This is the situation when G € {GL,Sp,0%'}. When G = O~ the inequalities are
reversed since expressing V(O7; ¢, 2) in the form (4) yields a sequence (wn)n3o that is
positive alternating and whose terms decrease strictly monotonically in absolute value
only after the first term (wp = 0) has been removed. 0

It would be interesting to see a combinatorial explanation for these inequalities.
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