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A T H E O R E M ON P O W E R SERIES W I T H APPLICATIONS TO
CLASSICAL GROUPS OVER FINITE FIELDS

ANDREW J. SPENCER

For some of the classical groups over finite fields it is possible to express the proportion
of eigenvalue-free matrices in terms of generating functions. We prove a theorem on
the monotonicity of the coefficients of powers of power series and apply this to the
generating functions of the general linear, symplectic and orthogonal groups. This
proves a conjecture on the monotonicity of the proportions of eigenvalue-free elements
in these groups.

1. INTRODUCTION

In this paper we state and prove a result giving conditions for the coefficients of
a power series raised to a power to decrease monotonically in size. This result has
interesting consequences when used in conjunction with the results of Neumann and
Praeger [1], on the proportion of eigenvalue-free matrices in the classical groups over
finite fields.

We proceed as follows: Section 2 states and proves the main theorem of the paper;
Section 3 introduces a function that was studied by Euler and states how this relates to the
classical groups; Section 4 shows how we can use the techniques developed in Section 2
to work with the generating functions encountered in the previous section; Section 5
concludes with a result on the proportions of eigenvalue-free matrices in the general
linear, symplectic and orthogonal groups over finite fields. Unless stated otherwise, all of
our power series have real coefficients.

2. A THEOREM ON POWER SERIES
oo

THEOREM 2 . 1 . Suppose that A € R and A > 1. Let A(z) - £ anz
n, where

n=0

a0 — 1 and 0 < an < an-i/A for n ^ 1. Ifr is an integer such that 1 ^ r ^ A and o^r) is
the coefficient of zn in (A(z))T then

for n ^ 2.
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122 A.J. Spencer [2]

We postpone the proof as it relies on the following lemma.

LEMMA 2 . 2 . Let R{z) = £ rnz
n and S(z) = £ snz

n where all rn, sn > 0 and
n=0 n=0

the sequence (rn)n^i decreases strictly monotonically. Let T(z) = R(z)S(z) and write

T(z) as f; tnz
n. Forn^2 if

n=0

then tn < tn-i-

P R O O F : By definition,

tn = rosn + r!Sn_i + 1- rns0

and

Since the coefficients of R(z) are strictly montonically decreasing, for 2 ^ i ^ n we have
riSn-i < rj_isn_j. The result follows. D

P R O O F OF THEOREM 2.1: Let 1 ^ r ^ A. We first deal with the coefficients ao
r)

and a ' r \ It is clear that %' = 1 and we can show by induction that a^ = ra.\. As
ai < I/A and 1 < r < A we see that a^ ^ 1. Note that aff^ = 1 precisely when r = X
and ai = I/A.

We shall now use induction on r, up to A, to show that for 1 ^ r ^ A and for all
n ^ 2, the inequality Orf* < o%_x holds. For r — 1 we are just considering the power
series A(z) for which the coefficients decrease strictly monotonically. Assume now that
for some r ^ A— 1 and for all n ^ 2 we have % < aj,_i. We apply Lemma 2.2 with
/?(z) = (A(z))r and S(z) = A{z). It follows that, forn ^ 2 if

then

Therefore showing that (1) holds would complete the inductive step. Now Og = 1 and
a(jr) = ra\. Furthermore, by assumption, an ^ an_i/A, and r ^ A - 1, so

T ^ a«-i f T + —— ) = ^n-ia^,

as required.
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3. G E N E R A T I N G F U N C T I O N S R E L A T E D T O S O M E CLASSICAL G R O U P S O V E R FINITE

FIELDS

We adopt the notation used by Neumann and Praeger in [1]. For a complex number
x with |x| > 1 we define the function

0 0

It is shown in [1] that G(x; z) = £] anz
n where a0 — 1 and for n ^ 1,

n=0

For m ^ 1, we shall be considering the classical groups GL(m, q), Sp(2m,q),
0+(2m,q) and 0~{2m,q) over the finite field F,. For G € {GL,Sp,O+,O~} we define
v(G; m, q) to be the proportion of eigenvalue-free matrices in the corresponding group of
appropriate dimension. When dealing with the orthogonal groups we define

v±(0; m, q) = v(0+; m, q) ± v(0~; m, q).

Considering these proportions as probabilities we define the associated generating func-
tions

m=l

and

m=l

It follows that
V(O+; q,z) = \ {V+{0;q, z) + V~(O;q, z))

and
V(O~; q,z) = \ (V+(O; q, z) - V~(O; q, z)) .

The results in Table 1 are proved in [1], expressing the generating functions in terms of
the function G(x;z).

4. RESULTS ON THE GENERATING FUNCTIONS

For G € {GL, Sp, O+, O"} we now have expressions for V(G; q, z) in the form

n=0
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Generating function Related function

V(GL;q,z) (1 - z)-lG(q; z)"~l

V(Sp; q, z) (1 - z ) - W ; qz)2G(q; z)""3'/2, q odd
(\-z)-lGtf;qz)G{q;zf'-W, q even

V+(O;q,z) {l-z)-lG{q2;qz)2G(q;z)Wa, q odd
(1 -z)-'G{q*;qz)G{q;z)(<i-VI\ q even

V"(O; q, z) G(q2; z)2G(q; Z)W, q odd
G(q2; z)G(q; zf"'^2, q even

Table 1:

In this section we shall study these functions neglecting the factor (1 — z)'1 and prove
results on the sequence (an)n^o- We say that the sequence (an)n^no is positive alternat-
ing if the sequence ((—l)"~"°an)n>n has all terms greater than zero. We extend this
definition to power series and define the class of positive alternating power series to be

C = <A{z) A(z) = JT(-l)nanzn , an > 0 for all n\.
^ n=0 •*

It is not hard to show that C is closed under multiplication. For q ^ 2 the functions
G(q\ z), G(q2; qz) and G(q2; z) all lie in C and it follows that any product of these must
also lie inC. In particular, from Table 1, we see that (l-z)V(GL;q, z), (l-z)V(Sp;q, z),
(1 - z)V+{0; q, z) and V"(O; q, z) all lie in C.

oo

If we have a positive alternating power series A(z) — Yl (—l)nanZn where all an > 0,
n=0

oo
then A(—z) = £ anZn- Hence to prove results on the monotonicity of the absolute value

n=0

of the coefficients of A(z) we can work with the coefficients of A{—z) where all terms are
positive.

THEOREM 4 . 1 . Let (1 - z)V(GL;q,z) = £(-l)"u;nz". Then w0 = Wi and the
n=0

sequence {wn)n^\ is strictly monotonically decreasing.
oo

PROOF: Consider the power series G(q; —z)q 1. This is equal to YL wnZn, where all
n=0

wn > 0. It is clear that w0 = 1 and induction on the power of G(q; —z) gives W\ — 1.
If q = 2 then G(q\ -z)Q~l = G(2\-z). In this case {wn)n^i is strictly monotonically
decreasing and so we may assume that q Jj 3. Let an be the coefficient of z" in G(q; —z).
We know that for all n ^ 1,

°" ~ 9 " - l "" q-V
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and so we apply Theorem 2.1 to G(q; —z) with A = q - 1. This gives wn < iun_i for all
n ^ 2, as required. D

00

THEOREM 4 . 2 . Let (1 - z)V(Sp;q,z) = ^2{-l)nwnz
n. Then the sequence

n=0
(wn)n^o is strictly monotonically decreasing.

PROOF: We just prove the case when q ^ 3 and q is odd. A similar argument works
for even q. We know that

(1 - z)V{Sp; q, z) = G(q2; qz)2G(q; z)^'2.

We shall work with the function

which has coefficients (wn)n^Q that are all positive. We first show that the coefficients of
G{q2; —qz)G(q\ — z)(«~3)/2 decrease strictly monotonically. If q — 3 this is clear and we
consider 9 ^ 5. Let

oo oo

A(z) = G{q; -z)(«-3)'2 = £ a"z". B W = G(<?2; "««) = E 6«2"-
n=0 n=0

FYom Theorem 2.1 we know that the terms of the sequence (an)n^0 decrease strictly
monotonically. We can use this together with Lemma 2.2 to see that A(z)B(z) has
coefficients which decrease strictly monotonically if, for n ^ 1, aobn + ai6n-i < flo^n-i-
Induction gives that

9 - 3
2(g - 1)

and we know that

Therefore we need to show that

This certainly holds for n ^ 1 and q ^ 5. Having proved that the coefficients of
G(g2; — qz)G(q; —z)(«~3'/2 are strictly monotonically decreasing we repeat the technique.
This time let A(z) = G(q2; -qz)G(q; -z)(«-3>/2 and B{z) = G(q2; -qz), again with coef-
ficients (an)n^0 and (bn)n^0- Calculations give that a0 = 1 and

Therefore to prove that A(z)B(z) has coefficients that decrease strictly monotonically we
must show that for n ^ 1, Oo6n -I- ai&n_i < ao&n-i, that is,

9 9 9 — 3

9 2 " - l + 9 2 - l + 2(9 - 1) < L
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This can be seen to hold for all g ^ 3 and n ^ 1. The coefficients of A(z)B(z) are
precisely the sequence (wn)n^0, and so the proof is complete. D

oo

THEOREM 4 . 3 . Let (1 - z)V(O+;g,z) = £ wnz
n. Then the sequence (wn)n^0

n=0

is positive alternating, WQ = |u>i| = 1 and (ll"n|)Il>1 decreases strictly monotonically.

We omit the proof as it is similar to that of the next theorem.
THEOREM 4 . 4 . Let (1 - z)V{O~\q,z) = £ wnz

n. Then the sequence (u>n)n>1
n=0

is positive alternating, w0 = 0 and (\wn\)n>1 decreases strictly monotonically.

Before we prove this we obtain some information about the power series G(q2;z)2.

LEMMA 4 . 5 . Let an be the coefficient of zn in the power series G(q2;z)2. For
q ^ 3 and n ^ l we have

K - i l > gn|fln|.

PROOF: Let us denote the coefficient of zn in the power series G(q2; — z) by c,,. It
follows that

n

•=0

Suppose that n is odd and n ^ 3. Here we have

\an\ = 2CoCn + 2CiCn_i H 1- 2C(n_1)/2C(n +i)/2 ,

n_2 H h 2C(n_3)/2C(n+1)/2 + C(n_i)/2C(n_i)/2.

We compare these equations term by term and claim that for n ^ 3 and 1 ^ i ^ (n+1)/2
we have c,,_i > 2qncn-i+i. To prove this claim we note that

_ Cn-i

and so

Now Cn_j > 0 and for i and n in the range above,

<j
92(n-t+l) - 1

Hence Cn_i — 2gnCn_j+i > 0 as required. The case when n is even is similar and checking
that |ao| > 91 ax| completes the proof. D

P R O O F OF THEOREM 4.4: Suppose first that q is even and q ^ 2. In this case

V(O~- q, z) = i ( l - z ) - ^ ; z)<«-2>/2 (G(<?2; gz) - (1 - z)G(q2; z)).
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Let H{q\z) — G{q2\qz) - (1 - z)G{q2\z) with coefficients {hn)n^0. It is not difficult to

show that h0 — 0 and for n ^ 1,

Clearly (hn)n^i is positive alternating and for n ^ 2,

Kl 9
\hn-i\ (qn + l )^"" 1 - 1)

telling us that the sequence (|/in|)n>1 is strictly monotonically decreasing. Writing

(1 - z)V(O~; q, z) = l-G{q; z)^2 H [q; z)

oo

as 5Z wnZn we see that WQ = 0 and (wn)n^i is positive alternating. If q = 2 then
n=0

(l-z)F(O~;<7,z) = H(q;z)/2, the coefficients of which satisfy the required monotonicity
conditions. We may therefore assume that q ^ 4. We know from Theorem 2.1 that
G(q; -z)(«~2)/2 has coefficients that decrease strictly monotonically. With a little work
we can apply Lemma 2.2 to G(q; —z)^'2^2 and —H(q; —z) to see that the sequence
(lty"l)n>i decreases strictly montonically.

Suppose now that q^ 3 and q is odd. Here

V(O-;q,z) = \(l- zY'G^zf"-^2 (G(q2;qz)2 - (1 - z)G{q2; z)2).

Let H(q\z) = G{q2\qz)2 - (1 - z)G(q2;z)2 with coefficients (hn)n^o and let an be the
coefficient of zn in G(g2; z)2. It is clear that ho — 0 and for n ^ 1,

We know that the sequence (an)n^o is positive alternating and for all n ^. 1, Lemma 4.5
tells us that |on_i| > g"|an|. Therefore hn has the same sign as an_i and

(2)

If n ^ 2, Equation 2 gives

\K-i\ ~ \K\ =

It is clear that (qn - l)\an\ > 0 and Lemma 4.5 tells us that |on_2| > ^""^On-il. Hence
for all n ^ 2, \hn\ < |/in_i| and so (|/in|)n>1 is strictly monotonically decreasing. This
proves the theorem in the case q — 3 as here (1 — z)V(O~;q,z) — H(q;z)/2. Assuming
that q ^ 5, we consider the power series G(q;z)(q~3W2H(q;z). Since ho — 0, it is clear
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that the first coefficient in this power series is equal to zero, and after this the coefficients
are positive alternating. Let us define

F(z) = -H{q- -z), E(z) = G(q; -z) = ^ enz".
n=0

We shall work with E{z)^q~3^2F{z) as, neglecting sign, it has the same coefficients as
G{q\z)(q-3)l2H{q;z), that is 2(1 - z)V(O~;q,z). Therefore, it remains to prove that
E(zYq~3^2F(z) has coefficients that, after the first, decrease strictly monotonically in
size. For 0 < k < (q — 3)/2 we define

S{k\z) = E(z)kF(z)

and we denote its coefficients by (s^)n^0. For A^Owe see that

s{
o
k) — 0, s{k) = - — - and s{

2
k) = —.—- H - .

9 + 1 q* +1 9 + 1

We want to use induction on A; up to (q - 3)/2 to prove that the sequence (sn )n^i is
strictly monotonically decreasing. By definition 5^°'(2) = F(z) = —H(q\ —z) which we
have already studied. Suppose that for some k, 0 ^ k ^ (q- 5)/2, the sequence (sn*')n^i
is strictly monotonically decreasing. We want to prove the condition for S^k+1^(z). An
argument similar to that in the proof of Lemma 2.2 shows that for n ^ 2, if

\o) og en -f sj en—1 T 02 en_2 ^ SQ en_i -t- Aj en_2

then Sn+1' < s|f-a • Observing that en_i - en_2/(g"~1 - 1) and substituting the values
of SQ*', SI*', and s^ we see that Equation 3 holds for n and k in the ranges specified.
This completes the induction and the proof. D

It is worth noting that we can find values of q for which the coefficients of the power
series (1—z) V(U; q, z), associated with the unitary groups U(m, q), are neither alternating
in sign nor monotonically decreasing in absolute value. In [1, p.579], there are a couple
of mistakes. Firstly G(—q\ -z)q+1G(q2; z)~^q2~q~2^2 is written in two places instead of
G(-q\-z)q+lG{q2\z)(q2-q-2)/2. Secondly the assertion is made that the coefficients of
(1 — z)V(\J; q, z) alternate in sign for q ^ 4. As stated above, this is false.

5. CONCLUDING REMARKS

From the fact that the generating function V~(O; q, z) € C, we deduce that for even
m

v(O+;m,q)> t;(O~;m,g)

and for odd m
v(O+; m,q) < v{0~; m, q).
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Suppose that we fix a prime power q and G € {GL, Sp, O + , O ~ } . For m ^ l we define

vm = v(G;m,q). It is proved in [1] that these probabilities all tend to limits as m —• oo

and we write ««, = lim vm.
m—*oo

THEOREM 5 . 1 . If G 6 {GL, Sp, O+} then

V2m-\ < V2m+1 <VOO< V2m+2 < V2m.

IfG = O~ then
V2m-1 > V2m+1 > Voo > V2m+2 > V2m.

PROOF: Suppose that we write the generating function V(G;q,z) in the form

(4)
n=0

then for all m ^ 1,

= ^2 wt.
i=0

Furthermore, if the sequence (u>n)n^o is positive alternating, the terms of (wn)n^i decrease
strictly monotonically in absolute value, and the series J3 wn converges, then

V2m-1 < V2m+i < !>«, < V2m+2 < V2m.

This is the situation when G € {GL,Sp, O + }. When G = O~ the inequalities are
reversed since expressing V(O~;q, z) in the form (4) yields a sequence (ti>n)n^o that is
positive alternating and whose terms decrease strictly monotonically in absolute value
only after the first term (w0 — 0) has been removed. D

It would be interesting to see a combinatorial explanation for these inequalities.
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