LETTER TO THE EDITOR

Dear Editor,

On conditional passage-time structure of birth-death processes

Sumita (1984) has given an analytic proof of the interesting fact that, for any continuous-time Markov birth and death process $\{X(t), t \geqq 0\}$ on $[0,1, \cdots)$ with strictly positive birth and death rates, any $1 \leqq m<n<\infty$, the conditional first-passage times ${ }^{(m-1)} T_{m, n+1}$ and ${ }^{(n+1)} T_{n, m-1}$ have the same distribution. (Here ${ }^{(k)} T_{i j}$ denotes the time it takes to reach j from i given that j is reached before k.) He also states that this identity has 'no clear probabilistic interpretation'. He appears to have overlooked the following elementary argument.

Let ${ }^{(k)} N_{i j}$ denote the analogous conditional first-passage times for the corresponding jump-chain $\left\{X_{r}, r \geqq 0\right\}$, which is a Markov chain on $[0,1, \cdots$) with $p_{i, i+1}=p_{i}, p_{i, i-1}=q_{i}, 0<p_{i}<1, p_{i}+q_{i}=1, i=1,2, \cdots, p_{01}=1$. (Thus ($X_{r}, r \geqq 0$) is a discrete birth and death process, or a generalized random walk.) Take fixed $1 \leqq m<n<\infty$ and set $N={ }^{(m-1)} N_{m, n+1}, \tilde{N}={ }^{(n+1)} N_{n, m-1}$ and let $\bar{p}_{i j}^{(r)}$ denote the r-step transition probabilities with taboo set $\{m-1, n+1\}$. Then clearly

$$
P\{N=r\}=\alpha_{r} / \sum_{1}^{\infty} \alpha_{r}, \quad P\{\tilde{N}=r\}=\tilde{\alpha}_{r} / \sum_{1}^{\infty} \tilde{\alpha}_{r}
$$

where

$$
\alpha_{r}=p_{n} \cdot \bar{p}_{m, n}^{(r-1)}, \quad \tilde{\alpha}_{r}=q_{m} \cdot \bar{p}_{n, m}^{(r-1)}
$$

By associating with each path of length j starting at m, finishing at n and not visiting $m-1$ or $n+1$ the reversed path starting at n and finishing at m, it is easily seen that for all j such that $\bar{p}_{m, n}^{(j)}>0$,

$$
\bar{p}_{m, n}^{(j)}=\left\{p_{m} p_{m+1} \cdots p_{n-1} / q_{n} q_{n-1} \cdots q_{m+1}\right\} \cdot \bar{p}_{n, m}^{(j)}
$$

Hence $\alpha_{r}=c \tilde{\alpha_{r}}$ for all r, where $c=\prod_{m}^{n}\left(p_{i} / q_{i}\right)$, and N and \tilde{N} have the same distribution.

To extend this to $\{X(t), t \geqq 0\}$, notice that the above argument assigns to each path of $\left\{X_{r}, r \geqq 0\right\}$ from m to $n+1$ which has positive probability, conditional on not hitting $m-1$, a path from n to $m-1$ which has the same probability, conditional on not hitting $n+1$. Furthermore the correspondence is such that both paths visit each state l the same number of times, for each $m \leqq l \leqq n$. Thus the times spent by $\{X(t), t \geqq 0\}$ in traversing the two paths will have the same distribution, and it follows easily that ${ }^{(m-1)} T_{m, n+1}$ and ${ }^{(n+1)} T_{n, m-1}$ have the same distribution.

In the case that the birth rates and death rates are constant, Sumita also established the stronger result that for each $0 \leqq k \leqq n-m,{ }^{(m-1)} T_{m+k, n+1}$ and ${ }^{(n+1)} T_{n-k, m-1}$ have the same distribution. This is 'also susceptible to a similar elementary proof, based on a consideration of the reflected process $\tilde{X}_{n}=$ $m+n-X_{n}$.

Statistical Laboratory,
Yours sincerely,
Department of Mathematics,
R. A. Doney University of Manchester

Reference

Sumita, U. (1984) On conditional passage-time structure of birth-death processes. J. Appl. Prob. 21, 10-21.

