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On varieties of soluble groups

J.R.J. Groves

We show that, under certain conditions, a soluble variety of
groups which does not contain the variety of all metabelian
groups is a finite exponent by nilpotent by finite exponent

variety.

A1l varieties considered are varieties of groups. For notation and
basic results we refer to Hanna Neumann's book [7], with the following
exceptions: we shall use doubly underlined Roman capitals, rather than
German capitals, for varieties; we shall use L(G) for the verbal
subgroup of a group G corresponding to the variety V ; and we shall not
reserve G, H for relatively free groups nor F for an absolutely free

group.
The following result will be proved:

THEOREM. Suppose V¥ 1is a soluble variety which does not contain

fI»
N

as a subvariety and which has the following property:

i) all subvarieties of V A AN,A can be generated by the finite
groups they contain.

Then V <B N B for some natural numbers n, c .
= T SrF=cTn

Similar results were obtained in [10] when V¥ 1is a nilpotent by
abelian variety and in [2] when ¥ is a metanilpotent variety; the
restriction Z) being, in each case, unnecessary. We shall, in Proposition
3, give a different and somevwhat shorter proof of these results. We note

that the problem of the existence of soluble varieties not satisfying %)
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seems, at present, to be open.

After building up some necessary machinery in Section 1, we shall
suppose V to be a counterexample to the theorem. In Section 2 we shall

show that we may then suppose that V 1is a minimal counterexample and that

it is contained in some variety of the type é{g ‘ A Ee]é-’ where p is
p

prime. Finally, in Section 3, we shall investigate the properties of v
and, in particular, the residual properties of a free group of V , to

obtain the required contradiction.

For brevity in the following, we shall say that ¥V is "of the type
(4)" if ¥ satisfies the conclusion of the theorem, that is if, for some
V=BNB .

=

natural numbers n, ¢ ,

1. Preliminary results

We shall need the classification of metabelian varieties of exponent
zero due to Kovdcs and Newman and given as Theorems 6.1.1 and 6.1.2 of [1].
We quote these here for convenience. Call a variety torsion-free if its

free groups are torsion-free.

PROPOSITION 1. Let YV be a proper subvariety of A% . Then there
exists a unique torsion-free subvariety T and a unique natural number u
such that

<
]
=
<
>
>
<
(lav}

where P has finite exponent.
PROPOSITION 2. The varieties N A A A° (e, s 2 1) are
== =

torsion-free and join-irreducible. Every torsion-free subvariety of A
ecan be uniquely expressed as an irredundant join of some of these

torsion-free join-irreducibles.
We use a special case of Proposition 1 to deduce:
LEMMA 1. Suppose ¥ is a variety such that A A ¥Y for some

prime p . Let G €N and let H be a normal, elementary abelian,
p-subgroup of G . Then G/CG(H) has finite eaxponent bounded in terms of
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Y and p alone.

Proof. If ¥V has finite exponent the result is trivial - so we may

suppose this is not the case.
Let 2 € G and K =gp(H, z) . Then K€ AA AV . Since

AAAV #A A, we may use Proposition 1 to show that
i a0~

AAA

AA 1.

l=
1
[l
<
o

= [4,

o

where P has finite exponent n , say.

Then «' € P(K) and, if s € H, [k, '] € A(K) . Thus
(4, «t, 2" € (A, PI(X) = {1} . Thus [k, px"] = 1 . However, since #

is abelian of exponent p , [h, pxn] = [h, xpn] =1 .

Thus, for all x in G , 27 € CG(H) and so G/CG(H) has finite
exponent bounded by pn where pn depends on p and V only.

We shall need a straightforward extension of this lemma to the case

where H 1is soluble of finite exponent. We give this as:

LEMMA 2. Suppose that Y is a variety, G € ¥, and that H 1is a
soluble normal subgroup of G of finite exponent m . Suppose also that
épé ¥V for every prime divisor p of m . Then G/C,(H) has finite

exponent bounded in terms of m and ¥V only.

Proof. H , being a soluble group of finite exponent, has a finite

characteristic series, with elementary abelian factors. Suppose

= < ... < < =
1} =5, <H Hy_, <H =H
is such a series of minimal length. We use inductionon k . If k=1,
we may apply Lemma 1. Otherwise, if x € G , we may suppose that P
centralises Hk-l for some natural number »n . Also, using Lemma 1, and,

. . . . . 7
if necessary, increasing the =z chosen previously, we may assume that «x

centralises Hk/Hk-l . Then it‘ is easy to check that xmn centralises

Hk = H . Thus G/CG(H) “has finite exponent and it is again easy to check
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that it is bounded in terms of m and ¥V only.

The following lemma, which appears in [10], may be regarded as the
'torsion~-free counterpart' of a theorem of Hatl [3]. Since the result in
the lemma appears to be well known we shall not digress by offering a
proof. If N 1is a torsion-free nilpotent group and H < N , we define the

isolator of H in N as

{x : x € N and xn € H for some natural number n}

and denote it by IN(H) .  Then IN(H) is a subgroup of WV .

LEMMA 3. Let G be a grow and N be a torsion-free, nilpotent,
normal subgroup of G , and suppose that G/IN(N’) 18 nilpotent. Then G

18 nilpotent.

LEMMA 4. Let Y be a soluble variety such that A% £V . Then

there is a bound on the class of torsion-free nilpotent groups in ¥ .

It is not difficult to see that this result may be proved using Lemma
3 and the information about metabelian varieties obtainable from

Proposition 2. It may also be deduced, however, from Corollary 1 of [5]
and the fact that U{A A :p 1is prime} = éz . (The latter fact may be
deduced from Propositions 1 and 2.)

We shall need the concept of the verbal Fitting subgroup of a group
G , which we define as the product of the nilpotent verbal subgroups of
G . Now, in a relatively free group of infinite rank, the centraliser of a
verbal subgroup is verbal (the proof is an elementary generalisation of 2.3
of [8]). Thus, in a soluble relatifely free group of infinite rank, the
verbal Fitting subgroup contains its centraliser (the proof, in this case,
being similar to that for the Fitting subgroup; see, for example, 1.53 of

[91).

2. Development of a minimal counterexample

Suppose that V¥ 1is a counterexample to the theorem. We claim that
there is then a minimal counterexample which is a subvariety of V and

hence also satisfies ¢). For, let
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Yz ZH, .. 20 2 .,

be a possibly transfinite descending chain of counterexamples. By Zorn's
Lemma, it suffices to prove that the intersection, W say, of this chain

must also be a counterexample. If not, W is of the type (4) ; say,

¥=BNB . Since W is soluble, we may equally well suppose that
< Al l
W= é%gvék for some natural numbers k, I . However, by a repeated use of

the result in [4] that, if U is nilpotent and ¥ is finitely based then

A 7
BLA,

u , say. Let X Dbe the word group and let WA = Eu(X) , W =Hu(X) . Then

UV is finitely based, we see that may be defined by a single law,

W=uU Wa . However, since u € W , there exists an o such that u ¢ Wa .
o

A
< s s . .
But then W = AZN Al , & contradiction which proves our claim.

We shall, for the rest of this proof, suppose Y to be a minimal

counterexample and fix the notation G = Fw(l) . We shall write
Yys wovs Yy ooe for a (relatively) free generating set of ¢ and N for
the verbal Fitting subgroup of G . We note that any subgroup én(G) will

generate V and that G can have no non-trivial verbal torsion subgroups.
In particular, all nilpotent verbal subgroups of ( are torsion-free.
Consequently, by Lemma 4, there is a bound on their class. Thus N 1is

nilpotent.

Before proceeding with the main part of the proof, we shall, as
promised, prove the theorem in the case that YV 1is metanilpotent (that is

Yy=X NZ for some natural numbers ¢, d ). We shall use this result in
subsequent proofs.

PROPOSITION 3. The theorem is true, regardless of i), for

metantilpotent varieties.

Proof. Since ( 1is metanilpotent, G/N is nilpotent. Let Z =G
be such that Z/N is the centre of G/N . Then 2 is verbal in G .

Denote IN(N') by I ;3 then I is fully invariant, and so verbal in G .

Now Z/I 1is a metabelian group and, since Z' < N , the derived group

https://doi.org/10.1017/50004972700046918 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046918

100 J.R.J. Groves

Z2'I/I 1is torsion-free. It follows, from the descriptions in Propositions

1l and 2, that Z/I € N A for somme natural numbers e, s .

Let M = (G be such that M/I = AS(Z/I) . Then M is verbal in G

and M/I 1is nilpotent. Thus, since N/I 1is nilpotent, MN/I is
nilpotent. It follows, by Lemma 4, that MN is nilpotent. Since it is
also verbal it is contained in the verbal Fitting subgroup #N . Thus
M=N.

Hence Z/N ¢ A, and so, since the centre of G/N has finite
exponent, G/N does also (see, for example, 1.62 of [9]). Thus (G is

nilpotent by finite exponent and so Y cannot be a counterexample. The

proof is complete.

We shall now show that Y = é[g £ A _1\1_2]é for some prime p and
p

natural number % . We shall accomplish this in a number of steps.

2.A. Y =NBA for some natural numbers n, c .

Proof. G' certainly generastes a proper subvariety of ¥V since it is
of lower solubility length than G . Thus Var(G') is of the type (4).
Also, any torsion verbal subgroup of (' is also a torsion verbal subgroup
of G and so is trivial. Thus G' is nilpotent by finite exponent and

the result follows.
2. v=x (8, nN)a.

Proof. Firstly we note that N = ¢' ; for otherwise
Var(G/G') = A ¥ Var(G/N) and so the latter has finite exponent. But then
G 1is nilpotent by finite exponent and V cannot be the counterexample we

supposed.
We have shown in 2.A that ¥V = N B A and so G'/N is soluble of
finite exponent. Thus there is a series

<B, =G

N=B <B,<...<B k

1 2 k-1
where

1) each Bi is verbal in G ,
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2) Bi/Bi-l is elementary abelian, of exponent p(i) say, and

3) k is the least natural number for vhich such a series exists.

If k <2, then 2.B is immediately true, and so we may suppose that

k=22 . Also, if x € G , and gp(Bk_l, x) = H , say, then H does not
generate V because of 3).

Thus Var(H) is of the type (4). Suppose, however, that T is a
torsion verbal subgroup of H . Then T n ¥ = {1} and so [7, N] = {1} .
But N contains its centraliser in G and is torsion-free and so T =1 .
Thus H 1is nilpotent by finite exponent and therefore it is not difficult
to check that ép(i)é ¥ var(#) (1 =1 =k-1) . We novw apply Lemma 2 to

show that, for some natural number m , xm centralises Bk l/IV and so,

since « was arbitrary in G , gm(G) centralises Bk_l/N .

Hence @%n(G)N n G')/N is nilpotent of class at most 2 and, of
course, gm(G)N/[gm(G)NnG') is abelian. But gm(G)N , even gm(G) .

generates V and we have proved 2.B.

2.C. V=N |B ,AN,|A for some prime power divisor pt of n.

Proof. Owing to 2.B, G'/N 1is nilpotent of finite exponent and

therefore it is the direct product of its Sylow subgroups - say

G'/N = Pl/N X .. X Pk/N

where Pi/N is a p(Z) group (1 =7 =k) . Our claim amounts to
k =1 ; suppose this is not the case. Then, if x € G , Ki = gp(Pi, zﬂ
generates a proper subvariety of V .

Using a method similar to that used in the proof of 2.B, we show that,

for each 7 (1 =1 =k) , gm(i) centralises Pi/” for some natural

mmber m(Z) . Then if m is a common multiple of m(l), ..., m(k) ,

Em(G) centralises Pi/N for all 7 (1 =7 = k) and so centralises
G'/N .

Thus gm(G)N/N is nilpotent of class at most 2 and gﬂ(G)N is
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metanilpotent. Since gm(G)N generates Y , Proposition 3 shows that ¥

cannot be a counterexample. Hence k > 1 yields a contradiction and 2.C°

is proved.

2.0. ¥ Sé[Bpt A ge]é .

Proof. We have shown in 2.C that G/N € (g N ge]é . It thus
p

suffices to prove that # 1is abelian: suppose not. Then, if we denote

IN(N') by I, I is non-trivial. Since I 1is verbal, G/I generates a

proper subvariety of ¥ which is thus of the type (4) . Also, an
application of Lemma 3 shows that WN/I 1is the verbal Fitting subgroup of
G/I and so is self-centralising. Hence, if 7T/I 1is a verbal torsion
subgroup of G/I , T nN =1 - since N/I is torsion-free - and so

[T, N] =I . Thus 7T/I is trivial. Hence G/I is nilpotent by finite
exponent and G 1is metanilpotent by finite exponent. We may now use
Proposition 3 to show that V is not a counterexample, contrary to our

supposition. Therefore N 1is abelian and 2.D is proved.

In the remaining section we shall abbreviate E@ ‘ A 22]é= by T .
p
Hence Y = AT .

3. Proof of the theorem
3.A. ¥ 1is generated by a finitely generated group.

Proof. Put Ay = T(G) , B, =

(k =1,2,3, ...) . Then AO is an abelian verbal subgroup of (¢ and,

F(¥) and 4 =1(F )

since (G has no verbal torsion subgroups, Ao is torsion-free. Thus

each Ak is torsion-free since it is embedded in AO .
If V were not generated by a finitely generated group, then each Fk

would generate a proper subvariety of ¥V , which would then be of the type
(4) - say Fk € gn(k)gc(k)gn(k) (k =1, 2, 3, ...} . We claim that we may

even suppose (k) to be independent of k% . For, putting Bk = En(k)(Fk)
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and Nk = gc(k)(Bk] , Bk/Nk is a finitely generated nilpotent group.
Thus, the torsion subgroup, which we denote by Tk/Nk , is finite. We now

have a normal series of Fk s

< F

{l}kasBk_

k b ]
in which Tk is of finite exponent, Bk/Tk is torsion-free nilpotent and
Fy

and so, with a suitable adjustment to n(k) , we may suppose that

/Bk is of finite exponent. By Lemma L4, the class of Bk/Tk is bounded

e(l) = ... =elk) = ... = ¢, say.
Now X is torsion while Ak is torsion-free and so Nk-n Ak =1.

k

Hence
<< <<
P € BBy VISNBr) VEA = NB ). A
where d=¢ if e >1 and d=2 if e =1 .
It is a consequence of the proof of 3.1 of [4] that Edﬁgn(k)’ éJ has

as a basis for its laws the word
Wk(:c s sees x3d+3} = [bl, vy bd+l:|

where

- n(k)
by = [x3i—2’ F3i-10 T3¢ :|

Thus, if F does not generate V ,

3d+3
W3d+3(yl’ ey y3d+3) =1

is true in F (we regard Fk as having free generators

3d+3

<5 Y ). But then W is also true in G

3d+3(y1’ e y3d+3) =1
holds in V¥ , that is, V < gd[gn(k), Al . Hence

Yps -

and so the law W3d+3

< .
y= ﬁEB (k) and so, by Proposition 3, ¥V could not be a counterexample.

This completes the proof of 3.A.

We shall now suppose that V is generated by one of its finitely

generated relatively free groups F , and put A4 = g(F)
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3.B. [a, cead"] =1 forall z €F, a €A, vhere e, m are natural

numbers depending on YV only.

Proof. Let &« € F eand put H = gp(4, ) . Then H is metabelian

and so H € ¥V A ég . But, by Propositions 1 and 2, ¥ A éz is of the type
2 X
(4) -say YAA <BNB . Thus, if a € 4 ,

m
[, cxm] =1,
It follows, using the fact that A is a torsion-free abelian normal
subgroup of F , that [a, axm] =1.

3.C. Suppose H/K is an F-normal q-elementary abelian factor of

. Then, for some natural mumber r(q) , depending only on q and YV ,

A
ér(q)(F) centralises HJ/K .

Proof. Suppose, then, that % € H, x ¢ F . Since H < 4 , we may
apply 3.B to show [h, cxm] =1 and, trivially, [h, cxm] €K . Let g
be the least natural number such that q'j > ¢ . Then, also trivially,

[h, qum] € K. Thus, since H and K are normal in F and H/K 1is of

J
[,xqm]e](.

Hence, since & was arbitrary in F , putting r(q) = q‘7m gives the

exponent q ,

required result. Since r(q) depends on g, e, m only and ¢, m depend

on ¥V only, r(q) depends only on ¢ and V , as required.

The next three parts of this section will obtain information on A
as an abelian group so that in 3.G we may extract a relevant property of
Aut(4) . We define Dn as f'!gj(A) where #n is a natural number and
J n
the intersection is taken over all natural numbers j ; we also define D

as N Dn where the intersection is again taken over all natural numbers
n

n . It is an elementary fact for all torsion-free abelian groups 4 that

A/Dn and A/D are torsion-free.
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3.0. If q is aprime and q # p [recall T = [N AB t]é ], then
p
D # {1} .
q

Proof. Write H = ér(q)(F) (where r(q) is the natural number found
in 3.C} and B =T(H) . Then H is verbal in F , B is verbal in H ,

and gj(B) is verbal in B (j =0, 1, 2, ...) . [We shall, in the
q

folloving, ease the notation by writing qJB rather than §=j(B) - and
q

similarly for corresponding subgroups of A4 .] In particular

Jny,d*l -
{¢“B/¢" "B : j=0,1,2, ...} are PF-verbal, and so F-normal, factors
of A (since B =4 ). Thus they are centralised by H .

Hence
H'szqu...ijB
gives a descending series of H'/qu with first factor nilpotent and all
other factors central, showing that H'/qu is nilpotent. Since H'/qu
is also of finite exponent piqj » it is the direct product of its Sylow
subgroups - Sp, Sq say. But Sq = B/qu and

Sp (H'/quJ/Sq = (#'/q78)/(8/¢78) = #'/3 .

Thus Sq is abelian and Sp has class at most 2 . Hence H'/qJB has
class at most 2 : thus
(#", #'1 = ¢’B (§=0,1, 2, ...)
Iif Dq = {1} , then, since B <4, Q qJB = {1} . Thus
d

(", #') <0 ¢'B = {1} ana # ¢
J
Proposition 3 shows that V could not be a counterexample as we supposed.

HEA . ©Since H generates V ,

The proof of 3.D is complete.
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Proof. Trivially D = Dp and so it remains to prove that Dp =D.

We shall show that A/Dq (¢ # p) is free abelian of finite rank. Then we

have

n p* =
n p (A/Dq) Dq/Dq

7
or Np'4as= Dq » where the intersection is again taken over all natural
7

numbers ¢ . Hence D_<D_ for all primes g and so D_=<ND =1D
p q p q q

where this intersection is taken over all primes gq .

Now Dq (@ # p) 1is non-trivial and verbal in F . Thus F/D

generastes a proper subvariety of Y , which is therefore of the type (4);

say,

F/D € BN B
qQ =cTn

If M 1is the subgroup of F with M/D_=NB (F/D ) then M/D_¢€ B

q =c= q q  =n
while A/Dq is torsion-free, so A nM = Dq and A/Dq = AM/M . But
F/M € N B and is finitely generated, so it is polycyclic and AM/M = A/Dq

is also finitely generated. Thus A/Dq is free abelian of finite rank.
3.F. |4:pA| s finite.

Proof. We have shown, in 3.C, that, for some natural number r(p) ,
Er(p)(F) centralises A/pA . It is not difficult to extend this to the

result that, for each natural nmmber j , (F) with

i
L . ()
r(p?) = pJ_lr(p) centralises A4/p’A (the method is similar to that used
in Lemma 2).

Denote A.B . (F)/p’A by H. . Then A/p’A is central in H., .
%) ; ;

Since _I_[A.g j (F)] <T(F) =4, g(HJ.) < 4/p4 , and so
r
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Hj € [E, T] = £3é AY . Thus, by Proposition 3, Var({H. :Jg=1, 2, ...})
is of the type (A4) - say Hj €BNB (j=1,2,3, ...)

) o P, =F is such that P, JA = NB (H. and suppose that
uppose P = is su J/P —c=n( J) PP

n = pak 5 (pa, k} =1 . We claim that Pa+ nA <pA . For, suppose

1

n ok a+l @ at+l
a €P NnA . Then aq = [ap ] €p "A and so £ « p 4 . Hence,

a o+l
for some b € 4 , ap = P . Since A 1is torsion-free, a =‘bp , that

is a € pA as required.

Now APa+l/Pa+l is a subgroup of Ha+l/Pa+l which, as before, is a

12

polycyclic group. Thus A/(AnPa+l) = APa+l/Pa+l is finitely generated.

Since pA =z A n Pa+l s A/pA 1is also finitely generated and so is finite.

3.G. The conclusion of this section, which we state as an independent

lemma, is due to L.G. Kovécs.
LEMMA 5. Suppose that A is a torsion-free abelian group, that

n ij =1 for some prime p , and that A/pA is finite. Then every
J
p-group of automorphisms of A 1is finite.

Proof. First observe that if A/pA 1is finite, so is A/p2A . There
is a natural homomorphism from the automorphism group of A4 1o that of
A/pzA : it is clearly sufficient to show that the kernel of this

homomorphism contains no automorphisms of order p ; that is, that if

Bp =1 and A(g-1) = p2A for some automorphism B of A4 then B =1 .

We show that if A(B—l) =< pk for some k > 1 then also A(B_l) < pk"‘lA ;

it will then follow that A(B-1) =N pkA =1 and so B =1 . To this end,
k

let Bp =1, k>1, and A4(R1) = pkA . Working in the endomorphism

ring of A4 ,

1l = Bp = (l+(6-l)}p =1 + p(B_l) + .§ [5](8_1)1: s

1=2
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hence

p(B-1) = = 3 [p](B-l)i

=2 \*

k k+2

)2 < p2 A<p "A . Since A 1is torsion-free, this

and so pA(B-1) = A(B-1

implies that A(B-1) = p*%4 as claimed.

3.H. The proof of the theorem now follows easily. Firstly, we note
that condition %) implies that F_(V) , and so A , is residually finite

(17.81 of [7]). Thus D =1 and so, by 3.E, Dp =1 . (We note that this

is the first time we have used condition ©).) Then A satisfies the

conditions of Lemma 5.

Let C Dbe the centraliser of 4 in F and put H = F'/(F'nC)
Then H = F'C/C , and F'C/C 1is a p-group of automorphisms of 4 : so,
by Lemma 5, H is finite. Now H is the derived group of F/(F'nC) and
so, by 5.41 of [6], the centre of the latter group has finite index. Since

F' n( ¢ ES , we then have that F € N_AB for some natural number m and
so, by Proposition 3, ¥ cannot be a counterexample.

With this final contradiction, the theorem is proved.
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