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Abstract: Reasoning about probabilistic programs is hard because it compounds
the difficulty of classic program analysis with sometimes subtle questions of prob-
ability theory. Having precise mathematical models, or semantics, describing their
behaviour is therefore particularly important. In this chapter, we review two prob-
abilistic semantics. First an operational semantics which models the local, step-
by-step, behaviour of programs, then a denotational semantics describing global
behaviour as an operator transforming probability distributions over memory states.

1.1 Introduction

A probabilistic program is any program whose execution is probabilistic. This
usually means that there is a source of randomness that allows weighted choices
to be made during execution. Given an initial machine-state, in the event that the
program halts, there will be a distribution describing the probability of output
events. Any deterministic program is trivially a probabilistic program that does
not make any random choices. The source of randomness is typically a random
number generator, which is assumed to provide independent samples from a known
distribution. In practice, these are often pseudo-random number generators, which
do not provide true randomness, but only an approximation; however, it is possible
to construct hardware random number generators that provide true randomness, for
example by measuring a noisy electromagnetic process.
Reasoning about deterministic programs usually involves answering binary yes/no

questions: Is the postcondition always satisfied? Does this program halt on all in-
puts? Does it always halt in polynomial time? On the other hand, reasoning about
probabilistic programming usually involves more quantitative questions: What is
the probability that the postcondition is satisfied? What is the probability that this
a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.
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2 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

program halts? Is its expected halting time polynomial? In order to answer questions
like these, the first step should be to develop a formal mathematical semantics for
probabilistic programs, which will allow us to formalise such questions precisely.
This is the main purpose of this chapter.
Reasoning about probabilistic programs is in general difficult because it com-

pounds the difficulty of deterministic program analysis with questions of probability
theory, which can sometimes be counterintuitive. We will use examples to illustrate
all the main ideas presented in this chapter. We introduce these examples here and
will return to them as we develop the semantics of probabilistic programs. We
start with two examples involving discrete probabilities for which naive probability
theory provides a sufficient framework for reasoning. We will then present two
programs that involve continuous distributions for which a more general theory
known as measure theory is needed. The requisite background for understanding
these concepts is presented in Section 1.2.

x:=0;
while x==0 do
x:=coin()

start [x �→ ?] [x �→ 0] [x �→ 1]x := 0 1/2 : x := 1

1/2 : x := 0

Figure 1.1 A simple coin-toss program

We start with the simple program of Fig. 1.1 displayed next to the small proba-
bilistic automaton it implements. Here the construct coin() is our random number
generator; each successive call returns 0 or 1, each with probability 1/2, and succes-
sive calls are independent, which means that n successive calls will yield one of the
2n possible sequences of n binary digits, each with probability 2−n. A distribution
on {0,1} that takes value 1 with probability p and 0 with probability 1− p is called
a Bernoulli distribution with (success) parameter p. Thus coin() is a Bernoulli
distribution with success parameter 1/2.
It is intuitively clear that this program eventually halts with probability 1. Looking

at the automaton of Fig. 1.1, one can see that the probability of the program going
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1.1 Introduction 3

through n iterations of the body of the loop is 2−n. Moreover, the expected number
of iterations of the body of the loop is given by

∞∑
n=1

n2−n = 2.

This type of simple probabilistic process involving repeated independent trials until
some fixed “success” event occurs is called a Bernoulli process. If the probability
of success in each trial is p, then the expected time until success is 1/p. In this
example, p = 1/2.We will show in Section 1.3 how the mathematical interpretation
of this program (its semantics) can be constructed compositionally, that is to say
line-by-line, and how it agrees with these simple observations.
Our second example is also discrete, but intuitively less obvious. The program

of Fig. 1.2 implements a random walk on the two-dimensional grid Z × Z. In each
iteration of the body of the loop, the function step updates the current coordinates
by moving left, right, down, or up, each with equal probability 1/4.

main{
u:=0;
v:=0;
step(u,v);
while u!=0 || v!=0 do
step(u,v)

}

step(u,v){
x:=coin();
y:=coin();
u:=u+(x-y);
v:=v+(x+y-1)

}

Figure 1.2 A random walk on a two-dimensional grid

The loop continues until the random walk returns to the origin. The first call to
step outside the loop ensures that the program takes at least one step, so it does not
halt immediately. The question of the halting probability is now much less obvious.
The state space is infinite, and there is no constraint on how far the randomwalk can
travel from the origin. Indeed, for any distance, there is a nonzero probability that
it goes at least that far. However, it turns out that the probability that the program
halts is 1. In the terminology of probability theory, we would say that the two-
dimensional random walk is recurrent at every point. This example illustrates how
the analysis of probabilistic programs can rely on results from probability theory
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that are far from obvious. Indeed, the three-dimensional version is not recurrent;
the probability that a random walk on Z3 eventually returns to the origin is strictly
less than 1.
We now consider two programs that require continuous distributions. The se-

mantics of such programs cannot be defined without the full power of measure
theory, the mathematical foundation of probabilities and integration. The program
of Fig. 1.3 approximates the constant π usingMonte Carlo integration, a probabilis-
tic integrationmethod. The programworks by taking a large number of independent,
uniformly distributed random samples from the square [0,1] × [0,1] and counting
the number that fall inside the unit circle. As the area of the square is 1 and the area
of the part of the unit circle inside that square is π/4, by the law of large numbers
we expect to see a π/4 fraction of sample points lying inside the circle.

i:=0;
n:=0;
while i<1e9 do
x:=rand();
y:=rand();
if (x*x+y*y) < 1 then n:=n+1;
i:=i+1

i:=4*n/1e9;

Figure 1.3 Probabilistic computation of π.

In this example, the random number generator rand() samples from the uniform
distribution on the interval [0,1]. This distribution is often called Lebesgue mea-
sure. Here the state space [0,1] is uncountable and the probability of drawing any
particular x ∈ [0,1] is zero. Such probability distributions are called continuous.
The natural question to ask about this program is not whether it terminates (it clearly
does) but whether it returns a good approximation of π with high probability. We
will answer this question in Section 1.3.
Finally, the program in Fig. 1.4 generates a real number between [0,1] whose

expansion in base 3 does not contain any 1’s. This program is not like the others
in that it does not halt (nor is it meant to). The program generates a sample from
a curious and in many respects counterintuitive distribution called the Cantor
distribution. It cannot be described using discrete probability distributions (i.e.
finite or countable weighted sums of point masses), although the program only
uses a discrete fair coin as a source. The Cantor distribution is also an example of
continuous probability distribution, which assigns probability zero to every element
of the state space. It is also an example of a so-called singular distribution, since
it can be shown that the set of all its possible outcomes—that is to say the set of
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all real numbers whose base-3 expansion contains no 1’s—has measure 0 in the
Lebesgue measure on [0,1].

x:=0;
d:=1;
while true do
d:=d/3;
x:=x+2*coin()*d

Figure 1.4 Cantor distribution program.

1.2 Measure theory: What you need to know

Measures are a generalization of the concepts of length, area, or volume of Euclidean
geometry to other spaces. They form the basis of probability and integration theory.
In this section, we explain what it means for a space to be a measurable space, we
define measures on these spaces, and we examine the rich structure of spaces of
measures, which will be essential to the semantics of probabilistic programs defined
in Section 1.3.5. When not specified otherwise we use the word measure to refer to
finite measures.

1.2.1 Some intuition

The concepts of length, area, and volume on Euclidean spaces are examples of
(positive) measures. These are sufficient to illustrate most of the desired properties
of measures and some pitfalls to avoid. For the sake of simplicity, let us examine
the concept of length. Given an interval [a, b] ⊆ R, its length is of course �([a, b]) =
b−a. But the length function � makes sense for other subsets of R besides intervals.
So we will begin with two related questions:

(a) Which subsets of R can meaningfully be assigned a “length” consistent with
the length of intervals? I.e., what should the domain of � be?

(b) Which properties should the length function � satisfy?

The answer to question (a) will give rise to the notion of measurable space, and the
answer to question (b) will give rise to the notion ofmeasure, both defined formally
in Section 1.2.2.
Note that larger intervals have larger lengths: if [a, b] ⊆ [c, d], then we have that

�([a, b]) = b − a ≤ d − c = �([c, d]). This intuitively obvious property is a general
feature of all positive measures: they associate nonnegative real numbers to subsets
monotonically with respect to set inclusion. Let us now take two disjoint intervals
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[a1, b1] and [a2, b2]with b1 < a2. It is natural to define the length of [a1, b1]∪[a2, b2]
as the sum of the length of the respective intervals, i.e.

�([a1, b1] ∪ [a2, b2]) = �([a1, b1]) + �([a2, b2]) = (b1 − a1) + (b2 − a2).

We can draw two conclusions from this natural definition. First, if A,B are two
disjoint subsets of R in the domain of �, then their union should also belong to the
domain of �, and the measure of the union should be the sum of the measures. More
generally, if Ai, 1 ≤ i ≤ n, is any finite collection of pairwise disjoint sets in the
domain of �, then

⋃n
i=1 Ai should also be in the domain of �, and the measure of

the union should be the sum of the measures of the Ai; that is,

�

(
n⋃
i=1

Ai

)
=

n∑
i=1
�(Ai). (1.1)

A real-valued function on subsets satisfying (1.1) is called (finitely) additive. All
measures will be finitely additive, and in fact more. Consider the countable col-
lection of pairwise disjoint intervals [n,n + 2−n) ,n ∈ N. Generalising (1.1), it is
natural to define � on the union of these intervals as

�

( ∞⋃
n=0

[n,n + 2−n)

)
=

∞∑
n=0
2−n = 2.

Again, we can draw two conclusions from this natural definition. First, if Ai for
i ∈ N is a countable collection of pairwise disjoint sets in the domain of �, then⋃

i∈N Ai should be in the domain of �; second, that (1.1) should be extended to such
countable collections, so that

�

( ∞⋃
i=0

Ai

)
=

∞∑
i=0
�(Ai). (1.2)

A function � satisfying (1.2) is called countably additive or σ-additive. Every
measure will be countably additive. The reader will now legitimately ask: what
happens if the sum in (1.2) diverges? To deal with this behaviour, one simply allows
∞ as a possible length, that is to say the codomain of � can be the extended real line
R+ ∪ {∞}. In particular, this allows us to define the length of R via (1.2) as:

�(R) = �

(⋃
n∈Z

[n,n + 1)

)
= ∞.

However, for the purpose of semantics of probabilistic programs, we will not need
measures taking the value ∞. A measure is called finite if it only assigns finite
values in R to any set in its domain. For the remainder of this chapter, the term
“measure”, otherwise unqualified, will refer to finite measures.
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Consider now subsets A ⊆ B of R in the domain of � such that �(A) ≤ �(B) < ∞.
From finite additivity, it would make sense to define �(B \ A) = �(B) − �(A), since
B = A ∪ (B \ A) is a partition of B. In other words, it would also be natural to
require that if A ⊆ B and A and B are in the domain of �, then so should be
B \ A, and �(B \ A) = �(B) − �(A). Thus the domain of � should be closed under
complementation.
The reader may now be wondering: If the domain of � contains all intervals and

is closed under countable pairwise disjoint unions and complementation, that is
already a very large set of subsets of R. Is it possible that a length can be sensibly
assigned to all subsets of R? In other words, can we extend � to domain P(R)?
Alas, it turns out that this is not possible. An important and desirable property of
the length function � is that it is translation invariant: given a set A with length
�(A) (for example an interval), if the entire set A is translated a fixed distance, say
d, then its length should be unchanged; that is, �(A) = �({x + d | x ∈ A}). Vitali
(1905) constructed a countable set of subsets of the interval [0,1), called Vitali sets,
which are pairwise disjoint, translates of each other (modulo 1), and whose union
is [0,1). They would all have to have the same measure, which would break the
countable additivity axiom (1.2). Vitali sets are examples of non-measurable sets.
They provide an example of subsets of R which are incompatible with the basic
assumptions of how the length function should behave. Thus the domain of the
length function cannot be P(R), because it cannot contain the Vitali sets.
The length function � described in the preceding paragraphs is called theLebesgue

measure on R. We now turn our attention to axiomatizing the intuitive ideas pre-
sented thus far.

1.2.2 Measurable spaces and measures

We start by axiomatizing the closure properties of the domain of a measure (such
as the length function) which we have described informally in the previous section.
A σ-algebra B on a set S is a collection of subsets of S containing the empty set

∅ and closed under complementation in S and countable union (hence also under
countable intersection). A pair (S,B), where S is a set and B is a σ-algebra on S,
is called a measurable space. The elements of B are called the measurable sets of
the space. In a probabilistic setting, elements of S and B are often called outcomes
and events, respectively. The domain of a measure, for example the length function,
will always be a σ-algebra. If the σ-algebra is obvious from the context, we simply
say that S is a measurable space. The set of all subsets P(S) is a σ-algebra called
the discrete σ-algebra, but as noted above, it may not be an appropriate choice
since it may not allow the definition of certain measures. However, it is always an
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acceptable choice for finite or countable sets, and we will always assume that finite
and countable sets are equipped with the discrete σ-algebra.
If F is a collection of subsets of a set S, we define σ(F ), the σ-algebra generated

by F , to be the smallest σ-algebra containing F . That is, σ(F ) is the smallest
collection of subsets of S containing F and ∅ and closed under countable union
and complement. Equivalently,

σ(F ) � ⋂
{A | F ⊆ A and A is a σ-algebra}.

Note that σ(F ) is well-defined, since the intersection is nonempty, as F ⊆ P(S)
and P(S) is a σ-algebra. If (S,B) is a measurable space and B = σ(F ), we say that
the space is generated by F .

Measurable functions. Let (S,BS) and (T,BT ) be measurable spaces. A function
f : S → T is measurable if the inverse image f −1(B) = {x ∈ S | f (x) ∈ B} of
every measurable subset B ∈ BT is a measurable subset of S. WhenBT is generated
by F , then f is measurable if and only if f −1(B) is measurable for every B ∈ F .
An example of a measurable function is χB : S → {0,1}, the characteristic

function of a measurable set B:

χB(s) =

{
1, s ∈ B,

0, s � B.

Here, (S,B) is a measurable space, B ∈ B, and {0,1} is the discrete space.

Measures. A signed (finite) measure on (S,B) is a countably additive map μ : B →
R such that μ(∅) = 0. Recall that countably additive means that if A is a count-
able set of pairwise disjoint events, then μ(

⋃
A) =

∑
A∈A μ(A). Equivalently, if

A0, A1, A2, . . . is a countable chain of events (a countable collection of measurable
sets such that An ⊆ An+1 for all n ≥ 0), then limn μ(An) exists and is equal to
μ(

⋃
n An).

A signedmeasure on (S,B) is called positive if μ(A) ≥ 0 for all A ∈ B. A positive
measure on (S,B) is called a probability measure if μ(S) = 1 and a subprobability
measure if μ(S) ≤ 1. A measurable set B such that μ(B) = 0 is called a μ-nullset,
or simply a nullset if there is no ambiguity. A property is said to hold μ-almost
surely (μ-a.s.) or μ-almost everywhere (μ-a.e.) if the set of points on which it does
not hold is contained in a nullset.
In probability theory, measures are sometimes called distributions. We will use

the terms measure and distribution synonymously.
For s ∈ S, theDirac measure, orDirac delta, or point mass on s is the probability
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measure

δs(B) =

{
1, s ∈ B,

0, s � B.

A measure is discrete if it is a countable weighted sum of Dirac measures. In par-
ticular a convex sum of Dirac measures is a discrete probability measure. These are
finite or countable sums of the form

∑
s∈C asδs, where all as ≥ 0 and

∑
s∈C as = 1.

A measure μ on a measurable set (S,B) is called continuous if μ ({s}) = 0 for
all singleton sets {s} in B. The Lebesgue measures on Rn for n ∈ N, that is, the
lengths, areas, volumes, etc., are the best known examples of continuous measures.

Pushforward measure. Given f : (S,BS) → (T,BT )measurable and a measure μ
on BS , one defines the pushforward measure f∗(μ) on BT by

f∗(μ)(B) = μ( f −1(B)), B ∈ BT . (1.3)

This measure is well defined: since f is measurable, f −1 maps measurable sets of
BT to measurable sets of BS .

Lebesgue integration. An important operation on measures and measurable func-
tions is Lebesgue integration. Let (S,B) be a measurable space. Given a measure
μ : B → R and bounded measurable function f : S → R, say bounded above by M
and below by m, the Lebesgue integral of f with respect to μ, denoted

∫
f dμ, is a

real number obtained as the limit of finite weighted sums of the form
n∑
i=0

f (si)μ(Bi), (1.4)

where B0, . . . ,Bn is a measurable partition of S, the value of f does not vary more
than (M−m)/n in any Bi, and si ∈ Bi, 1 ≤ i ≤ n. The limit is taken over increasingly
finer measurable partitions of the space. For the details of this construction, see for
example (Dudley, 2002, Ch. 4) or (Aliprantis and Border, 1999, Ch. 11).
For a finite discrete space n = {1,2, . . . ,n}, the integral reduces simply to a

weighted sum:
∫

f dμ =
∑n

i=1 f (i)μ(i).
The bounded integral

∫
B

f dμ, where B ∈ B, is obtained by integrating over the
set B instead of all of S; equivalently,∫

B

f dμ �
∫
χB · f dμ, (1.5)

where χB is the characteristic function of B and χB · f is the pointwise product of
real-valued functions.
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Absolute continuity. Given two measures μ, ν, we say that μ is absolutely contin-
uous with respect to ν and write μ � ν if for all measurable sets B, if ν(B) = 0,
then μ(B) = 0. Informally, if ν assigns no mass to B, then neither does μ. Although
we will not need it, we cannot fail to mention the following theorem, which is one
the pillars of probability theory.

Theorem 1.1 (Radon–Nikodym) Let μ, ν be two finite measures on a measurable
space (S,B) and assume that μ is absolutely continuous with respect to ν. Then
there exists a measurable function f : S → R defined uniquely up to a μ-nullset
such that

μ(B) =
∫
B

f dν.

The function f is called the Radon–Nikodym derivative of μ with respect to ν.

Radon–Nikodym derivatives are known in probability theory as probability den-
sity functions. For example, the standard Gaussian probability measure is abso-
lutely continuous with respect to Lebesgue measure (the length function) on R.
Its Radon–Nikodym derivative with respect to Lebesgue measure is the Gaussian
density function f (t) = 1√

2π
e−t2/2.

Products. Given two measurable spaces (S1,B1) and (S2,B2), one can construct
the product space (S1 × S2,B1 ⊗ B2), where S1 × S2 is the cartesian product and
B1 ⊗ B2 is the σ-algebra on S1 × S2 generated by all measurable rectangles B1 × B2
for B1 ∈ B1 and B2 ∈ B2. In other words,

B1 ⊗ B2 � σ ({B1 × B2 | B1 ∈ B1,B2 ∈ B2}) . (1.6)

The measurable rectangles B1 × B2 are a generalisation of the case where S1 =
S2 = R and B1,B2 are intervals. The product of two measurable spaces is thus the
measurable space generated by the corresponding measurable rectangles.
A measure on the product space (S1 × S2,B1 ⊗ B2) is sometimes called a joint

distribution. Due to the inductive construction (1.6) of B1 ⊗ B2 from measurable
rectangles B1 × B2, joint distributions are uniquely determined by their values on
measurable rectangles. For details of this extension, see (Dudley, 2002, §4.4).
A special class of joint distributions are the product measures μ1 ⊗ μ2 formed

from a measure μ1 on (S1,B1) and a measure μ2 on (S2,B2), defined on measurable
rectangles by

(μ1 ⊗ μ2)(B1 × B2) � μ1(B1)μ2(B2).

As mentioned, this extends uniquely to a joint distribution μ1 ⊗ μ2 : B1 ⊗ B2 → R.
Product measures capture the idea of independence: sampling μ1 ⊗ μ2 to obtain an
element of S1 × S2 is equivalent to independently sampling μ1 on S1 and μ2 on S2.
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Markov Kernels. Let (S,BS) and (T,BT ) be measurable spaces. A function P : S×
BT → R is called a Markov kernel (also called a Markov transition, measurable
kernel, stochastic kernel, or stochastic relation) if

• for fixed A ∈ BT , the map λs.P(s, A) : S → R is a measurable function on
(S,BS); and

• for fixed s ∈ S, themap λA.P(s, A) : BT → R is a probability measure on (T,BT ).

These properties allow integration on the left and right, respectively.
The measurable spaces and Markov kernels form a category, the Kleisli category

of the Giry monad; see Panangaden (1998, 2009); Doberkat (2007); Giry (1982).
In this context, we occasionally write P : (S,BS) → (T,BT ) or just P : S → T .
Composition is given by integration: for P : S → T and Q : T → U,

(P ;Q)(s, A) =
∫
t∈T

P(s, dt) · Q(t, A). (1.7)

Associativity of composition follows essentially from Fubini’s theorem (see Chung,
1974, or Halmos, 1950). Markov kernels were introduced in Lawvere (1962) and
were proposed as a model of probabilistic while programs in Kozen (1985).
The definition of the pushforward of a measure can be extended to Markov

kernels as follows. Given a measure μ on BS , its pushforward under the Markov
kernel P : (S,BS) → (T,BT ) is the measure P∗(μ) on BT defined by

P∗(μ)(B) =
∫
s∈S

P(s,B) μ(ds). (1.8)

Any measurable map f : (S,BS) → (T,BT ) determines a trivial Markov kernel
s �→ δf (s), and under this definition the pushforward operation defined in Eq. (1.3)
is just a special case of Eq. (1.8).
The readerwill note thatwe changed notation in displaying the Lesbegue integrals

in Equations (1.7) and (1.8) when compared to Eq. (1.5). This is standard notation
in measure theory, in particular in the presence of Markov kernels, but for clarity
we note that these could have been written as:

(P ;Q)(s, A) =
∫
T

Q(−, A) dP(s,−)

P∗(μ)(B) =
∫
S

P(−,B) dμ.

Recall that because P and Q are Markov kernels the functions Q(−, A) and P(−,B)
are measurable and P(s,−) is a probability measure.
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1.2.3 Spaces of measures

The set of all (finite, signed) measures on a measurable set (S,B) will be denoted
M(S,B), or simplyMS if B is understood. The spacesMS carry a very rich struc-
ture which lies at the heart of the denotational semantics described in Section 1.3.5.
We now describe this structure.

Vector space structure. First, MS is always a real vector space whose addition
operation and scalar multiplication are defined pointwise:

(μ + ν)(B) � μ(B) + ν(B) (aμ)(B) � aμ(B)

for B ∈ B, μ, ν ∈ MS, and a ∈ R. It is easily argued that μ + ν and aμ defined in
this way are measures whenever μ, ν are.
The set of measures on a finite set n = {0,1, . . . ,n − 1} is isomorphic as a real

vector space to Rn: the mass μ(i) of the element i corresponds to the ith coordinate
of a vector in Rn in the standard basis. This perspective is well established in the
theory of Markov chains, where initial or stationary distributions are represented
as row or column vectors depending on the convention (see e.g. Norris (1997)).

Normed space structure. The second important structure carried by MS is its
norm. Combined with the vector space structure, this makesMS a Banach space.
The norm ‖μ‖ of a measure μ is called the total variation norm and defined by

‖μ‖ � sup

{
n∑
i=1

|μ(Bi)| : {B1, . . . ,Bn} is a finite measurable partition of S

}
. (1.9)

For a positive measure μ, the norm is always ‖μ‖ = μ(S), and for a probability
measure, ‖μ‖ = 1. In other words, probability measures lie on the boundary of the
unit ball of the space of measures. However, a general (signed) measure can assign
positive mass to some regions of S and negative mass to others, hence the idea of
partitioning the space and the presence of the absolute value in (1.9).
The total variation norm interacts with the vector space structure to makeMS a

normed vector space: ‖x‖ ≥ 0, ‖x‖ = 0 iff x = 0, ‖aμ‖ = |a| ‖μ‖, and ‖μ + ν‖ ≤
‖μ‖ + ‖ν‖. Moreover, the normed vector spaceMS is complete, which means that
all Cauchy sequences of measures converge to a limit inMS. A complete normed
vector space is called a Banach space.
In the case of a finite set n, using the vector space representation ofMn described

above, the norm of a finite measure μ ∈ Mn is simply the usual �1-norm, sometimes
also called Manhattan or taxicab norm ‖μ‖ =

∑n
i=1 |μ(i)|. A probability measure

on n is thus always a vector in Rn of �1-norm 1.
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1.2 Measure theory: What you need to know 13

Order structure. The final piece of structure is a partial order. Measures have a
natural pointwise order: μ ≤ ν if μ(B) ≤ ν(B) for every B ∈ B.
Any pair of distinct probability measures are incomparable in this order, as
μ(B) < ν(B) for a some B ∈ B implies ν(Bc) < μ(Bc), where Bc is the complement
of B, since μ(B)+ μ(Bc) = 1 = ν(B)+ ν(Bc). A measure μ is positive if 0 ≤ μ. The
set of all positive measures is called the positive cone ofMS and denoted (MS)+.
Probability measures are of course positivemeasures, so the probability measures in
MS are precisely the positive measures of norm 1, and the subprobability measures
are the positive measures of norm at most 1. In other words, the subprobability
measures comprise the positive orthant of the unit ball ofMS.
The partial order is compatible with the vector space structure in the sense that

• if μ ≤ ν, then μ + ρ ≤ ν + ρ; and
• if 0 ≤ a ∈ R and μ ≤ ν, then aμ ≤ aν.

We say that the operations of addition and multiplication by a positive scalar are
monotone. Moreover, the partial order in fact defines a lattice structure, that is to
say every pair of measures μ, ν have a least upper bound and a greatest lower bound
with respect to the partial order, defined explicitly by

(μ ∨ ν)(B) � sup {μ(A ∩ B) + ν(Ac ∩ B) | A ∈ B}
(μ ∧ ν)(B) � inf {μ(A ∩ B) + ν(Ac ∩ B) | A ∈ B} .

In particular, the positive part of a measure μ can be defined as μ+ = μ∨ 0, and its
negative part as μ− = (−μ)∨0. Note that both μ+ and μ− are positive measures, and
in fact everymeasure can be decomposed as the difference of two positive measures,
since μ = μ+ − μ−. Moreover, there is a measurable set C such that μ+ = μC and
μ− = −μCc , where μC is the measure μC(A) = μ(A ∩ C); equivalently, μ(B) ≥ 0
for all measurable sets B ⊆ C and μ(B) ≤ 0 for all measurable sets B ⊆ Cc. The set
C is essentially unique in the sense that if C ′ is any other measurable set satisfying
these properties, then all measurable subsets of the symmetric difference C � C ′

are μ-nullsets. This is known as the Hahn-Jordan decomposition theorem; see e.g.
(Dudley, 2002, Th. 5.6.1). The sum of the positive and negative part is called the
modulus of μ and is denoted |μ| = μ+ + μ−.
The order is compatible with the norm in the sense that |μ| ≤ |ν | implies

‖μ‖ ≤ ‖ν‖. A Banach space with a lattice structure that is compatible with both the
linear and normed structures in the sense detailed above is called a Banach lattice.
ThusMS is always a Banach lattice.
In order to interpret while loops in Section 1.3.5, we will need one last order-

theoretic concept. A Banach lattice is said to be σ-order-complete or σ-Dedekind-
complete if every countable order-bounded set of measures inMS has a supremum
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14 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

inMS. From the perspective of theoretical computer science, this notion is similar
to the completeness property for ω-complete partial orders (ω-CPOs) in domain
theory, the key difference being that only sets of elements with a common upper
bound are considered. In particular, the setM1 � R is σ-order complete but is not
an ω-CPO, because this would require adding a point at infinity, thereby losing the
vector space structure. In fact, every space of measuresMS is σ-order complete.
In the case of a finite set {1, . . . ,n}, the order is just the usual pointwise order

on Rn: (x1, . . . , xn) ≤ (y1, . . . , yn) if xi ≤ yi, 1 ≤ i ≤ n, and the lattice structure
on Mn � Rn simplifies to (μ ∨ ν)({i}) = max{μ({i}), ν({i})} and (μ ∧ ν)({i}) =
min{μ({i}), ν({i})}.

Operators. One of the advantages of workingwith spaces ofmeasures is that, since
they are vector spaces, we can do linear algebra on them. In the case of measure
spaces over finite sets, i.e. spaces of the form Rn, this means the usual matrix-based
linear algebra. In the general case, we have the infinite-dimensional generalisation
in terms of linear operators.
A linear operator (or simply an operator) T : V → W between two vector spaces

over the reals is a map satisfying T(x + y) = T(x) + T(y) and T(ax) = aT(x) for
x, y ∈ V and a ∈ R. In the finite-dimensional case, if we choose bases (v1, . . . , vm)
and (w1, . . . ,wn) for V andW respectively, T can be represented as an n × m matrix
T whose i j th component Ti j is the j th coordinate of T(vi) in the basis ofW .
We will be mostly interested in operators that send probability measures to

subprobability measures. Recall that probability measures are precisely the positive
measures of norm 1. A positive operator between Banach lattices is an operator that
sends positive vectors to positive vectors, i.e. Tv ≥ 0 whenever v ≥ 0. A stochastic
operator is a positive operator preserving the norm of positive vectors, i.e. such
that ‖Tv‖ = ‖v‖ whenever v ≥ 0. Similarly, an operator sending probabilities
to subprobabilities is characterised as a positive operator contracting the norm of
positive vectors, i.e. such that ‖Tv‖ ≤ ‖v‖ whenever v ≥ 0.
In the case of measures over finite spacesMn � Rn, we can represent stochastic

operators as (right) stochastic matrices, matrices with nonnegative entries whose
rows each sum to 1.1 Indeed, any operator A sending probability measures p =
(p1, . . . , pn) to probability measures must be stochastic, as the k th row of A is the
result of applying A to the Dirac delta δk :

(δk A)j =
n∑
i=1
δk(i)Ai j = Ak j .

1 We follow the convention adopted in the literature on Markov chains, where measures are represented as row
vectors and operators are applied from the right (hence “right stochastic”).
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1.3 Semantics of a simple imperative probabilistic language 15

1.3 Semantics of a simple imperative probabilistic language

Nowwe are ready to give the formal semantics of a simple imperative programming
language with two types of probabilistic operations: a function sampling from a
Bernoulli distribution with parameter p = 1/2, and a function sampling from the
uniform distribution on the interval [0,1]. This simple language will cover the
examples in Figs. 1.1, 1.2, 1.3, and 1.4.

1.3.1 Syntax

We start by defining the syntax of the language.
(i) Deterministic terms:

d ::= a a ∈ R, constants
| x x ∈ Var, a countable set of variables
| d op d op ∈ {+,−,∗,÷}

(ii) Terms:

t ::= d d a deterministic term
| coin() | rand() sample in {0,1} and [0,1], respectively
| t op t op ∈ {+,−,∗,÷}

(iii) Tests:

b ::= true | false
| d == d | d < d | d > d comparison of deterministic terms
| b && b | b || b | !b Boolean combinations of tests

(iv) Programs:

e ::= skip
| x := t assignment
| e ; e sequential composition
| if b then e else e conditional
| while b do e while loop

Remark 1.2 We disallow probabilistic terms in tests for simplicity in the pre-
sentation. This restriction is without loss of generality, as one could consider such
expressions as syntactic sugar; the probabilistic term can always be removed using
auxiliary variables. For example, the right-hand program below is the de-sugared
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16 Dahlqvist, Kozen and Silva: Semantics of Probabilistic Programming

version of the left-hand program using a fresh auxiliary variable x:

if coin() == 1 then e1 else e2 x := coin() ; if x == 1 then e1 else e2

1.3.2 Operational versus denotational semantics

As we outlined in the introduction, the main purpose of this chapter is to define
a formal mathematical interpretation—a semantics—for probabilistic programs.
Having a semantics provides the tools necessary to reason about the properties of
programs, as we will show with a few concrete examples. However, the focus of
this chapter will primarily be on defining the semantics itself.
We will present two classical types of semantics: operational and denotational.

The purpose of operational semantics is to model the step-by-step executions of the
program on a machine. It will model the evolution of the state of the machine de-
scribed by itsmemory-state, the values assigned to each variable and to each random
number generator in a program, together with a stack of instructions. On the other
hand, the purpose of denotational semantics is to model the intended mathematical
meaning of a probabilistic program in terms of probability distributions.

1.3.3 Operational semantics of probabilistic programs

The random number generator coin() is represented by an independent and iden-
tically distributed (i.i.d.) sequence of random variables distributed according to
the Bernoulli distribution on {0,1} with parameter p = 1/2. Similarly, rand()
is represented by an i.i.d. sequence distributed according to the uniform distribu-
tion on [0,1]. When a program runs, we fix at the beginning two infinite streams
m0m1m2 · · · and p0p1p2 · · · , where eachmi ∈ {0,1} is an independent sample from
the Bernoulli distribution with p = 1/2 and each pi ∈ [0,1] is an independent
sample from the uniform distribution on [0,1]. Intuitively, these sequences rep-
resent infinite stacks of random numbers that are available to the program. Each
time the function coin() or rand() is called, the next random number is popped
from the stack. We use the auxiliary head and tail functions hd(m0m1m2 · · · ) = m0
and tl(m0m1m2 · · · ) = m1m2m3 · · · to implement this. This deterministic behaviour
reflects the behaviour of pseudo-random number generators which, given a seed,
deterministically generate such sequences (or to be precise, seemingly random
cyclical sequences with very long periods).
Given a program containing n variables {x1, . . . , xn}, as described in Sec-

tion 1.3.1, a memory-state is modelled as a triple (s,m, p) consisting of a store
s : n → R and a pair of infinite streamsm ∈ {0,1}ω and p ∈ [0,1]ω representing the
current streams of available random digits. A machine-state is a 4-tuple (e, s,m, p),
where e corresponds to a stack of instructions and (s,m, p) is a memory-state.
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1.3 Semantics of a simple imperative probabilistic language 17

We can now define the operational semantics of our language. The operational
semantics is defined in terms of a single-step reduction relation (e, s,m, p) −→
(e′, s′,m′, p′) between machine-states. The reduction relation describes the step-
by-step evaluation of a program and its corresponding effect on the state of the
machine. The reflexive transitive closure of this relation will be denoted ∗−→ and
will be used to talk about multi-step transitions.
In order to define the reduction relation, we first define the semantics of terms.

Each term t will be interpreted as a function

[[t]] : Rn × Nω × Nω → R × Nω × Nω .

Intuitively, the value of [[t]] on (s,m, p) is a triple (a,m′, p′), where a is the real value
of the term and m′ and p′ are the new stacks of random numbers. Formally, [[t]] is
defined inductively:

[[r]] : (s,m, p) �→ (r,m, p)
[[xi]] : (s,m, p) �→ (s(i),m, p)

[[coin()]] : (s,m, p) �→ (hd m, tl m, p)
[[rand()]] : (s,m, p) �→ (hd p,m, tl p)
[[t1 op t2]] : (s,m, p) �→ let (a1,m′, p′) = [[t1]](s,m, p) in

let (a2,m′′, p′′) = [[t2]](s,m′, p′) in
(a1 op a2,m′′, p′′)

where op ∈ {+,−,∗,÷}. In other words, we evaluate t1 first, which produces a value
a1 but might consume some values from m and p, popping those stacks to leave m′

and p′; these new stacks are then used in the evaluation of t2, which in turn changes
them to m′′ and p′′ and yields a value a2. The values a1 and a2 are combined with
the appropriate arithmetic operation, and that is returned with the stacks m′′ and
p′′.
There is already an interesting question to consider. Note that we are evaluating

t1 op t2 from left to right, i.e. starting with t1. This is an arbitrary decision. Would
evaluation from right to left be equally valid? It clearly would not always give
the same value; e.g., the program rand() ÷ rand() evaluated on (s,m, (.2, .5, p))
from left to right would give (.4,m, p), but evaluated from right to left would
give (2.5,m, p). However, perhaps surprisingly, the two methods of evaluation are
probabilistically equivalent, which means they give the same values with equal
probability. The denotational semantics to be given below will allow us to reason
more easily about such facts.
We now define the semantics of tests. Each test bwill be interpreted as a function

[[b]] : Rn × Nω × Nω → {true,false}
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defined inductively by

[[t1 == t2]] : (s,m, p) �→

{
true if [[t1]](s,m, p) = [[t2]](s,m, p)
false otherwise

[[t1 < t2]] : (s,m, p) �→

{
true if [[t1]](s,m, p) < [[t2]](s,m, p)
false otherwise

[[t1 > t2]] : (s,m, p) �→

{
true if [[t1]](s,m, p) > [[t2]](s,m, p)
false otherwise

[[b1 && b2]] : (s,m, p) �→ [[b1]](s,m, p) ∧ [[b2]](s,m, p)
[[b1 || b2]] : (s,m, p) �→ [[b1]](s,m, p) ∨ [[b2]](s,m, p)
[[!b]] : (s,m, p) �→ ¬[[b]](s,m, p)

where ∧,∨ and ¬ are the usual Boolean operations on {true,false}. Note that in
the definition of the three base cases above, m, p are arguments of both [[t1]] and
[[t2]], unlike in the semantics of terms. This is because we only allow deterministic
terms in tests, thus [[t1]] does not consume any random numbers, leaving the stacks
m, p unchanged for the evaluation of [[t2]]. For the same reason, it is unnecessary to
include m, p in the output of [[b]].
We can now define the reduction relation −→. The relation is given by the rules

gathered in Table 1.1. We use the traditional notation s[i �→ l] to denote the n-tuple
defined exactly as s apart from at position i where value l is used instead. We will
say that the execution of a program e terminates from the memory-state (s,m, p) if
there exists a memory-state (s′,m′, p′) such that

(e, s,m, p) ∗−→ (skip, s′,m′, p′).

We will say that a program e diverges from a state (s,m, p) if it does not terminate.

1.3.4 Operational semantics through examples

To illustrate how the system described above works concretely, let us examine the
operational semantics of the programs described in Section 1.1.

Example 1: A simple Markov chain
We start with the very simple program displayed in Fig. 1.1. Using the rule
for assignments, the rule for sequential composition and the definition of the
reflexive transitive closure ∗−→ we get the following derivation, where for nota-
tional convenience we write e for while x == 0 do x := coin():
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Assignment:

[[t]](s,m, p) = (a,m′, p′)
(xi := t, s,m, p) −→ (skip, s[i �→ a],m′, p′)

Sequential composition:

(e1, s,m, p) −→ (e′
1, s

′,m′, p′)
(e1 ; e2, s,m, p) −→ (e′

1 ; e2, s′,m′, p′) (skip ; e, s,m, p) −→ (e, s,m, p)

Conditional:

[[b]](s,m, p) = true
(if b then e1 else e2, s,m, p) −→ (e1, s,m, p)

[[b]](s,m, p) = false
(if b then e1 else e2, s,m, p) −→ (e2, s,m, p)

while loops:

(while b do e, s,m, p) −→ (if b then (e ; while b do e) else skip, s,m, p)

Reflexive-transitive closure:

(e, s,m, p) ∗−→ (e, s,m, p)
(e1, s1,m1, p1) −→ (e2, s2,m2, p2)

(e1, s1,m1, p1)
∗−→ (e2, s2,m2, p2)

(e1, s1,m1, p1)
∗−→ (e2, s2,m2, p2) (e2, s2,m2, p2)

∗−→ (e3, s3,m3, p3)

(e1, s1,m1, p1)
∗−→ (e3, s3,m3, p3)

Table 1.1 Rules of the operational semantics

(x := 0, s,m, p) −→ (skip, s[x �→ 0],m, p)
(x := 0 ; e, s,m, p) −→ (skip ; e, s[x �→ 0],m, p)

(x := 0 ; e, s,m, p) ∗−→ (skip ; e, s[x �→ 0],m, p)

(skip ; e, s[x �→ 0],m, p) −→ (e, s[x �→ 0],m, p)

(skip ; e, s[x �→ 0],m, p) ∗−→ (e, s[x �→ 0],m, p)

(x := 0 ; e, s,m, p) ∗−→ (e, s[x �→ 0],m, p)

We now turn our attention to (e, s[x �→ 0],m, p). Using the rule for while loops
and conditionals we get (using the same definition of e as above)

(e, s[x �→ 0],m, p) ∗−→ (x := coin() ; e, s[x �→ 0],m, p) (1.10)

since [[x == 0]](s[x �→ 0],m, p) = true. We now encounter our first probabilistic
behaviour:

(x := coin() ; e, s[x �→ 0],m, p) ∗−→ (e, [s �→ hd m], tl m, p).
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If hd m = 0, then s does not change, and we are back at the left-hand state of (1.10),
but with tl m instead ofm. This same sequence of steps continues until encountering
a suffix of m of the form 1m′, at which time, combining the rule for while loops and
conditionals, we get

(e, s[x �→ 1],m′, p) ∗−→ (skip, s[x �→ 1],m′, p)

since [[x == 0]](s[x �→ 1],m′, p) = false. If no such suffix 1m′ exists, then (1.10)
continues forever. We can conclude that

(x := 0 ; e, s,m, p) ∗−→ (skip, s[x �→ 1],m′, p)

for some m′, that is, the program terminates in some state (s[x �→ 1],m′, p) when
started in state (s,m, p), if and only if there exists a suffix of m of the form 1m′, that
is, there exist k ≥ 0 and m′ ∈ {0,1}ω such that m = 0k1m′. We can compute the
probability of termination with a simple calculation:

P

[
∃m′ (x := 0 ; e, s,m, p) ∗−→ (skip, s[x �→ 1],m′, p)

]
= P

[
∃k ≥ 0 ∃m′ m = 0k1m′]

=

∞∑
k=1
2−k = 1

as claimed in the introduction.

Example 2: A random walk on Z2

We now turn our attention to the program of Fig. 1.2, which implements a random
walk on the set Z2. We show fewer details, since the previous example already
described some of the simplest derivations. The program is writtenwith the function
step for readability and notational convenience, but it is of course equivalent to the
inline program where each instance of step in main is substituted by its definition.
For any s ∈ R4 and m, p ∈ N, there can be one of four actions:

(step, s,00m, p) ∗−→ (skip, s[(u,v) �→ (0,−1), (x,y) �→ (0,0)],m, p)

(step, s,01m, p) ∗−→ (skip, s[(u,v) �→ (−1,0), (x,y) �→ (0,1)],m, p)

(step, s,10m, p) ∗−→ (skip, s[(u,v) �→ (1,0), (x,y) �→ (1,0)],m, p)

(step, s,11m, p) ∗−→ (skip, s[(u,v) �→ (0,1), (x,y) �→ (1,1)],m, p)

The probability of each of these outcomes is 1/4, and in all cases the program enters
the loop, since [[!(u == 0) || !(v == 0)]] = true.
Now define the i.i.d. random variables X1,X2, . . . on Z2 such that each Xi takes
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one of the values (0,1), (0,−1), (1,0), (−1,0), each with probability 1/4, as well as
the random variables

Sn =
n∑
i=1

Xi

where the sum is the usual componentwise sum on Z2. With these definitions in
place, and since the loop is entered at least once, the first few steps of the reduction
relation give

(main, s,m, p) ∗−→
(while !(u == 0) || !(v == 0) do step(u,v), s[(u,v) �→ (i, j)], tl4(m), p)

where (i, j) is distributed according to S2 and the tl4(m) indicates that four random
bits were consumed. The program will exit the loop if there exists n such that
S2n = (0,0); the factor 2 is because a return to 0 is only possible after an even
number of calls to the function step. If such an n exists, then the rule for while
loops gives

(main, s,m, p) ∗−→ (skip, s[(u,v) �→ (0,0)], tl4n(m), p).

It follows that to compute the probability that the program terminates amounts to
computing

P

[
∃n (main, s,m, p) ∗−→ (skip, s[(u,v) �→ (0,0)], tl4n(m), p)

]
= P

[ ∞∨
n=0

S2n = (0,0)

]
(1.11)

In order for S2n = (0,0), there must exist m such that the walk performed m steps
up, m steps down, n − m steps left and n − m steps right. Following Durrett (1996),

P [S2n = (0,0)] = 4−2n
n∑

m=0

(2n)!
m!m!(n − m)!(n − m)!

= 4−2n
(
2n
n

) n∑
m=0

(
n
m

)2
= 4−2n

(
2n
n

)2
. (1.12)

Since the events S2n = (0,0) for n ∈ N are not disjoint—one can return to (0,0)
twice in 2n steps if n > 1—one cannot simply sum these contributions to get the
probability of termination as we did in the previous example. However, it can be
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shown that
∞∑
n=0
P [S2n = (0,0)] =

∞∑
m=0
P

[ ∞∨
n=0

S2n = (0,0)

]m
, (1.13)

as both expressions describe the expected number of visits to the origin in an
infinite random walk (Durrett, 1996, Ch. 3, Thm. 2.2). Moreover, using Stirling’s
approximation with (1.12), it can be shown that the sums in (1.13) diverge (Durrett,
1996, Ch. 2, Thm. 1.4), which occurs iff the probability (1.11) is 1; that is, the
program of Fig. 1.2 terminates with probability one. However, the expected time to
termination is infinite: in probabilistic terms, the random walk on Z2 is recurrent
but not positively recurrent.

Example 3: Probabilistic computation of π
The program given in Fig. 1.3 is different from the previous two examples in several
ways. First of all, it samples from a continuous distribution, therefore relies on the
full power of measure theory. Secondly, it clearly terminates, so the question this
time is not to determine the probability of termination, but rather to evaluate the
correctness of the program. Considering the intended purpose of the program,
which is to compute an approximation of π, the question we will answer is the
following: Given an error tolerance ε > 0, what is the probability that the final
numerical value of pi is within ε of π?
Let N = 1e9 (one billion), the number of iterations of the loop. It is not difficult

to see that, starting from a state (s,m, p), the program halts in a state

(prog, s,m, p) ∗−→ (skip, s[i �→ 4n/N,n �→ n, . . .],m, tl2N (p))

for some integer 0 ≤ n ≤ N . The value n/N is the average of N samples of the
random variable

Z =

{
1 if X2 + Y2 < 1
0 else

where X and Y are independent random variables distributed uniformly on [0,1].
Let us compute the expected value of Z . First, it is easy to compute the density

function for X2 (and thus Y2):

P
[
X2 ≤ t

]
= P

[
X ≤

√
t
]
=

∫ √
t

0
�[0,1](x) dx =

√
t

for 0 ≤ t ≤ 1. The density of X2 is thus given by

f (t) =
∂P

[
X2 ≤ t

]
∂t

=
1
2
√

t
�[0,1](t)
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It is well known that the density of the sum of two independent distributions is
given by the convolution of their densities, i.e.

( f ∗ f )(t) =
∫ ∞

−∞

1
2
√

x
�[0,1](x)

1
2
√

t − x
�[0,1](t − x) dx

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫ t

0

1
4
√

x
√

t − x
dx if 0 ≤ t ≤ 1∫ 1

t−1

1
4
√

x
√

t − x
dx if 1 < t ≤ 2

Since we are only interested in computing P
[
X2 + Y2 ≤ 1

]
, we need only compute

the first expression above, which under the substitution u =
√

x/t yields:∫ t

0

1
4
√

x
√

t − x
dx =

∫ 1

0

1
2
√
1 − u2

du =
1
2
(sin−1(1) − sin−1(0)) =

π

4
.

Thus

P
[
X2 + Y2 ≤ 1

]
=

∫ 1

0
( f ∗ f )(t) dt =

∫ 1

0

π

4
dt =

π

4
.

We have therefore computed that Z is a Bernoulli variable with probability of
success π/4. In particular, its variance is σ2 = π/4 − (π/4)2. We can now use
Chebyshev’s inequality to get:

P

[��� n
N

−
π

4

��� > ε] ≤
σ2

Nε2
.

For example, for ε = 0.0005 and N = 1e9, the program outputs an approximation
of π which is correct up to 2 significant digits with probability greater than 99.9%.
In terms of the operational semantics, we can write the probability of the informal
Hoare triple

P

[
{} (prog, s,m, p) ∗−→ (skip, s′,m′, p′) {s′(i) ∈ [3.139,3.144]}

]
≥ 0.999.

We will show in Section 1.3.6 that much tighter bounds can be obtained using a
more sophisticated inequality than Chebyshev’s inequality.

Example 4: The Cantor distribution
The final example given in Fig. 1.4 constructs a curious object know as the Cantor
distribution. This is a distribution on [0,1] that has uncountable support (it is
therefore continuous), yet this support has Lebesgue measure (that is to say length)
zero. It is an example of a so-called singular distribution.
A simple look at the program given by Fig. 1.4 shows that it does not terminate.

However, it is possible to give it an operational (and denotational) semantics.
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Starting from an initial configuration (s,m, p) where m = m0m1m2 · · · , it is not
difficult to see from the rules of the operational semantics that the program generates
an the infinite sequence

(x := 0; d := 1; w, s,m, p) ∗−→

(w, s [x �→ 0,d �→ 1] ,m, p) ∗−→

(w, s
[
x �→

2m0
3
,d �→

1
3

]
, tl(m), p) ∗−→

(w, s

[
x �→

k∑
i=1

2mi−1

3i
,d �→

1
3k

]
, tlk(m), p) ∗−→ · · · (1.14)

The program can thus be understood as generating a random real number between
0 and 1 whose base-3 expansion does not contain any ones. After k iterations of the
loop, the probability that the base-3 expansion of the number is given by a particular
sequence a1 · · · ak , where ai ∈ {0,2}, is 2−k . We now show how this interpretation
of the program relates to the Cantor measure.
We first look at a σ-algebra. For a1 · · · ak ∈ {0,1,2}k , each set

Ca1 · · ·ak
:= {x ∈ [0,1] | the base-3 expansion of x starts with a1 · · · ak}

is a measurable set for the usual σ-algebra on [0,1]. Moreover, it can be shown that
the σ-algebra generated by all these sets is in fact the usual σ-algebra on [0,1].
With the σ-algebra in place, we can define a measure. Following the behaviour

of the program above, it makes sense to define

μ(Ca1 · · ·ak
) =

{
2−k if a1 · · · ak ∈ {0,2}k

0 otherwise.
(1.15)

It can be shown that this definition extends to the entire σ-algebra on [0,1], thereby
defining a bona fide measure (in the same way that the definition of the product
measure on rectangles extends to the entire product σ-algebra, see Section 1.2.2).
This measure is the Cantor measure, which we shall denote by κ. Note that for any
x ∈ [0,1], the probability of any singleton must satisfy κ({x}) ≤ 2−k for all k, thus
κ({x}) = 0 and the Cantor measure is therefore continuous. If the base-3 expansion
of x contains a 1, the inequality above is trivially satisfied. If it does not, it follows
from the fact that {x} ⊆ Ca1 · · ·ak

, where a1 · · · ak consists of the first k digits in the
base-3 expansion of x. It can also be shown that the set

C = {x ∈ [0,1] | the base-3 expansion of x has no ones}

has Lebesgue measure 0, but Cantor measure 1. This set, called the Cantor set, is
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clearly in one-to-one correspondence with the set of possible traces described by
the operational semantics described by (1.14).

1.3.5 Denotational semantics of probabilistic programs

Consider the simple program x := coin(). As we have just seen, the operational se-
mantics models the two possible machine-state transitions defined by this program,
viz.

(x := coin(), s,m, p) −→ (skip, s[x �→ 0], tl m, p)
(x := coin(), s,m, p) −→ (skip, s[x �→ 1], tl m, p)

depending on the value of hd m, each associated with the probability 1/2. Thus two
possible executions are explored separately. The denotational approach explores
both possibilities simultaneously. It does so by changing the notion of state. Opera-
tionally, a state is a machine state, i.e. a mathematical representation of the memory
state and of the stack of instructions. Denotationally, a state is a probability distribu-
tion over memory states. The two possible memory states s[x �→ 0] and s[x �→ 1],
which correspond operationally to two distinct executions, are combined into a
single state 12 s[x �→ 0] + 1

2 s[x �→ 1]. As a consequence, the program x := coin()
can be interpreted as the operation which associates to a state s the distribution over
states 1

2 s[x �→ 0] + 1
2 s[x �→ 1].

More generally, since a state s can be identified with the Dirac measure δs (see
Section 1.2.2), the denotational semantics will view the program x := coin() as
an operator (we will justify this term in a moment) which maps the probability
distribution δs to the probability distribution 1

2 s[x �→ 0] + 1
2 s[x �→ 1]. This is the

essence of the denotational perspective: a program is interpreted as an operator
mapping probability distributions to (sub)probability distributions. It follows that
denotationally, a program has a single trace (or execution) for a given input, but
this trace keeps track of all possible memory state transitions and their probabilities
simultaneously. It also follows that an input state could be a nontrivial distribution,
for example 12 s[x �→ 0]+ 12 s[x �→ 1] could be an input for the program x := coin().
We now formalize the intuition given above following Kozen (1981). Given a

program obeying the syntax of Section 1.3.1 and containing n variables {x1, . . . , xn}
ranging over R, a state will be modelled as a probability distribution μ on Rn and
a program e will be interpreted as an operator [[e]] : MRn → MRn called a state
transformer. To define this interpretation formally, we start with the semantics of
terms. Each term t denotes a map [[t]] : Rn → MR defined inductively as follows.
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Here ai represents the value of the variable xi, 1 ≤ i ≤ n.

[[r]](a1, . . . ,an) = δr, r ∈ R
[[xi]](a1, . . . ,an) = δai

[[coin()]](a1, . . . ,an) =
1
2
δ0 +

1
2
δ1

[[rand()]](a1, . . . ,an) = λ
[[t1 op t2]](a1, . . . ,an) = op∗([[t1]](a1, . . . ,an) ⊗ [[t2]](a1, . . . ,an))

where op ∈ {+,−,×,÷} and λ is the Lebesgue (uniform) measure on [0,1]. Re-
call that μ ⊗ ν is the product of the measures μ and ν and that op∗ denotes the
pushforward operation (see Section 1.2.2). In this case, [[t1]](a1, . . . ,an) ∈ MR and
[[t2]](a1, . . . ,an) ∈ MR, [[t1]](a1, . . . ,an)⊗[[t2]](a1, . . . ,an) ∈ M(R2), op : R2 → R,
and op∗ : M(R2) → MR. By definition, for B a measurable subset of R,

op∗([[t1]](a1, . . . ,an) ⊗ [[t2]](a1, . . . ,an))(B)
= [[t1]](a1, . . . ,an) ⊗ [[t2]](a1, . . . ,an)

{
(u, v) ∈ R2 | u op v ∈ B

}
.

It follows almost immediately from this definition that:

Proposition 1.3 The denotational semantics of any term is a Markov kernel
Rn → MR.

The denotational semantics of tests is given by subsets of Rn defined inductively
as follows:

[[t1 == t2]] = {(a1, . . . ,an) ∈ Rn | [[t1]](a1, . . . ,an) = [[t2]](a1, . . . ,an)}
[[t1 < t2]] = {(a1, . . . ,an) ∈ Rn | [[t1]](a1, . . . ,an) < [[t2]](a1, . . . ,an)}
[[t1 > t2]] = {(a1, . . . ,an) ∈ Rn | [[t1]](a1, . . . ,an) > [[t2]](a1, . . . ,an)}

[[b1 && b2]] = [[b1]] ∩ [[b2]]
[[b1 || b2]] = [[b1]] ∪ [[b2]]

[[!b]] = [[b]]c .

Note that since we limit ourselves to deterministic guards, the comparisons in the
right-hand side of the first three cases above are between Dirac deltas, thus between
elements of Rn, as one would expect. It is not hard to show the following result:

Proposition 1.4 The denotational semantics of any test is a measurable subset of
Rn.

Each measurable subset B ⊆ Rn defines a linear operator TB : MRn → MRn
defined as

TB(μ)(C) = μ(B ∩ C). (1.16)
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In particular, every test defines such an operator. Note that the operator TB does
not in general send probability distributions to probability distributions, since the
mass outside of B is lost. Thus TB sends probability distributions to sub-probability
distributions, that is to say measures whose total mass is at most 1.
We can now define the denotational semantics of programs. Programs will be

interpreted as (linear) operators MRn → MRn. The inductive definition is as
follows:
(i) [[skip]] = IdMRn : MRn → MRn, the identity operator μ �→ μ.
(ii) Assignments: Prop. 1.3 interprets terms t as Markov kernels [[t]] : Rn → MR.
Given such a term t and an index 1 ≤ i ≤ n, we define the Markov kernel
Fi
t : Rn → MRn as

Fi
t (x1, . . . , xn) = δx1 ⊗ . . . ⊗ δi−1 ⊗ [[t]](x1, . . . , xn) ⊗ δxi+1 ⊗ . . . ⊗ δxn

Using this definition, we define [[xi := t]] as the operator

[[xi := t]](μ) = (Fi
t )∗(μ) (1.17)

where (Fi
t )∗ is the pushforward of Markov kernels defined in (1.8). It is useful to

consider special cases of this formula. Consider first the expression xi := r for
some constant r ∈ R. The definition above becomes

[[xi := r]](μ)(B1 × · · · × Bn)

=

∫
Rn
δx1 ⊗ · · · ⊗ δxi−1 ⊗ δr ⊗ δxi+1 ⊗ · · · ⊗ δxn (B1 ⊗ · · · ⊗ Bn) dμ

=

∫
Rn
δx1(B1) · · · δxi−1(Bi−1)δr (Bi)δxi+1(Bi+1) · · · δxn (Bn) dμ

= μ(B1 × · · · × Bi−1 × R × Bi+1 × · · · × Bn)δr (Bi).

Similarly, for xi := coin() we get

[[xi := coin()]](μ)(B1 × · · · × Bn)

= μ(B1 × · · · × Bi−1 × R × Bi+1 × · · · × Bn)
(
1
2
δ0 +

1
2
δ1

)
(Bi).

(iii) [[e1 ; e2]] = [[e2]] ◦ [[e1]], the usual composition of operators.
(iv) if b then e1 else e2 is the operator defined by

[[if b then e1 else e2]] = [[e1]] ◦ T[[b]] + [[e2]] ◦ T[[b]]c (1.18)

where T[[b]] and T[[b]]c are defined as in (1.16).
(v) To define the semantics of while loops, we use the equivalence of the following
two programs,

while b do e if b then (e ; while b do e) else skip,
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to write a fixpoint equation which will define the semantics of [[while b do e]].
Formally, and following (1.18), the equivalence of programs above implies that

[[while b do e]] = [[while b do e]] ◦ [[e]] ◦ T[[b]] + T[[b]]c

We therefore define [[while b do e]] to be the least fixpoint of the transformation
on operators defined by

τ(S) = S ◦ [[e]] ◦ T[[b]] + T[[b]]c (1.19)

This least fixpoint can be constructed explicitly by the familiar construction

[[while b do e]] =
∨
n≥0
τn(0) =

∞∑
k=0

T[[b]]c ◦
(
[[e]] ◦ T[[b]]

)k
, (1.20)

invoking the fact that countable norm-bounded directed sets have suprema and
that τ preserves such suprema.

Theorem 1.5 The denotational semantics of any program given by the syntax of
Section 1.3.1 is a positive operator of norm at most one.

A comment on non-terminating programs
As we will see when examining the Cantor program (see Fig. 1.4) in Section 1.3.6,
the construction of the least fixpoint via Eq. (1.20) returns the constant linear
operator 0 for non-terminating programs of the form

while true do e.

This is in complete agreement with what happens in the formalism of Kleene
Algebras with Tests (Kozen, 1997) where the following equivalence holds:

while true do e � (true; e)∗; false = false.

Here, false is the program that always aborts corresponding to the constant linear
operator 0.
Recall that we also saw in Section 1.3.4 that the Cantor program can be given a

non-trivial operational semantics in terms of infinite traces. How can we reconcile
these two seemingly conflicting semantics?
There are (at least) two ways. The first is to declare that infinite traces are

not valid, and identify diverging executions with a crash behaviour. The second,
mathematically much more interesting solution, is not to consider the least fixpoint
solution to the equation τ(S) = S (where τ is defined in Eq. (1.19)), but another
fixpoint given by the mean ergodic theorem. When the guard of the while loop
is true, Eq. (1.19) simplifies to τ(S) = S ◦ [[e]]. Now suppose for simplicity’s
sake that e does not contain any while loop, and note that by Theorem 1.5 [[e]] :
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MRn → MRn is a is a positive operator of norm at most one. It can be shown (see
e.g. Dunford et al., 1971; Eisner et al., 2015) that [[e]] is mean ergodic, that is to say
that for any measure μ ∈ Rn the limit

P[[e]](μ) � lim
n→∞

1
n

n−1∑
j=0

[[e]]j(μ) (1.21)

exists. Moreover, P[[e]] is a projection MRn → fix([[e]]), the subspace of [[e]]-
invariant measures, and satisfies the fixpoint equation defining the while loop:

τ
(
P[[e]]

)
= P[[e]] ◦ [[e]] = P[[e]].

This provides an alternative fixpoint semantics in the case of the non-terminating
while true program, which is the denotational counterpart to the operational se-
mantics in terms of infinite traces. In fact, it would be tempting to decompose the
semantics of any while loop into its terminating component, defined via the least
fixpoint construction of Eq. (1.20), and its non-terminating component, defined via
the mean ergodic theorem as we have just described. We leave this possibility to be
explored in future work.

1.3.6 Denotational semantics through examples

Example 1: Simple Markov chain
We start by looking at the very simple program of Fig. 1.1. Since it contains a single
variable, its denotational semantics is given by an operator

[[x := 0 ; while x == 0 do x := coin()]] : MR→ MR

which we compute compositionally, that is to say line-by-line. Following the defi-
nition of the denotational semantics of assignments given in the previous section,
the first line of the program is interpreted as:

[[x := 0]] : MR→ MR μ �→ μ(R)δ0,

since [[0]] = δ0. Note how the presence of the term μ(R) is what makes this operator
linear: the constant function μ �→ δ0—which might be a tempting semantics for
assignments—would not be linear; assignments must be weighted by the total mass
of the input measure. Analogously, we have

[[x := coin()]] : MR→ MR μ �→ μ(R)(12δ0 +
1
2δ1).

Next, we evaluate the interpretation of the while loop using (1.20). It is easy
to see from the definition that the denotation of the test [[x == 0]] is simply the
measurable singleton {0}. Now consider the first two nonzero terms in the join of
(1.20):
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τ0(0)(μ) = 0
τ1(0)(μ) = T{0}c (μ) = μ(− ∩ {0}c)
τ2(0)(μ) =

(
T{0}c + T{0}c ◦ [[x := coin()]] ◦ T{0}

)
(μ)

= μ(− ∩ {0}c) +
μ({0})
2
δ1.

One can show by induction that

τk(0)(μ) = μ(− ∩ {0}c) +
k−1∑
i=1

μ(0)
2i
δ1

= μ(− ∩ {0}c) + (1 − 2−(k−1))μ({0})δ1,

which for positive μ is an increasing sequence with limit μ(−∩ {0}c)+ μ({0})δ1. It
follows that [[while x == 0 do x := coin()]] : MR→ MR is the operator defined
by

μ �→ μ(− ∩ {0}c) ∩ μ({0})δ1 = μ({0,1})δ1 + μ(− ∩ {0,1}c).

The interpretation of the entire program is now obtained by operator composition:

[[x := 0 ; while x == 0 do x := coin()]] : MR→ MR μ �→ μ(R)δ1.

In other words, given any input measure, the program outputs the Dirac delta over 1
up to the scalar factor required to make the operator linear. In particular, if the input
is a probability distribution, then the output is simply δ1, which is clearly consistent
with the behaviour of the Markov chain of Fig. 1.1.

Example 2: Random walk on Z2
We start by computing the semantics of step. Since there are four variables u,v,x,y,
we will get an operator MR4 → MR4 (assume that the variables are ordered
alphabetically; i.e., u corresponds to the first component of R4, etc.) Working line-
by-line, we get

(1) [[x := coin()]] : MR4 → MR4

μ �→ λ(B1 × B2 × B3 × B4).μ(B1 × B2 × R × B4)
(
1
2
δ0 +

1
2
δ1

)
(B3)

(2) [[x := coin() ; y := coin()]] : MR4 → MR4

μ �→ λ(B1 × B2 × B3 × B4).

μ(B1 × B2 × R × R)
(
1
2
δ0 +

1
2
δ1

)
(B3)

(
1
2
δ0 +

1
2
δ1

)
(B4)
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(3) [[x := coin() ; y := coin() ; u := u + (x − y)]] : MR4 → MR4

μ �→ λ(B1 × B2 × B3 × B4).∫
R4
δu+(x−y)(B1)δv(B2)δx(B3)δy(B4) d[[x := coin() ; y := coin()]](μ)

= μ(R4)
(
1
4
μ(B1 × B2 × R2)δ0(B3)δ0(B4)

+
1
4
μ(B1 − 1 × B2 × R2)δ0(B3)δ1(B4)

+
1
4
μ(B1 + 1 × B2 × R2)δ1(B3)δ0(B4)

+
1
4
μ(B1 × B2 × R2)δ1(B3)δ1(B4)

)
(4) [[x := coin() ; y := coin() ; u := u + (x − y) ; v := v + (x + y − 1)]] :

MR4 → MR4

μ �→ λ(B1 × B2 × B3 × B4).μ(R4)
(
1
4
μ(B1 × B2 − 1 × R2)δ0(B3)δ0(B4)

+
1
4
μ(B1 − 1 × B2 × R2)δ0(B3)δ1(B4)

+
1
4
μ(B1 + 1 × B2 × R2)δ1(B3)δ0(B4)

+
1
4
μ(B1 × B2 + 1 × R2)δ1(B3)δ1(B4)

)
where B1 + 1 = {x + 1 | x ∈ B1} and similarly for the other combinations. It now
follows that

[[u := 0 ; v := 0 ; step(u,v)]](μ)(B1 × B2 × B3 × B4)

=
μ(R4)
4

(δ0(B1)δ−1(B2)δ0(B3)δ0(B4) + δ−1(B1)δ0(B2)δ0(B3)δ1(B4)

+ δ1(B1)δ0(B2)δ1(B3)δ0(B4) + δ0(B1)δ1(B2)δ1(B3)δ1(B4)) , (1.22)

where each summand corresponds to one of the four possible execution paths. This
will be the input distribution to the operator denoted by the while loop. Let us now
compute this operator. For notational clarity, we write

E � [[!(u == 0) || !(v == 0)]]c = {0} × {0} × R × R

As in the previous example, we look at the first terms of the formula (1.20).

TE TE + TE ◦ [[step]] ◦ TEc

TE + TE ◦ [[step]] ◦ TEc + TE ◦ ([[step]] ◦ TEc )2
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For notational clarity, we consider measurable rectangles of the form A × B, where
A,B are measurable subsets of R2 corresponding to events involving the variables
u,v and x,y, respectively. For such an A × B ⊆ R4, we have

TE (μ)(A × B) = μ((A × B) ∩ E) = δ(0,0)(A)μ({(0,0)} × B).

This is the probability that the while loop exits immediately. Similarly,

TE ◦ [[step]] ◦ TEc (μ)(A × B)
= δ(0,0)(A)[[step]] ◦ TEc (μ)((0,0) × B)

=
δ(0,0)(A)
4

(μ((0,−1) × R2)δ(0,0)(B) + μ((−1,0) × R2)δ(0,1)(B)

+ μ((1,0) × R2)δ(1,0)(B) + μ((0,1) × R2))δ(1,1)(B)

where we have omitted curly brackets around singletons for readability’s sake, i.e.
(1,0) stands for {(1,0)}, etc. We can already see that μ is evaluated at the points of
Z2 which can reach (0,0) in exactly one step. Similarly, we have

TE ◦ [[step]] ◦ TEc ◦ [[step]] ◦ TEc (μ)(A × B)
= δ(0,0)(A)[[step]] ◦ TEc ◦ [[step]] ◦ TEc (μ)((0,0) × B)

=
δ(0,0)(A)
4

([[step]] ◦ TEc (μ)((0,−1) × R2)δ(0,0)(B)

+ [[step]] ◦ TEc (μ)((−1,0) × R2)δ(0,1)(B)
+ [[step]] ◦ TEc (μ)((1,0) × R2)δ(1,0)(B)
+ [[step]] ◦ TEc (μ)((0,1) × R2)δ(1,1)(B))

=
δ(0,0)(A)
4

(
δ(0,0)(B)
4

μ((0,−2) ∪ (−1,−1) ∪ (1,−1) × R2)

+
δ(0,1)(B)
4

μ((−1,−1) ∪ (−2,0) ∪ (−1,1) × R2)

+
δ(1,0)(B)
4

μ((1,−1) ∪ (2,0) ∪ (1,1) × R2)

+
δ(1,1)(B)
4

μ((−1,1) ∪ (1,1) ∪ (0,2) × R2)
)
.

The expression above enumerates all the points that can reach (0,0) in exactly two
steps and keeps track of the last move via the terms δ(i, j)(B). The operators TEc

annihilate any combination of two steps corresponding to a path visiting (0,0) in
two or fewer steps. For example, the path “down followed by up” from (0,0) also
reaches (0,0) in zero steps, so is excluded. Note also that there is some double
counting, as some paths are more likely than others.
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To describe the operator corresponding to the k th iteration of the loop, we define
P(x, y, k, l) as the set of paths of length k − 1 from (x, y) to (1,0) that do not visit
(0,0). A single additional “left” (l) step thus defines a path of length k to (0,0)
which only visits (0,0) at the last step, hence the notation. We similarly define the
obvious corresponding sets where l is replaced by d for “down”, u for “up” and r
for “right”. With this notation, we get for k ≥ 1

TE ◦ ([[step]] ◦ TEc )k (μ)(A × B)

=
δ(0,0)(A)
4k

"#$δ(0,0)(B)
∑

(x,y)∈Z2
#P(x, y, k, l)μ((x, y) × R2)

+ δ(0,1)(B)
∑

(x,y)∈Z2
#P(x, y, k, d)μ((x, y) × R2)

+ δ(1,0)(B)
∑

(x,y)∈Z2
#P(x, y, k,u)μ((x, y) × R2)

+ δ(1,1)(B)
∑

(x,y)∈Z2
#P(x, y, k,r)μ((x, y) × R2)%&' . (1.23)

Of course, P(x, y, k, l) is nonempty for only finitely many (x, y). The expression
(1.23) is uniquely determined by its values on B replaced by one of:

{(0,0)}, {(0,1)}, {(1,0)}, and {(1,1)}.

Since this holds for any k, it also holds for the full expansion
∞∑
k=0

TE ◦ ([[step]] ◦ TEc )k (μ)(A × B).

By plugging (1.23) into the above expression and regrouping the coefficients of
each term μ((x, y) × R2), we get for B = {(0,0)}

δ(0,0)(A) "#$μ((0,0) × R2) +
∑

(x,y)∈Z2\(0,0)

μ((x, y) × R2)

( ∞∑
k=1

#P(x, y, k, l)
4k

)%&' , (1.24)

and similarly for B = {(0,1)}, {(1,0)}, {(1,1)}. Since #P(x,y,k ,l)
4k is precisely the

probability that the random walk reaches (0,0) from (x, y) in exactly k steps by
avoiding (0,0) until the last step, it follows that (1.24) simplifies to∑

(x,y)∈Z2
μ((x, y) × R2) = μ(Z2 × R2),

since the probability of reaching (0,0) from (x, y) in some number of steps is 1. We
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conclude that the semantics of the entire loop is the operator which sends μ to

μ(Z2 × R2)δ(0,0) ⊗
1
4

(
δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)

)
.

Intuitively, if the starting point is in Z2, then (0,0) is reached with probability one.
By applying the loop operator to the initialized measure described in (1.22), it

now follows that the denotation of the entire program is simply the operatormapping
a measure μ to the measure

μ(R4)δ(0,0),

as expected from the operational semantics.

Example 3: Probabilistic computation of π
Before computing the denotational semantics of the program in Fig. 1.3, it is
instructive as a warm-up exercise to compute the denotational semantics of the
frequent loop-iterator pattern

[[while i < N do i := i + 1]],

where N is some arbitrary constant. There is a single variable, so the semantics will
be given by a linear operatorMR→ MR. It is not hard to see from the definitions
that

[[i := i + 1]](μ)(B) = μ({x | x + 1 ∈ B}) = μ(B − 1).

Let us compute the first few terms of (1.20) applied to [[i := i + 1]]. For n = 1 we
get

τ1(0)(μ)(B) = μ(B≥N ) + μ((B≥N − 1)<N )

where X ≥N � {x ∈ X | x ≥ N}, X<N � {x ∈ X | x < N}, and

(B≥N − 1)<N = {x ∈ R | N ≤ x + 1 ∈ B}<N = {x | x < N ≤ x + 1 ∈ B} ,

where x < N ≤ x + 1 ∈ B is shorthand for x < N ≤ x + 1 and x + 1 ∈ B. Similarly,

τ2(0)(μ)(B) = μ(B≥N ) + μ((B≥N − 1)<N ) + μ(((B≥N − 1)<N ) − 1)<N )
= μ(B≥N ) + μ({x | x < N ≤ x + 1 ∈ B})

+ μ({x | x + 1 < N ≤ x + 2 ∈ B}).

More generally, for n ≥ 1:

τn(0)(μ)(B) = μ(B≥N ) +
n∑

k=0
μ({x | x + k < N ≤ x + (k + 1) ∈ B}).
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It follows that the operator [[while i < N do i := i + 1]] maps a measure μ to the
measure

[[while i < N do i := i + 1]](μ)(B)

= μ(B≥N ) +
∞∑
k=0
μ({x | x + k < N ≤ x + (k + 1) ∈ B}).

The intuition behind this operator is as follows. Considering the interval B =
[N,N + 1], it is clear that if x + k ≤ N < x + k + 1, then it will hold that
x + k + 1 ∈ [N,N + 1], and thus

[[while i < N do i := i + 1]](μ)([N,N + 1])

= μ([N,N + 1]) +
∞∑
k=0
μ((N − k − 1,N − k])

= μ ((−∞,N + 1]) .

In other words, all the μ-mass below N accumulates in [N,N + 1] because it
corresponds to the program exiting the loop from an initial state not satisfying its
guard. Conversely,

[[while i < N do i := i + 1]](μ)((N + 1,∞)) = μ((N + 1,∞)),

since this is the μ-mass of states that never enter the loop. It follows that [[while i <
N do i := i + 1]](μ)([N,∞)) = μ(R), i.e. any measure gets mapped to a measure
whose support is [N,∞), which makes good semantic sense. Note also that if the
input distribution is a Dirac delta δx with x < N , then as expected, the definition
above gives

[[while i < N do i := i + 1]](δx) = δx+ �N−x�,

where �N − x� is the ceiling function applied to N − x, i.e. the smallest integer
above N − x.
With this understanding of the interpretation of the common loop-iterator pattern,

let us turn to the program in Fig. 1.3. We start by examining the body of the loop,
namely:

x:=rand();

y:=rand();

if (x*x+y*y) < 1 then n:=n+1;

i:=i+1

which we will denote by body. By applying the rules defining the denotational
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semantics, we see that the operator [[body]] : MR4 → MR4 is

[[body]](μ)(Bi × Bn × Bx × By)
= λ(Bx × By ∩ D)μ(Bi − 1 × Bn − 1 × R × R)
+ λ(Bx × By ∩ Dc)μ(Bi − 1 × Bn × R × R),

where D =
{
(x, y) | x2 + y2 ≤ 1

}
is the unit disk and λ is the two-dimensional

Lebesgue measure (area) restricted to [0,1]2, which is equivalently given by the
product of two copies of the uniform distribution on [0,1] corresponding to the two
occurrences of rand().
We iteratively compute [[while i < N do body]] by evaluating the terms in

the monotone sequence (1.20). The computation is similar to the simple warmup
loop-iterator pattern above, with the operator [[body]] replacing [[i := i + 1]] as
body of the loop.

τ1(0)(μ)(Bi × Bn × Bx × By)
= μ(B≥N

i × Bn × Bx × By)
+ λ(Bx × By ∩ D)μ((B≥N

i − 1)<N × Bn − 1 × R × R)
+ λ(Bx × By ∩ Dc)μ((B≥N

i − 1)<N × Bn × R × R).

Iterating once more, we get

τ2(0)(μ)(Bi × Bn × Bx × By)
= τ1(0)(ν)(Bi × Bn × Bx × By)

+ λ(Bx × By ∩ D)
[π
4
μ(((B≥N

i − 2)<N − 1)<N × Bn − 2 × R × R)

+
(
1 −
π

4

)
μ(((B≥N

i − 1)<N − 1)<N × Bn − 1 × R × R)
]

+ λ(Bx × By ∩ Dc)
[π
4
μ(((B≥N

i − 1)<N − 1)<N × Bn − 1 × R × R)

+
(
1 −
π

4

)
μ(((B≥N

i − 1)<N − 1)<N × Bn × R × R)
]
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since λ(D) = π/4 and λ(Dc) = 1 − π/4. Generally,

τn+1(0)(μ)(Bi × Bn × Bx × By)
= τn(0)(ν)(Bi × Bn × Bx × By)

+ λ(Bx × By ∩ D)

[
n∑

k=0

(
n
k

) (π
4

)k (
1 −
π

4

)n−k
μ(Bi(n + 1,N) × Bn − k − 1 × R2)]

+ λ(Bx × By ∩ Dc)

[
n∑

k=0

(
n
k

) (π
4

)k (
1 −
π

4

)n−k
μ(Bi(n + 1,N) × Bn − k × R2)]

where we have defined Bi(n,N) � {x | x + n − 1 < N ≤ x + n ∈ Bi}. The limit
distribution can be seen as an infinite sum of disjoint cases indexed by n, the
number of iterations of the loop. To each n corresponds a binomial distribution
with parameters ( π4 ,n) counting the number of times (x ∗ x + y ∗ y < 1)—and thus
the increment n := n + 1—was realized.
The denotation simplifies considerably when we pre-compose with the two ini-

tialisation steps of the program, namely i := 0; n := 0. Assuming a probability
distribution μ ∈ MR4 as input, the denotational semantics is then given by

[[i := 0 ; n := 0 ; while i < 1e9 do body]](μ)(Bi × Bn × Bx × By)
= [[while i < 1e9 do body]]μ(R × R × Bx × By)δ0(Bi)δ0(Bn)

= λ(Bx × By ∩ D)

[ 1e9∑
k=0

(
1e9
k

) (π
4

)k (
1 −
π

4

)n−k
δ1e9(Bi)δk+1(Bn)

]
+ λ(Bx × By ∩ Dc)

[ 1e9∑
k=0

(
1e9
k

) (π
4

)k (
1 −
π

4

)n−k
δ1e9(Bi)δk(Bn)

]
.

Finally, we compose with [[i := 4 ∗ n/1e9]]. Since we are only interested in the
register i containing the approximation of π, we compute the i-marginal given by
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(πi)∗ ([[i := 0 ; n := 0 ; while i < 1e9 do body ; i := 4 ∗ n/1e9]]) (μ)(Bi)
= [[i := 0 ; n := 0 ; while i < 1e9 do body ; i := 4 ∗ n/1e9]](μ)(Bi × R3)

= λ(D)

[ 1e9∑
k=0

(
1e9
k

) ( π
4

)k (
1 −
π

4

)n−k
δk+1({x | 4x/1e9 ∈ Bi})

]
+ λ(Dc)

[ 1e9∑
k=0

(
1e9
k

) ( π
4

)k (
1 −
π

4

)n−k
δk({x | 4x/1e9 ∈ Bi})

]
=

1e9+1∑
k=0

(
1e9 + 1

k

) ( π
4

)k (
1 −
π

4

)n−k
δk({x | 4x/1e9 ∈ Bi})

= Binomial
( π
4
,1e9 + 1

)
({x | 4x/1e9 ∈ Bi}) .

In other words, from a denotational standpoint, our program returns a distribution
whose i-marginal is the pushforward under the rescaling map x �→ 4x/1e9 of
the binomial distribution Binomial (π/4,1e9 + 1). Since the binomial distribution
is just a sum of Bernoulli distributions with parameter π/4, the connection with
the operational semantics of Section 1.3.4 is evident. However, note that the final
output of the denotational semantics captures all possible branches of the operational
semantics in one single object, namely the distribution Binomial (π/4,1e9 + 1).
As promised in Section 1.3.4, wewill provide a tighter bound on the probability of

getting a good approximation of π via the programof Fig. 1.3.Hoeffding’s inequality
(Hoeffding (1994)) with X a random variable distributed as Binomial (p,n) says that

P [|X − pn| ≤ εn] ≥ 1 − 2 exp(−2ε2n).

For example, with error tolerance ε = 0.00007, we get that

Binomial
(π
4
,1e9 + 1

)
({x | 4x/1e9 ∈ [π − ε, π + ε]}) ≥ 0.999,

which is a much tighter bound than the one provided by the Chebyshev inequality
in Section 1.3.4. This shows that proving probabilistic guarantees about a program
such as

(πi)∗[[prog]]([π − ε, π + ε]) ≥ 0.999

can depend on the difficult and purely mathematical problem of finding sufficiently
tight bounds to concentration of measure inequalities.

Example 4: The Cantor distribution
We finish by computing the denotational semantics of the program of Fig. 1.4. As
mentioned at the end of Section 1.3.5, the least fixpoint denotational semantics of
any program containing a while true loop is simply the constant operator to 0
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since the program never halts. Formally, if we denote by cantor the program of
Fig. 1.4, then for every μ ∈ MR2 (since the program contains two variables)

[[cantor]](μ) = 0.

However, as we also discussed above, the mean ergodic theorem provides an
alternative semantics to non-terminating while true programs. We compute this
semantics explicitly for the cantor program and, as expected, recover the Cantor
measure which we encountered when we computing the operational semantics of
cantor in Section 1.3.4.
Once again we start by examining the body of the loop. By unravelling the

definition of the denotational semantics of terms, it is not hard to compute the
semantics of the body of the loop which is given by the operator sending μ to the
measure

[[body]](μ)(Bx × Bd) =
1
2
μ

({
(x, d) | x ∈ Bx,

d
3

∈ Bd

})
+
1
2
μ

({
(x, d) | x +

2d
3

∈ Bx,
d
3

∈ Bd

})
.

It is much easier to reason about the semantics of cantor in terms of Markov
kernels. The body of the loop in particular is the pushforward (defined in Eq. (1.8))
of the kernel [[body]]ker : R2 → MR2 defined by

[[body]]ker(x, d) � 1
2
δ(x, d3 ) +

1
2
δ(x+ 2d3 , d3 )

It is easy to check that [[body]]ker∗ = [[body]], and since the pushforward operation
(−)∗ is functorial we can compose these kernels to get a kernel representation(
[[body]]j

)ker of the operator [[body]]j for each j ≥ 1:(
[[body]]j

)ker
(x, d) =

1
2j

∑
w∈{0,2} j

δ(x+
∑ j

i=1
wi d

3i
, d

3 j
)

Using this kernel representation of [[body]]j it becomes relatively straightforward
to compute the mean ergodic limit given by Eq. (1.21), viz.

lim
n→∞

1
n

n−1∑
j=0

[[body]]j (1.25)

In order to compute this limit we start by defining the σ-algebra Bx,d generated by
the sets

Cx,d
w =

{
y | x +

|w |∑
i=1

wid
3i

≤ y < x +
|w |∑
i=1

wid
3i
+

d
3 |w |

}
,
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where w is a word of {0,1,2}∗, |w | is the length of this word, and wi is the ith letter in
w. The sets Cx,d

w are variants of the sets Ca1 · · ·ak
which we defined when discussing

the operational semantics of the cantor program in Section 1.3.4, stretched and
shifted to fit the intervals [x, x + d]. In particular, Cw1 · · ·wk

= C0,1w1 · · ·wk
. In exactly

the same way, these sets generate the usual (Borel) σ-algebra on each interval
[x, x + d].
Consider now the Markov kernel on R2 defined at each (x, d) by the measure
γ(x, d) on [x, x + d] specified uniquely by its values on the generators Cx,d

w via

γ(x, d)(Cx,d
w × Bd) =

{
2−|w |δ(0)(Bd) if w ∈ {0,2}∗,

0 otherwise

where δ(0) is a curious measure defined as follows:

δ(0)(B) =

{
1 if B contains an interval (0, ε)
0 otherwise

We will see in an instant how δ(0) arises, but note first that, modulo the δ(0) term,
the measure γ(x, d) is simply a stretched and shifted version of the Cantor measure
defined in Eq. (1.15), Section 1.3.4. In particular, γ(0,1) is simply the product
κ ⊗ δ(0) of the Cantor measure κ with δ(0). We claim that γ is the Markov kernel
corresponding to the mean ergodic limit Eq. (1.25). To see this we simply compute
that

1
n

n−1∑
j=0

(
[[body]]j

)ker
(x, d)(Cx,d

w × Bd) =

{
0 n < |w |
1
2|w |

1
n

∑−1n
i= |w | δ

d
3i otherwise.

It follows that for any rectangle Cx,d
w × Bd

lim
n→∞

1
n

n−1∑
j=0

(
[[body]]j

)ker
(x, d)(Cx,d

w × Bd) = γ(x, d)(Cx,d
w × Bd) (1.26)

Indeed, the Cx,d
w contribution to the product is the constant 1

2|w | as soon as n ≥
|w |, and it is not hard to convince oneself that limn→∞

1
n

∑n
i= |w | δ

d
3i (Bd), the Bd

contribution, is precisely given by δ(0)(Bd): if Bd contains an interval (0, ε) then
there will exist an N such that d

3n ∈ (0, ε) ⊆ Bd for all n ≥ N and the limit
1
n

∑n−1
i= |w | δ

d
3i (Bd) will thus converge to 1. In all other cases the limit converges to 0.

We can then conclude that the measures on the LHS and RHS of Eq. (1.26) agree
on the usual (Borel) product σ-algebra on [x, x+d]×R (this follows from Dynkin’s
π-λ lemma (Aliprantis and Border, 1999, 4.11) because the collection of sets Cx,d

w

are closed under intersection, i.e. form a π-system).
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We can now conclude that the mean ergodic denotational semantics of the pro-
gram [[while true do body]] is the operator given by the pushforward of the kernel
γ. In particular, the semantics of the entire cantor program is given by

[[cantor]](μ) = [[x := 0; d := 1; while true do body]](μ)
= γ∗([[x := 0; d := 1]])(μ)
= μ(R2)γ∗(δ(0,1))
= μ(R2)γ(0,1)
= μ(R2)(κ ⊗ δ(0))

and we recover the Cantor measure which we obtained from the operational seman-
tics in Section 1.3.4, as expected.
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