R. A. Blumenthal Nagoya Math. J. Vol. 83 (1981), 197-201

RIEMANNIAN HOMOGENEOUS FOLIATIONS WITHOUT HOLONOMY

ROBERT A. BLUMENTHAL

§1. Introduction

Let M be a compact connected C^{∞} manifold with a smooth Riemannian foliation \mathscr{F} . That is, (M, \mathscr{F}) admits a bundle-like metric in the sense of [7]. In [4] it is shown that if all leaves of \mathscr{F} are closed without holonomy, then the space of leaves M/\mathscr{F} of the foliation is a manifold and the natural projection $M \to M/\mathscr{F}$ is a locally trivial fibre space. In the present work we show that for certain of the Riemannian homogeneous foliations, holonomy is the only obstruction to the foliation being a fibration.

Let G/K be a simply connected, even dimensional, positively curved Riemannian homogeneous space of a compact connected Lie group G and let \mathscr{F} be a homogeneous G/K-foliation of a compact connected manifold M. For example, \mathscr{F} is a codimension 2q elliptic (i.e., homogeneous $SO(2q + 1)/SO(2q) \cong S^{2q}$ -) foliation. Then \mathscr{F} is cohomologically a fibration in the sense that the base-like cohomology algebra of the foliated manifold (M, \mathscr{F}) is isomorphic to the de Rham cohomology algebra of G/K [3]. The main result of this paper asserts that if \mathscr{F} has no holonomy, then it is actually a fibration.

(1.1) THEOREM. If \mathcal{F} is without holonomy, then M fibres over G/K with the leaves of \mathcal{F} as fibres.

§2. Riemannian Homogeneous Foliations

In this section we prove (1.1) and use its proof to elucidate further properties of Riemannian homogeneous foliations.

Let G/K be a connected homogeneous space on which G acts effectively and let \mathscr{F} be a homogeneous G/K-foliation of a connected manifold M. That is, \mathscr{F} is defined by a G/K-cocycle $\{(U_a, f_a, \lambda_{g_a\beta})\}_{a,\beta \in A}$ where

Received November 12, 1979.

ROBERT A. BLUMENTHAL

- i) $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M
- ii) $f_{\alpha}: U_{\alpha} \to G/K$ is a submersion defining $\mathscr{F} | U_{\alpha}$
- iii) $f_{\alpha} = \lambda_{g_{\alpha\beta}} \circ f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$ where $g_{\alpha\beta} \in G$ and $\lambda_{g_{\alpha\beta}}$ denotes the diffeomorphism of G/K which sends aK into $g_{\alpha\beta}aK$.

To prove the theorem, we recall a construction from [2] which gives a useful realization of the holonomy group of a leaf of \mathcal{F} .

Let $P = \{[\lambda_g \circ f_a]_x : x \in U_a, \alpha \in A, g \in G\}$, where $[\lambda_g \circ f_a]_x$ denotes the germ of $\lambda_g \circ f_a$ at x and let $\pi : P \to M$ be defined by $\pi([\lambda_g \circ f_a]_x) = x$. Then P possesses a well-defined topology and differentiable structure such that $\pi : P \to M$ is a smooth regular covering. Moreover, the evaluation map $F : P \to G/K$ defined by $F([\lambda_g \circ f_a]_x) = \lambda_g(f_a(x))$ is a smooth submersion constant along the leaves of $\pi^{-1}(\mathscr{F})$ where $\pi^{-1}(\mathscr{F})$ denotes the foliation of P whose leaves are the connected components of the inverse images under π of the leaves of \mathscr{F} . By choosing a connected component of P, we may assume that P is connected. This connected regular covering gives rise to a homomorphism $\Phi : \pi_1(M, x_0) \to G$ such that $\Gamma = \text{image}(\Phi)$ is the group of covering transformations and such that the diagram

$$P \xrightarrow{F} G/K$$

$$\gamma \bigvee_{P \xrightarrow{F}} G/K$$

$$P \xrightarrow{F} G/K$$

is commutative for each $\gamma \in \Gamma$.

Let L be a leaf of \mathscr{F} and choose a leaf L' of $\pi^{-1}(\mathscr{F})$ which projects to L. Then the holonomy group of L is isomorphic to $\Gamma_{L'} = \{\gamma \in \Gamma : \gamma(L') = L'\}$ and thus $\pi | L' : L' \to L$ is a regular covering with the holonomy group of L as its group of covering transformations.

If K is compact, then M admits a bundle-like metric (whence \mathscr{F} is called a Riemannian homogeneous foliation) such that the lifted metric on P is bundle-like with respect to the foliation defined by the submersion F. Thus if M is also compact, we have that $F: P \to G/K$ is a locally trivial fibre space [5]. (We remark that since an isometry of a connected Riemannian manifold is determined by its value and differential at a point, this construction remains valid for a foliation defined by an N-cocycle $\{(U_{\alpha}, f_{\alpha}, g_{\alpha\beta})\}_{\alpha,\beta\in A}$ where N is a connected Riemannian manifold and each $g_{\alpha\beta}$ extends to an isometry of N.)

Assume now that M, \mathcal{F} , and G/K satisfy the hypotheses of (1.1). Fix

198

an orientation on G/K invariant under the action of G. Let $\gamma \in \Gamma$. Then λ_{γ} is an orientation-preserving isometry of G/K and hence has a fixed point y [6]. It is here that we have used the assumption in Theorem (1.1) that G/K is an even dimensional, positively curved Riemannian homogeneous space of the compact connected Lie group G. Since $F: P \to G/K$ is a fibration over a simply connected manifold, we have that the space of leaves of $\pi^{-1}(\mathscr{F})$ is diffeomorphic to G/K and hence there exists a unique leaf L'_0 of $\pi^{-1}(\mathscr{F})$ such that $F(L'_0) = y$. Now $F(\gamma(L'_0)) = \lambda_{\gamma}(F(L'_0)) = \lambda_{\gamma}(y) = y = F(L'_0)$ and hence $\gamma(L'_0) = L'_0$. Since $\Gamma_{L_0'}$ is isomorphic to the holonomy group of the leaf $L_0 = \pi(L'_0)$ of \mathscr{F} , it follows that γ is the identity transformation. Hence Γ is trivial and so M is diffeomorphic to P whence $F: M \to G/K$ is a fibration with the leaves of \mathscr{F} as fibres.

(2.1) COROLLARY. Let G/K be a simply connected, even dimensional, positively curved Riemannian homogeneous space of a compact connected Lie group G and let \mathscr{F} be a one-dimensional homogeneous G/K-foliation of a compact connected manifold M. Then \mathscr{F} has a compact leaf and $\pi_1(M)$ has polynomial growth of degree ≤ 1 .

Proof. If \mathscr{F} is without holonomy, then by (1.1) the leaves of \mathscr{F} are the fibres of a fibration $M \to G/K$ and hence all the leaves are circles. Since G/K is simply connected, the exact homotopy sequence of this fibration gives a surjection $\pi_1(S^1) \to \pi_1(M)$ whence $\pi_1(M)$ has polynomial growth of degree ≤ 1 . If \mathscr{F} has a leaf L whose holonomy group is non-trivial, then L is diffeomorphic to S^1 . Moreover, since L is compact, the image of its fundamental group in $\pi_1(M)$ is a subgroup of finite index [2] and hence $\pi_1(M)$ has polynomial growth of degree ≤ 1 [1].

(2.2) PROPOSITION. Let \mathscr{F} be a codimension 2 transversely Euclidean (homogeneous $SO(2) \cdot \mathbb{R}^2/SO(2) \cong \mathbb{R}^2$ -) foliation of a compact connected manifold M. If \mathscr{F} is without holonomy, then M fibres over T^2 .

Proof. In this case Γ is a subgroup of $SO(2) \cdot \mathbb{R}^2$, the group of rigid motions of the plane. Since \mathscr{F} is without holonomy, it follows that Γ acts freely on \mathbb{R}^2 and hence is a group of translations. If (x, y) denotes the standard coordinates on \mathbb{R}^2 , then dx and dy are linearly independent translation-invariant one-forms and hence there exist smooth linearly independent one-forms ω_1 and ω_2 on M such that $\pi^*\omega_1 = F^*(dx), \pi^*\omega_2 = F^*(dy)$. Moreover, ω_1 and ω_2 are closed and so M fibres over T^2 [8].

We now apply the above construction to study the existence of compact leaves for a class of Riemannian homogeneous foliations. Let G/Kbe a compact simply connected Riemannian symmetric space with nonzero Euler characteristic where $G = I_0(G/K)$.

(2.3) PROPOSITION. Let M be a compact manifold with solvable fundamental group. Then every homogeneous G/K-foliation of M has a compact leaf.

Proof. The image Γ of the homomorphism $\Phi: \pi_1(M, x_0) \to G$ is a solvable subgroup of the compact Lie group G and so its closure is a compact solvable Lie subgroup of G. Let H be the connected component of the identity of $\overline{\Gamma}$. Then H is a toral subgroup. Since the Euler characteristic of G/K is nonzero, G and K have the same rank [9] and hence H is contained in some conjugate of K. Thus there exists a point y of G/K fixed under the action of H and hence, since H is a subgroup of $\overline{\Gamma}$ of finite index, the orbit of y under the action of Γ is a finite set of points $y = y_1, y_2, \dots, y_r$. For each $i = 1, \dots, r$ let L_i be the unique leaf of $\pi^{-1}(\mathscr{F})$ such that $F(L_i) = y_i$. Then L_1, \dots, L_r all project via π to the same leaf L of \mathscr{F} and, since $\pi^{-1}(L) = \bigcup_{i=1}^r L_i$ is a closed subset of P, it follows that L is compact.

Recall that by a codimension q elliptic foliation of a manifold M we mean a homogeneous G/K-foliation of M where G = SO(q + 1), K = SO(q), $G/K \cong S^q$.

(2.4) COROLLARY. Every codimension 2q elliptic foliation of a compact manifold with solvable fundamental group has a compact leaf.

References

- [1] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc., (3) 25 (1972), 603-614.
- [2] R. Blumenthal, Transversely homogeneous foliations, Annales de l'Institut Fourier 29 (1979), 143-158.
- [3] —, The base-like cohomology of a class of transversely homogeneous foliations, Bulletin des Sciences Mathématiques, 104 (1980), 301-303.
- [4] R. Hermann, On the differential geometry of foliations, Annals of Math., (3) 72 (1960), 445-457.
- [5] —, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc., 11 (1960), 236-242.
- [6] S. Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (70) Springer-Verlag, Berlin, 1972.

200

- [7] B. Reinhart, Foliated manifolds with bundle-like metrics, Annals of Math., (1)
 69 (1959), 119-132.
- [8] D. Tischler, On fibering certain foliated manifolds over S¹, Topology 9 (1970), 153-154.
- [9] J. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

Université des Sciences et Techniques de Lille I U.E.R. de Mathématiques Pures et Appliquées B.P. 36-59650 Villeneuve d'Ascq France

Department of Mathematics St. Louis University St. Louis, Missouri 63103 U.S.A.