ON THE CONES ASSOCIATED WITH BIORTHOGONAL SYSTEMS AND BASES IN BANACH SPACES

C. W. MCARTHUR, IVAN SINGER, AND MARK LEVIN

1. Let *E* be a Banach space (by this we shall mean, for simplicity, a *real* Banach space) and (x_n, f_n) ($\{x_n\} \subset E, \{f_n\} \subset E^*$) a biorthogonal system, such that $\{f_n\}$ is total on *E* (i.e. the relations $x \in E, f_n(x) = 0, n = 1, 2, ...,$ imply x = 0). Then it is natural to consider the cone

(1)
$$K = K_{(x_n, f_n)} = \{x \in E | f_n(x) \ge 0 \ (n = 1, 2, \ldots)\},\$$

which we shall call "the cone associated with the biorthogonal system (x_n, f_n) ". In particular, if $\{x_n\}$ is a basis of E and $\{f_n\}$ the sequence of coefficient functionals associated with the basis $\{x_n\}$, this cone is nothing else but

(2)
$$K = K_{\{x_n\}} = \left\{ \sum_{i=1}^{\infty} \alpha_i x_i \in E \mid \alpha_n \ge 0 \ (n = 1, 2, \ldots) \right\},$$

and we shall call it "the cone associated with the basis $\{x_n\}$ ". Recently, Fullerton (3, Theorems 1, 2, and 3) and Gurevič (6, Theorems 1 and 4, Lemma 3) have given geometric conditions on the cone $K = K_{(x_n, f_n)}$ associated with a biorthogonal system (x_n, f_n) , which are necessary and sufficient in order that $\{x_n\}$ be an unconditional basis of the space E, and Gurarii (5, p. 1239, Theorem 2) has given a condition on the cone $K = K_{(x_n, f_n)}$ which is sufficient in order that $\{x_n\}$ be a "basis of the cone K" (i.e. that for every $x \in K$ the series $\sum_{i=1}^{\infty} f_i(x)x_i$ be convergent to x). In § 2 of the present paper we shall further this study, giving conditions on K which are necessary and sufficient in order that $\{x_n\}$ be an unconditional basis of the cone K, and a sufficient condition in order that $\{x_n\}$ be an unconditional basis of K, which is also "boundedly complete on K".

Throughout this paper, by "cone" we shall understand "closed convex cone having the origin as extreme point", i.e. a closed set K such that $K + K \subset K$, $\lambda K \subset K$ ($\lambda \ge 0$), and $K \cap (-K) = \{0\}$. (The assumption above, that $\{f_n\}$ is total on E, was made in order to ensure that this last condition is satisfied.) A subset B of a cone K is said to be a "base" of the cone K if B is closed and convex and if every $x \in K \sim \{0\}$ has a unique representation of the form $x = \lambda y$, with $\lambda > 0$, $y \in B$. Fullerton (3, Remark after Theorem 3') has observed that the cone $K = K_{\{x_n\}}$ associated with a basis $\{x_n\}$ of a Banach

Received May 8, 1968 and in revised form, August 19, 1968. This work was supported in part by the National Science Foundation, Grant NSF GP-7243.

space cannot have a base which is compact. (Actually, his argument in (3) shows that the cone may not have even a weakly compact base.) In § 3 we shall further this study, characterizing some types of bases $\{x_n\}$ of a Banach space E by geometric properties of the bases B of the associated cone $K = K_{\{x_n\}}$, or of the bases $B^{\{\epsilon_n\}}$ of the cones $K_{\{\epsilon_n x_n\}}$ associated with the bases $\{\epsilon_n x_n\}$ of E, where $\epsilon_n = \pm 1$ (n = 1, 2, ...). The question of finding geometric properties of B corresponding to certain properties of $\{x_n\}$ and the converse question, to find properties of $\{x_n\}$ which correspond to certain geometric properties of B, may deserve further interest.

2. We recall that a cone K induces a natural partial order relation on E, namely, $x \ge y$ if and only if $x - y \in K$. (In particular, $x \ge 0$ if and only if $x \in K$.) Let us also recall that the cone K is said to be (a) generating, if E = K - K; (b) minihedral, if for every $x, y \in K$ there exists $z_0 = \sup(x, y)$ (i.e. the element $z_0 \ge x, y$ with the property $z \ge x, y \Rightarrow z \ge z_0$); (c) normal, if there exists a constant $\delta > 0$ such that

(3)
$$||x + y|| \ge \delta$$
 $(x, y \in K, ||x|| = ||y|| = 1).$

Consequently, any cone K which is contained in a normal cone is normal. It is well known (see, e.g., 8, Chapter 1, § 1.2.2) that K is normal if and only if the norm on E is "semi-monotone", i.e. there exists a constant L > 0 such that

(4)
$$0 \leq x \leq y \Rightarrow ||x|| \leq L||y||.$$

The cone $K = K_{\{x_n\}}$ associated with a basis $\{x_n\}$ is normal if and only if it is regular, i.e. the relations $y_1 \leq y_2 \leq \ldots \leq y_n \leq \ldots \leq z$ imply the norm-convergence of the sequence $\{y_n\}$ (see 8, Chapter 1, § 1.2.2; 6).

THEOREM 1. Let E be a Banach space and let (x_n, f_n) $(\{x_n\} \subset E, \{f_n\} \subset E^*)$ be a biorthogonal system such that $\{f_n\}$ is total and that $\{x_n\}$ is a basis of the associated cone $K = K_{(x_n, f_n)}$. The following statements are equivalent:

- (1°) For every $x \in K$ the series $\sum_{i=1}^{\infty} f_i(x)x_i$ is unconditionally convergent (i.e. $\{x_n\}$ is an unconditional basis of the cone K);
- (2°) For every $x \in K$ the series $\sum_{i=1}^{\infty} f_i(x)x_i$ is weakly unconditionally Cauchy;
- (3°) K is normal;
- (4°) For every $x \in K$, the set $P_x = K \cap (x K) = \{y \in E | 0 \le y \le x\}$ is bounded;
- (5°) For every $x \in K$, the set P_x above is linearly homeomorphic to a finite cube or a cube of Hilbert.

Moreover, if we have (1°) , then K is minihedral.

Proof. The implication $(1^{\circ}) \Rightarrow (2^{\circ})$ is trivial. Assume now that we have (2°) .

Let $x, y \in K$ be such that $y \leq x, 0 \leq f_i(y) \leq f_i(x)$ (i = 1, 2, ...), and let $f \in E^*$ be arbitrary. Then since $\{x_n\}$ is a basis of K and by (2°),

$$|f(y)| = \left|\sum_{i=1}^{\infty} f_i(y)f(x_i)\right| \leq \sum_{i=1}^{\infty} f_i(y)|f(x_i)| \leq \sum_{i=1}^{\infty} f_i(x)|f(x_i)| = M_{f,x} < \infty$$
(*M* a positive constant),

which shows that for every $x \in K$, the set

$$P_x = \{ y \in E | 0 \leq y \leq x \}$$

is weakly bounded, whence also strongly bounded. Thus $(2^{\circ}) \Rightarrow (4^{\circ})$. The equivalence $(3^{\circ}) \Leftrightarrow (4^{\circ})$ is well known (see, e.g., 1, p. 1165, Lemma 2). Assume now that we have (3°) . Let $x \in K$ and $\epsilon > 0$ be arbitrary. Since $\{x_n\}$ is a basis of K, there exists a positive integer N such that

(5)
$$\left\|\sum_{i=N}^{\infty}f_i(x)x_i\right\| < \epsilon/L,$$

where L is the constant occurring in (4). Now let $\sum_{i=1}^{\infty} f_{n_i}(x) x_{n_i}$ be an arbitrary subseries of $\sum_{i=1}^{\infty} f_i(x) x_i$. Choose i_0 such that $n_i \ge N$ whenever $i \ge i_0$. We have then, for any $p, q \ge i_0$,

$$0 \leq \sum_{i=p}^{q} f_{n_i}(x) x_{n_i} \leq \sum_{i=N}^{\infty} f_i(x) x_i,$$

whence by (4) and (5),

$$\left\|\sum_{i=p}^{q} f_{n_i}(x) x_{n_i}\right\| \leq L \left\|\sum_{i=N}^{\infty} f_i(x) x_i\right\| < L(\epsilon/L) = \epsilon,$$

which proves (since E is complete) that $\sum_{i=1}^{\infty} f_i(x)x_i$ is unconditionally convergent. Thus $(3^\circ) \Rightarrow (1^\circ)$. Furthermore, the implication $(5^\circ) \Rightarrow (4^\circ)$ is trivial (since the cubes in (5°) are compact), and the implication $(1^\circ) \Rightarrow (5^\circ)$ follows, observing that in the proof by Fullerton (3, Theorem 2) of the similar statement for $\{x_i\}$ an unconditional basis of the whole space E, only expansions of elements of K are used. (Let us also mention that one can show directly, with the standard ϵ -net method, that for each $x \in K$ the set P_x is compact, and then apply a result of Klee (7, p. 31, Corollary 1.3), to conclude that P_x is homeomorphic to the fundamental cube of Hilbert whenever $f_n(x) > 0$ $(n = 1, 2, \ldots)$.) Thus $(1^\circ) \Leftrightarrow \ldots \Leftrightarrow (5^\circ)$. Assume, finally, that we have (1°) and let $x, y \in K$ be arbitrary. Then the series $\sum_{i=1}^{\infty} [f_i(x) + f_i(y)]x_i$ is unconditionally convergent, whence so is the series $\sum_{i=1}^{\infty} [sup(f_i(x), f_i(y))]x_i$, and the sum of this latter series is obviously $\sup(x, y)$. Thus $(1^\circ) \Rightarrow K$ is minihedral, which completes the proof of the theorem.

Remark 1. A basis $\{x_n\}$ of the whole space E can have property (1°) without

1208

being an unconditional basis of E, as shown, for example, by the basis

(6)
$$x_n = \sum_{i=1}^n e_i, \quad n = 1, 2, \dots$$
 (where $e_i = \{\delta_{ij}\}_{j=1}^\infty$),

of the space $E = c_0$.

Remark 2. The converse of the last assertion of Theorem 1 is not valid, as shown by the following example: Let E be the closed hyperplane

$$\left\{x = \left\{\xi_n\right\} \in \left|l^1\right| \sum_{i=1}^{\infty} \xi_i = 0\right\}$$

in the space l^1 , and let

(7)
$$x_n = e_n - e_{n-1}$$
 $(n = 1, 2, ...).$

Then $\{x_n\}$ is a basis of E (see, e.g., 11, p. 364), with the associated sequence of coefficient functionals

(8)
$$f_n(x) = \sum_{i=1}^n \xi_i \qquad (x = \{\xi_n\} \in E),$$

whence

(9)
$$K = \left\{ x = \{\xi_n\} \in E \mid \sum_{i=1}^n \xi_i \ge 0 \quad (n = 1, 2, \ldots) \right\}.$$

The cone K is minihedral and generating. In fact, if $\sum_{i=1}^{\infty} \alpha_i x_i \in E$, we have

$$\sum_{i=1}^{\infty} \alpha_i x_i = \sum_{i=1}^{\infty} \alpha_i (e_i - e_{i+1}) = \alpha_1 e_1 + \sum_{i=2}^{\infty} (\alpha_i - \alpha_{i-1}) e_i$$

(where $\{e_n\}$ denotes the unit vector basis of l^1), i.e.

$$|\alpha_1|+\sum_{i=2}^{\infty}|\alpha_i-\alpha_{i-1}|<\infty,$$

and conversely. Since $||\alpha_i| - |\alpha_{i-1}|| \leq |\alpha_i - \alpha_{i-1}|$ (i = 2, 3, ...), it follows that $\sum_{i=1}^{\infty} |\alpha_i| x_i$ converges whenever $\sum_{i=1}^{\infty} \alpha_i x_i$ converges, and thus for each $x \in E$ there exists the element $|x| \in E$, whence also the elements $x_+ = \sup(x, 0), x_- = \sup(-x, 0)$, whence K is minihedral and generating. However, K is not normal, since for the sequences $\{x_n\}, \{z_n\} \subset E$ defined by

$$y_n = (1/n)[e_1 + e_3 + \ldots + e_{2n-1}] - (1/n)[e_2 + e_4 + \ldots + e_{2n}]$$

$$(n = 1, 2, \ldots),$$

$$z_n = (1/n)[e_1 - e_{2n}],$$

we have $0 \leq y_n \leq z_n$, $||y_n|| = 2$, $||z_n|| = 2/n$ (n = 1, 2, ...). (One can also observe that if K would be normal, then since it is generating, $\{x_n\}$ would be an unconditional basis of E (6, Theorems 1 and 4, Lemma 3), which is not the case (11, p. 364).)

Remark 3. It is essential in Theorem 1 to assume that $\{x_n\}$ is a basis of K, as shown by the example of the unit vectors x_n in the space E = m, for which we have (3°) and (4°) but not (1°), (2°) or (5°). Let us mention that if $\{f_n\}$ is total on E and K is "acute angled" in the sense that

(10)
$$||x + y|| - 1 \ge \delta(t) > 0$$
 $(x, y \in K, ||x|| \ge 1, ||y|| \ge t),$

then $\{x_n\}$ is a basis of K. (5, Theorem 2); obviously, every acute angled cone is normal, but the converse is not true, as shown by simple two-dimensional examples. Furthermore, the natural positive cone of the space E = m, mentioned in this remark is also normal but not acute angled. Let us also observe that for the usual Schauder basis $\{x_n\}$ of the space E = C([0, 1]) the associated cone $K = K_{\{x_n\}}$ is contained in the natural positive cone of the space E, which is obviously normal. Therefore K is normal, whence, by Theorem 1, for every $x \in K$ the series $\sum_{i=1}^{\infty} f_i(x)x_i$ is unconditionally convergent (although $\{x_n\}$ is not an unconditional basis of E). However, K is not acute angled. (It is easy to give two consecutive elements, x_k and x_{k+1} , of the Schauder basis $\{x_n\}$ such that $||x_k|| = ||x_{k+1}|| = ||x_k + x_{k+1}|| = 1$.)

In the case when K is also sequentially weakly complete, we have the following result.

THEOREM 2. Let E be a Banach space and let (x_n, f_n) $(\{x_n\} \subset E, \{f_n\} \subset E^*)$ be a biorthogonal system such that the associated cone $K = K_{(x_n, f_n)}$ is normal and sequentially weakly complete. Then $\{x_n\}$ is an unconditional basis of K, which is also boundedly complete on K (i.e., the relations $a_i \ge 0$ (i = 1, 2, ...), $\sup_n ||\sum_{i=1}^n a_i x_i|| < \infty$ imply that $\sum_{i=1}^\infty a_i x_i$ converges).

Proof. Let us first prove that $\{x_n\}$ is boundedly complete on K. Let $\{a_n\}$ be a sequence of scalars such that $a_n \ge 0$ (n = 1, 2, ...), $\sup_n ||\sum_{i=1}^n a_i x_i|| = M < \infty$, and let J be an arbitrary finite set of positive integers. Choose n such that $J \subset [1, n]$. Then

$$0 \leq \sum_{i \in J} a_i x_i \leq \sum_{i=1}^n a_i x_i,$$

whence, since K is normal,

$$\left\|\sum_{i\in J}a_ix_i\right\| \leq L \left\|\sum_{i=1}^n a_ix_i\right\| \leq LM.$$

Consequently, by a theorem of Gel'fand (4, p. 242, Proposition 2), the series $\sum_{i=1}^{\infty} a_i x_i$ is weakly unconditionally Cauchy, i.e.

$$\sum_{i=1}^{\infty} a_i |f(x_i)| = \sum_{i=1}^{\infty} |f(a_i x_i)| < \infty \qquad (f \in E^*),$$

whence, since K is sequentially weakly complete, every subseries $\sum_{i=1}^{\infty} a_{ni} x_{ni}$ converges weakly to an element of K. Therefore, by the Orlicz-Pettis theorem

(2, p. 318, Theorem 1), the series $\sum_{i=1}^{\infty} a_i x_i$ converges strongly. Thus $\{x_n\}$ is boundedly complete on K. Now, since (x_n, f_n) is a biorthogonal system, for every $x \in K$ we have

$$0 \leq \sum_{i=1}^{n} f_i(x) x_i \leq x \qquad (n = 1, 2, \ldots),$$

whence, since K is normal,

$$\sup_{n} \left\| \sum_{i=1}^{n} f_i(x) x_i \right\| \leq L||x|| < \infty,$$

and therefore, by the above, the series $\sum_{i=1}^{\infty} f_i(x)x_i$ converges strongly to an element $y \in K$. Since $\{f_n\}$ is total on E, we must have y = x, and thus $\{x_n\}$ is a basis of K, whence, by the normality of K and by Theorem 1, it is also an unconditional basis of K. This completes the proof.

Remark 4. The converse of Theorem 2 is not valid, as shown by the following example. Let E and $\{x_n\}$ be as in Remark 1. Then $\{x_n\} \subset K$ is a weak Cauchy sequence which is not weakly convergent to any element of E, and thus K is not sequentially weakly complete. However, as observed in Remark 1, $\{x_n\}$ is an unconditional basis of K and it is also boundedly complete on K since the relations $a_n \ge 0$ (n = 1, 2, ...),

$$\sup_{n} \left\| \sum_{i=1}^{n} a_{i} x_{i} \right\| = \sup_{n} \sup_{1 \le j \le n} \left| \sum_{i=j}^{n} a_{i} \right| = \sup_{n} \left| \sum_{i=1}^{n} a_{i} \right| < \infty$$

imply that $\sum_{i=1}^{\infty} a_i < \infty$ and that the series $\sum_{i=1}^{\infty} a_i x_i$ converges to $\sum_{i=1}^{\infty} (\sum_{i=1}^{\infty} a_i) e_i \in K$ (where $\{e_n\}$ is the unit vector basis of $E = c_0$).

3. Let us now turn to a base B of the cone $K = K_{(x_n, f_n)}$ associated with a biorthogonal system (x_n, f_n) . The problem of the existence of such a base has an affirmative answer, namely, we have the following result.

PROPOSITION 1. Let E be a Banach space and let (x_n, f_n) $(\{x_n\} \subset E, \{f_n\} \subset E^*)$ be a biorthogonal system such that $\{f_n\}$ is total. Then the associated cone $K = K_{(x_n, f_n)}$ has an unbounded base.

Proof. Define $f \in E^*$ by

(11)
$$f(x) = \sum_{i=1}^{\infty} \frac{1}{2^i ||f_i||} f_i(x) \qquad (x \in E).$$

It is true that the set

(12)
$$B = \{ y \in K | f(y) = 1 \}$$

is an unbounded base of K. In fact, B is convex and closed and for every $x \in K \sim \{0\}$ we have $x = \lambda y$, where $\lambda = f(x) > 0$ and $y = (1/f(x))x \in B$. This representation is unique since the relations $x = \lambda_1 y_1 = \lambda_2 y_2$, $\lambda_1, \lambda_2 > 0$, $y_1, y_2 \in B$ imply by (12) that $f(x) = \lambda_1 = \lambda_2$, whence also $y_1 = y_2$; therefore B is a base of K. Furthermore, we have

$$f(2^{n}||f_{n}||x_{n}) = \sum_{i=1}^{\infty} \frac{1}{2^{i}||f_{i}||} f_{i}(2^{n}||f_{n}||x_{n}) = 1 \qquad (n = 1, 2, \ldots),$$

i.e. $2^n ||f_n|| x_n \in B$ (n = 1, 2, ...) and this sequence is unbounded, since

$$||2^{n}||f_{n}||x_{n}|| = 2^{n}||f_{n}|| ||x_{n}|| \ge 2^{n}|f_{n}(x_{n})| = 2^{n} \qquad (n = 1, 2, ...).$$

This completes the proof of Proposition 1.

All the results stated in the remainder of the paper for normalized bases $\{x_n\}$, i.e., bases satisfying $||x_n|| = 1$ (n = 1, 2, ...), remain valid, obviously, for "bounded" bases (12, p. 546, Theorem 1.6), i.e. bases satisfying

$$0 < \inf_n ||x_n|| \leq \sup_n ||x_n|| < \infty;$$

we state them here only for normalized bases in order to avoid confusion with boundedness of a base B of K. We recall that a normalized basis $\{x_n\}$ of a Banach space E is said to be of type l_+ (11, p. 353) if there exists a constant $\eta > 0$ such that

(13)
$$\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| \geq \eta \sum_{i=1}^{n} \alpha_{i}$$

for any finite sequence $\alpha_1, \ldots, \alpha_n \ge 0$. As shown in (11, Proposition 1), this happens if and only if there exists a functional $f \in E^*$ such that

(14)
$$f(x_n) \ge 1$$
 $(n = 1, 2, ...)$

THEOREM 3. A normalized basis $\{x_n\}$ of a Banach space E is of type l_+ if and only if the associated cone $K = K_{\{x_n\}}$ has a bounded base.

Proof. Assume that $\{x_n\}$ is a normalized basis of type l_+ . Put

(15)
$$B = \{ y \in K | f(y) = 1 \},\$$

where $f \in E^*$ is any functional satisfying (14). Then B is a base of K and for every $y = \sum_{i=1}^{\infty} \alpha_i x_i \in B$ we have, taking into account $||x_n|| = 1$ and $\alpha_n \ge 0$ (n = 1, 2, ...),

$$||y|| \leq \sum_{i=1}^{\infty} \alpha_i \leq \sum_{i=1}^{\infty} \alpha_i f(x_i) = f\left(\sum_{i=1}^{\infty} \alpha_i x_i\right) = 1,$$

i.e. *B* is bounded. Conversely, assume that the cone *K* associated with the normalized basis $\{x_n\}$ has a bounded base *B*. Then $0 \notin B$ (since otherwise by the convexity of *B*, for any $y \in B$ one would have $\frac{1}{2}y \in B$, whence the element $y \in K$ would have two representations $y = 1 \cdot y = 2 \cdot \frac{1}{2}y$, i.e. *B* would not be a base), whence, since *B* is closed and convex, there exists a functional $f \in E^*$ such that

(16)
$$\inf_{y\in B}f(y)=\delta>0.$$

Since $x_n \in K \sim \{0\}$, there exists a unique representation $x_n = \lambda_n y_n$, with $\lambda_n > 0$, $y_n \in B$, whence $x_n/\lambda_n \in B$, whence $1/\lambda_n = ||x_n/\lambda_n|| \leq \sup_{v \in B} ||v|| = C < \infty$ and thus $\lambda_n \geq 1/C$ (n = 1, 2, ...). Therefore, taking also into account (16), we obtain

$$f(x_n) = \lambda_n f(x_n/\lambda_n) \ge \delta/C$$
 $(n = 1, 2, ...),$

which proves that $\{x_n\}$ is of type l_+ . This completes the proof of Theorem 3.

We recall that a normalized basis $\{x_n\}$ of a Banach space E is said to be (a) shrinking, if $||f||[x_n, x_{n+1}, x_{n+2}, \ldots]|| \to 0$ as $n \to \infty$, for all $f \in E^*$ (where $[x_n, x_{n+1}, x_{n+2}, \ldots]$ denotes the closed linear subspace spanned by $\{x_j\}_{j=n}^{\infty}$); (b) of type P (11, p. 354) if $\sup_n ||\sum_{i=1}^n x_i|| < \infty$.

COROLLARY 1. If $\{x_n\}$ is a normalized shrinking basis or a normalized basis of type P of a Banach space E, then every base B of the associated cone $K = K_{\{x_n\}}$ is unbounded.

In fact, every shrinking basis and every basis of type P is not of type l_+ (11, Theorem 1).

In connection with the above results, the following proposition on general cones (not necessarily associated with biorthogonal systems) will be useful.

PROPOSITION 2. If a cone K in a Banach space E has a bounded base, then K is normal.

Proof. Let B be a bounded base of K. Then $\sup_{y \in B} ||y|| = M < \infty$, and since B is closed and $0 \notin B$, we also have $\inf_{y \in B} ||y|| = m > 0$. Let $0 \leq x \leq z$ be arbitrary with $0 \neq x \neq z$. Then x, z, and z - x have unique representations $x = \lambda_1 y_1, z = \lambda_2 y_2, z - x = \lambda_3 y_3$, with $\lambda_i > 0, y_i \in B$ (i = 1, 2, 3). Hence

$$\lambda_2 y_2 = z = (z - x) + x = \lambda_3 y_3 + \lambda_1 y_1 = (\lambda_3 + \lambda_1) \left[\frac{\lambda_3}{\lambda_3 + \lambda_1} y_3 + \frac{\lambda_1}{\lambda_3 + \lambda_1} y_1 \right].$$

Since B is convex, we have

$$rac{\lambda_3}{\lambda_3+\lambda_1}y_3+rac{\lambda_1}{\lambda_3+\lambda_1}y_1\in B,$$

whence by the unique representation property occurring in the definition of a base of a cone,

$$\lambda_3 + \lambda_1 = \lambda_2$$
 and $\frac{\lambda_3}{\lambda_3 + \lambda_1} y_3 + \frac{\lambda_1}{\lambda_3 + \lambda_1} y_1 = y_2$.

We observe that the second equality is also a consequence of the first equality, since it amounts to

$$\frac{z-x}{\lambda_1+\lambda_3}+\frac{x}{\lambda_1+\lambda_3}=\frac{z}{\lambda_2}\,.$$

Since $\lambda_3 > 0$, from the first of these equalities we obtain $\lambda_1 < \lambda_2$, whence

$$||x|| = \lambda_1 ||y_1|| \leq \lambda_1 M < \lambda_2 M = \lambda_2 m \frac{M}{m} \leq \lambda_2 ||y_2|| \frac{M}{m} = ||z|| \frac{M}{m},$$

which completes the proof of Proposition 2.

1214

Obviously, the converse of Proposition 2 is not valid, since, e.g., the positive cone K associated with the unit vector basis $\{x_n\}$ of the space $E = c_0$ is normal, but has no bounded base (since $\{x_n\}$ is not of type l_+). From Propositions 1 and 2 also follows the following result.

COROLLARY 1. If $\{x_n\}$ is a normalized basis of type l_+ of a Banach space E, then the associated cone $K = K_{\{x_n\}}$ is normal.

One can also prove this result directly, observing that if $\{x_n\}$ is a normalized basis of type l_+ and $0 \leq \alpha_i \leq \beta_i$ (i = 1, 2, ..., n), then

$$\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| \leq \sum_{i=1}^{n} \alpha_{i} \leq \sum_{i=1}^{n} \beta_{i} \leq \frac{1}{\eta} \left\|\sum_{i=1}^{n} \beta_{i} x_{i}\right\|$$

(where $\eta > 0$ is the constant occurring in (13)), whence the same also holds for convergent infinite series $\sum_{i=1}^{\infty} \alpha_i x_i$, $\sum_{i=1}^{\infty} \beta_i x_i$ with $0 \leq \alpha_i \leq \beta_i$ (i = 1, 2, ...).

Taking also into account Theorem 1, we obtain the following result.

COROLLARY 2. If $\{x_n\}$ is a normalized basis of type l_+ of a Banach space E, and $K = K_{\{x_n\}}$ is the associated cone, then for every $x \in K$ the series $\sum_{i=1}^{\infty} f_i(x)x_i$ is unconditionally convergent.

Actually, for bases of type l_+ , one can prove more, namely the result which follows.

PROPOSITION 3. A normalized basis $\{x_n\}$ of a Banach space E is of type l_+ if and only if there exists a constant M > 0 such that for every $x \in K$ the series $\sum_{i=1}^{\infty} f_i(x)x_i$ is absolutely convergent (i.e. $\sum_{i=1}^{\infty} ||f_i(x)x_i|| < \infty$) and

(17)
$$\sum_{i=1}^{\infty} ||f_i(x)x_i|| \leq M||x|| \quad (x \in K).$$

Proof. If $\{x_n\}$ is a normalized basis of type l_+ , then for every $x \in K$ and $n = 1, 2, \ldots$, we have

$$\sum_{i=1}^{n} ||f_i(x)x_i|| = \sum_{i=1}^{n} f_i(x) \leq \frac{1}{\eta} \left\| \sum_{i=1}^{n} f_i(x)x_i \right\|,$$

whence, taking $n \to \infty$, we obtain (17) with $M = 1/\eta$. Conversely, if $\{x_n\}$ is a normalized basis satisfying (17), then for any $\alpha_1, \ldots, \alpha_n \ge 0$ we have, setting $x = \sum_{i=1}^{n} \alpha_i x_i$ in (17),

$$\frac{1}{M}\sum_{i=1}^{n}\alpha_{i} = \frac{1}{M}\sum_{i=1}^{n}\left|\left|\alpha_{i}x_{i}\right|\right| \leq \left\|\sum_{i=1}^{n}\alpha_{i}x_{i}\right\|,$$

i.e., $\{x_n\}$ is of type l_+ , which completes the proof.

In particular, the bases equivalent to the unit vector basis of the space l^1 can be characterized as follows.

THEOREM 4. A normalized basis $\{x_n\}$ of a Banach space E is equivalent to the unit vector basis of l^1 if and only if the associated cone $K = K_{\{x_n\}}$ is generating and has a bounded base.

Proof. The cone $K_{\{e_n\}}$ associated with the unit vector basis $\{e_n\}$ of l^1 is generating and by Theorem 3 it has a bounded base. Therefore, the cone $K_{\{x_n\}}$ associated with any basis $\{x_n\}$ equivalent to $\{e_n\}$ has the same properties. Conversely, assume that $\{x_n\}$ is a normalized basis such that $K = K_{\{x_n\}}$ is generating and has a bounded base B. Then by Proposition 2, K is normal, whence, since it is also generating, $\{x_n\}$ is an unconditional basis (by Theorem 1, or by (6)). On the other hand, by Theorem 3, $\{x_n\}$ is of type l_+ . Consequently (11, p. 353, Remark 1), $\{x_n\}$ is equivalent to the unit vector basis of l^1 , which completes the proof.

The sufficiency part of Theorem 4 can also be proved using Proposition 3, as follows. By Theorem 3, $\{x_i\}$ is of type l_+ . Let $x \in E$ be arbitrary. Then, since K is generating, x = y - z, with $y, z \in K$, whence, by Proposition 3,

$$\sum_{i=1}^{\infty} |f_i(x)| \leq \sum_{i=1}^{\infty} |f_i(y)| + \sum_{i=1}^{\infty} |f_i(z)| = \sum_{i=1}^{\infty} ||f_i(y)x_i|| + \sum_{i=1}^{\infty} ||f_i(z)x_i|| < \infty.$$

The converse implication $(\sum_{i=1}^{\infty} |\alpha_i| < \infty \Rightarrow \sum_{i=1}^{\infty} \alpha_i x_i$ converges) being obvious (since $\{x_n\}$ is normalized and E is complete), $\{x_n\}$ is equivalent to the unit vector basis of l^1 , which completes the proof.

We shall call a subset B of a cone K in a Banach space E a hyperbase of K if there exists a strictly positive functional $f \in E^*$ (i.e. f(x) > 0 for all $x \in K \sim \{0\}$) such that $B = \{y \in K | f(y) = 1\}$. It is immediate that every hyperbase is a base, but the converse is not true, even for compact bases, as shown by the following example. Consider in the space $E = l^2$ the compact convex set

$$Q = \{x = \{\xi_n\} \in l^2 | |\xi_j| \leq 1/j \ (j = 1, 2, \ldots)\}.$$

Then the linear subspace $G = \bigcup_{n=1}^{\infty} nQ$ spanned by Q is dense in $E = l^2$ (since it contains all almost zero sequences), but does not coincide with E (since otherwise by the theorem of Baire (2, p. 20, Theorem 9) some n_0Q would have an interior point, in contradiction with dim $E = \infty$). Take an arbitrary $x \in E \sim G$ and put

$$K = \{\lambda(y - x) | y \in Q, \lambda \ge 0\}.$$

Then one can show that K is a cone and $B = Q - x = \{y - x | y \in Q\}$ is a compact base of K, but not a hyperbase of K.

If (x_n, f_n) $(\{x_n\} \subset E, \{f_n\} \subset E^*)$ is a biorthogonal system (respectively, if $\{x_n\}$ is a normalized basis of E) then for every sequence $\{e_n\}$ with $\epsilon_n = \pm 1$ (n = 1, 2, ...), the sequence $(\epsilon_n x_n, \epsilon_n f_n)$ is also a biorthogonal system (respectively, $\{\epsilon_n x_n\}$ is also a normalized basis of E). One can therefore consider the associated cone

$$K^{\{\epsilon_n\}} = K_{(\epsilon_n x_n, \epsilon_n f_n)} = \{ x \in E | \epsilon_n f_n(x) \ge 0 \ (n = 1, 2, \ldots) \}$$

(respectively, $K^{\{\epsilon_n\}} = K_{\{\epsilon_n x_n\}}$), and a hyperbase $B^{\{\epsilon_n\}}$ of $K^{\{\epsilon_n\}}$. This will permit us to characterize geometrically some other classes of bases in Banach spaces. We shall use the notation

$$B_n^{\{\epsilon_j\}} = B^{\{\epsilon_j\}} \cap [x_n, x_{n+1}, x_{n+2}, \ldots] \qquad (n = 1, 2, \ldots).$$

We recall (11, p. 354) that a normalized basis $\{x_n\}$ of a Banach space E is said to be (a) of type P*, if $\sup_n ||\sum_{i=1}^n f_i|| < \infty$, where $\{f_n\}$ is the associated sequence of coefficient functionals; (b) of type al_+ , if there exists a sequence $\{\epsilon_n\}$, where $\epsilon_n = \pm 1$ (n = 1, 2, ...), such that $\{\epsilon_n x_n\}$ is of type l_+ ; (c) of type wc_0 , if

$$x_n \xrightarrow{w} 0$$

(i.e. $f(x_n) \to 0$ for all $f \in E^*$).

PROPOSITION 4. A normalized basis $\{x_n\}$ of a Banach space E is

(a) of type P*, if and only if there exists a hyperbase B of K containing all x_n (n = 1, 2, ...);

(b) not of type al_+ , if and only if for every $\{\epsilon_n\}, \epsilon_n = \pm 1$ and for every hyperbase $B^{\{\epsilon_n\}}$ of the cone $K^{\{\epsilon_n\}}$ the (unique) numbers $\lambda_n > 0$ for which $B^{\{\epsilon_n\}} \supset \{\lambda_n \epsilon_n x_n\}$ satisfy $\sup_n \lambda_n = \infty$;

(c) of type wc₀, if and only if for every $\{\epsilon_n\}$, $\epsilon_n = \pm 1$, and every hyperbase $B^{\{\epsilon_n\}}$ of the cone $K^{\{\epsilon_n\}}$, the (unique) numbers $\lambda_n > 0$ for which $B^{\{\epsilon_n\}} \supset \{\lambda_n \epsilon_n x_n\}$ satisfy $\lim_{n\to\infty} \lambda_n = \infty$;

(d) shrinking, only if for every $\{\epsilon_n\}, \epsilon_n = \pm 1$, and every hyperbase $B^{\{\epsilon_n\}}$ of the cone $K^{\{\epsilon_n\}}$ we have dist $(0, B_n^{\{\epsilon_j\}}) \to \infty$ as $n \to \infty$.

Proof. (a) If $\{x_n\}$ is of type P*, then by (11, Proposition 3), there exists an $f \in E^*$ such that $f(x_n) = 1$ (n = 1, 2, ...). Put $B = \{y \in K | f(y) = 1\}$. Then B is a hyperbase of K containing all x_n (n = 1, 2, ...). Conversely, if B is a hyperbase of K such that $x_n \in B$ (n = 1, 2, ...), then there exists an $f \in E^*$ such that $B = \{y \in K | f(y) = 1\}$. Then $f(x_n) = 1$ (n = 1, 2, ...) and therefore, by (11, Proposition 3), $\{x_n\}$ is of type P*.

(b) If $\{x_n\}$ is not of type al_+ , then by (11, Proposition 1, we have $\inf_n |f(x_n)| = 0$ $(f \in E^*)$. Let $\epsilon_n = \pm 1$ (n = 1, 2, ...) and let $B^{\{\epsilon_n\}}$ be an arbitrary hyperbase of the cone $K^{\{\epsilon_n\}}$. Then there exists $f \in E^*$ such that $B^{\{\epsilon_n\}} = \{y \in K^{\{\epsilon_n\}} | f(y) = 1\}$, whence $(1/f(\epsilon_n x_n))\epsilon_n x_n \in B^{\{\epsilon_n\}}$ and thus

$$\lambda_n = 1/f(\epsilon_n x_n) \qquad (n = 1, 2, \ldots),$$

whence $\sup_n \lambda_n = \infty$. Conversely, if $\{x_n\}$ is of type al_+ , then by (11, Proposition 1), there exists an $f \in E^*$ such that $|f(x_n)| \ge 1$ (n = 1, 2, ...). Put $\epsilon_n = \operatorname{sign} f(x_n)$. Then $f(\epsilon_n x_n) \ge 1$ (n = 1, 2, ...), whence the set $B^{\lfloor \epsilon_n \rfloor} = \{y \in K^{\lfloor \epsilon_n \rfloor} | f(y) = 1\}$ is a hyperbase of the cone $K^{\lfloor \epsilon_n \rfloor}$ and

 $(1/f(\epsilon_n x_n))\epsilon_n x_n \in B^{\{\epsilon_n\}}$ $(n = 1, 2, \ldots),$

whence $\lambda_n = 1/f(\epsilon_n x_n) \leq 1 \ (n = 1, 2, \ldots).$

(c) The proof is similar to that of (b), with slightly more computation in the converse part.

(d) If $\{x_n\}$ is shrinking, let $\epsilon_n = \pm 1$ (n = 1, 2, ...) and let B^{ϵ_n} be an arbitrary hyperbase of the cone K^{ϵ_n} . Then there exists an $f \in E^*$ such that $B^{\epsilon_n} = \{y \in K^{\epsilon_n} | f(y) = 1\}$, whence for any $y \in B_n^{\epsilon_j}$,

$$y = \sum_{i=n}^{\infty} \alpha_i x_i, \qquad \alpha_i \ge 0 \ (i = n, n+1, \ldots)$$

we have

$$\frac{1}{||y||} = f\left(\frac{y}{||y||}\right) < \epsilon \quad \text{for } n > N_{(\epsilon)}$$

(since $\{x_n\}$ is shrinking). Therefore $||y|| > 1/\epsilon$ for all $y \in B_n^{\{\epsilon_j\}}$ whenever $n > N(\epsilon)$, which completes the proof.

Remark 5. For a biorthogonal system (x_i, f_i) with $\{f_i\}$ total, if E is the closed linear span of $\{x_i\}$ and W is the closure of the set

$$\left\{\sum_{i=1}^{n} a_{i} x_{i} : a_{i} \geq 0, i = 1, 2, \ldots; n = 1, 2, \ldots\right\},\$$

Schaeffer (10, p. 139; 9, p. 251) has shown that $\{x_i, f_i\}$ is an unconditional basis for E if and only if W is a normal b-cone.

References

- 1. T. Andô, On fundamental properties of a Banach space with a cone, Pacific J. Math. 12 (1962), 1163-1169.
- N. Dunford and J. Schwartz, *Linear operators*. I: *General theory* (Interscience, New York, 1958).
- 3. R. E. Fullerton, Geometric structure of absolute basis systems in a linear topological space, Pacific J. Math. 12 (1962), 137-147.
- 4. I. M. Gel'fand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb. 46 (1938), 235-284.
- 5. V. I. Gurariĭ, On bases for sets in Banach spaces, Rev. Roum. Math. Pures Appl. 10 (1965), 1235-1240.
- L. A. Gurevič, Conic tests for bases of absolute convergence, Problems of Mathematical Physics and Theory of Functions, Vol. II, pp. 12-21 (Naukova Dumka, Kiev, 1964). (Russian)
- 7. V. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 8. M. A. Krasnosel'skii, *Positive solutions of operator equations*; translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron (Noordhoff, Gröningen, 1964).
- 9. H. H. Schaeffer, Topological vector spaces (Macmillan, New York, 1966).
- 10. Halbgeordnete lokal konvexe Vectorräume, Math. Ann. 135 (1958), 115-141.
- 11. I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/62), 351-369.
- 12. Bases in Banach spaces. I, Stud. Cerc. Mat. 14 (1963), 533-585. (Romanian)

The Romanian Academy of Sciences, Bucharest, Rumania; The Florida State University, Tallahassee, Florida

https://doi.org/10.4153/CJM-1969-133-7 Published online by Cambridge University Press