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1. Let £ be a Banach space (by this we shall mean, for simplicity, a real 
Banach space) and (xn,fn) ({xn} C E, [fn] C E*) a biorthogonal system, such 
that {/„} is total on E (i.e. the relations x G E,fn(x) = 0, n = 1 , 2 , . . . , imply 
x = 0). Then it is natural to consider the cone 

(1) K = KiXn,fn) = {x € E\fn(x) è 0 (» = 1, 2, . . .)}, 

which we shall call "the cone associated with the biorthogonal system (xnffn)". 
In particular, if \xn} is a basis of E and {fn} the sequence of coefficient func
t iona l associated with the basis {xn}, this cone is nothing else but 

(2) K=K{Xn] = \^aixieE\an^0(n== 1 , 2 , . . . ) } , 

and we shall call it "the cone associated with the basis {xn}". Recently, 
Fullerton (3, Theorems 1, 2, and 3) and Gurevic (6, Theorems 1 and 4, 
Lemma 3) have given geometric conditions on the cone K = KiXn)fn) asso
ciated with a biorthogonal system (xn,fn), which are necessary and sufficient 
in order that {xn} be an unconditional basis of the space E, and Gurariï 
(5, p. 1239, Theorem 2) has given a condition on the cone K = K(Xnifn) which 
is sufficient in order that {xn} be a "basis of the cone K" (i.e. that for every 
x € K the series ^2i>=ifi(x)xi be convergent to x). In § 2 of the present paper 
we shall further this study, giving conditions on K which are necessary and 
sufficient in order that {xn) be an unconditional basis of the cone K, and a 
sufficient condition in order that {xn} be an unconditional basis of Kf which 
is also "boundedly complete on K". 

Throughout this paper, by "cone" we shall understand "closed convex cone 
having the origin as extreme point", i.e. a closed set K such that K + K Q K, 
\K C K (X è 0), and K Pi (-K) = {0}. (The assumption above, that {fn} 
is total on E, was made in order to ensure that this last condition is satisfied.) 
A subset B of a cone K is said to be a "base" of the cone K if B is closed and 
convex and if every x Ç K ^ {0} has a unique representation of the form 
x = \y, with X > 0, y Ç B. Fullerton (3, Remark after Theorem 3') has 
observed that the cone K = K{Xn] associated with a basis {xn} of a Banach 
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space cannot have a base which is compact. (Actually, his argument in (3) 
shows that the cone may not have even a weakly compact base.) In § 3 we 
shall further this study, characterizing some types of bases {xn} of a Banach 
space E by geometric properties of the bases B of the associated cone 
K = K{Xn}, or of the bases B[en} of the cones K{€nXn] associated with the bases 
{enxn} of E, where en = dbl (n — 1, 2, . . .). The question of finding geometric 
properties of B corresponding to certain properties of {xn} and the converse 
question, to find properties of {xn} which correspond to certain geometric 
properties of B, may deserve further interest. 

2. We recall that a cone K induces a natural partial order relation on E, 
namely, x ^ y if and only if x — y Ç K. (In particular, x ^ 0 if and only if 
x G K.) Let us also recall that the cone K is said to be (a) generating, if 
E = K — K; (b) minihedral, if for every x, y G K there exists Zo = sup(x, 3/) 
(i.e. the element z0 ^ x, y with the property z ^ x, y =$ z ^ z0) ; (c) normal, 
if there exists a constant 8 > 0 such that 

(3) \\x + y\\^ Ô (x, y 6 K, \\x\\ = ||y|| = 1). 

Consequently, any cone K which is contained in a normal cone is normal. 
It is well known (see, e.g., 8, Chapter 1, § 1.2.2) that K is normal if and only 
if the norm on E is "semi-monotone", i.e. there exists a constant L > 0 such 
that 

(4) 0 Sx èy=* \\x\\ S L\\y\\. 

The cone K = K{Xn] associated with a basis {xn} is normal if and only if it is 
regular, i.e. the relations yi g y2 ^ . . . ^ yn S • • • ^ % imply the norm-
convergence of the sequence {yn} (see 8, Chapter 1, § 1.2.2; 6). 

THEOREM 1. Let E be a Banach space and let (xn,fn) ({xn\ C E, {fn} C E*) 
be a biorthogonal system such that {fn} is total and that {xn\ is a basis of the asso
ciated cone K = K(Xntfn). The following statements are equivalent: 

(1°) For every x £ K the series £"«1/*(#)#* is unconditionally convergent 
(i.e. {xn} is an unconditional basis of the cone K); 

(2°) For every x Ç K the series ^2i°=ifi(.%)%i is weakly unconditionally 
Cauchy; 

(3°) K is normal; 
(4°) For every x £ K, the set Px = K D (x - K) = {y G E\ 0 ^ y g x} 

is bounded; 
(5°) For every x Ç K, the set Px above is linearly homeomorphic to a finite 

cube or a cube of Hilbert. 
Moreover, if we have (1°), then K is minihedral. 

Proof. The implication (1°) => (2°) is trivial. Assume now that we have (2°). 
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Let x, y e K be such that y ^ x, 0 ^ ft(y) ^ / , (*) (i = 1 , 2 , . . .), and let 
/ € £* be arbitrary. Then since {xn} is a basis of K and by (2°), 

OO 00 OO 

\f(y)\ = £/<O0/(*«) £ £/,60l/(*«)l ^ £/*(*)!/(*«) I = M,* < oo 

(ikf a positive constant), 

which shows that for every x £ K, the set 

Px= {y £ E\0 èy ^x} 

is weakly bounded, whence also strongly bounded. Thus (2°) => (4°). The 
equivalence (3°) <=> (4°) is well known (see, e.g., 1, p. 1165, Lemma 2). 
Assume now that we have (3°). Let x £ K and e > 0 be arbitrary. Since {xn} 
is a basis of K, there exists a positive integer iV such that 

(5) J2fi(x)x{\ <e/L, 

where L is the constant occurring in (4). Now let YiT^ifm (%)%m be an arbitrary 
subseries of £"«1/*(#)#*• Choose iQ such that nt =" iV whenever i = i0. We 
have then, for any p, q ^ i0, 

g OO 

0 ^ 2/n,-(*0*n,- ^ Z)/*(^*» 

whence by (4) and (5), 

Z-< Jni \pC)%m ^L\ Hfi(x)Xi\ < L(e/L) = €, 

which proves (since E is complete) that ^2T=ifi(^)^i is unconditionally con
vergent. Thus (3°) => (1°). Furthermore, the implication (5°) => (4°) is 
trivial (since the cubes in (5°) are compact), and the implication (1°) =» (5°) 
follows, observing that in the proof by Fullerton (3, Theorem 2) of the similar 
statement for {Xi} an unconditional basis of the whole space E, only expansions 
of elements of K are used. (Let us also mention that one can show directly, 
with the standard e-net method, that for each x £ K the set Px is compact, 
and then apply a result of Klee (7, p. 31, Corollary 1.3), to conclude that Px 

is homeomorphic to the fundamental cube of Hilbert whenever fn(x) > 0 
(n = 1, 2, . . .).) Thus (1°)<=» ...<=» (5°). Assume, finally, that we have (1°) 
and let x,y 6 K be arbitrary. Then the series £ r = i [ f < W + fi(y)]%i is 
unconditionally convergent, whence so is the series 5Z <°°= I [sup (/*(aO>/*(:y))]#*> 
and the sum of this latter series is obviously sup(x, y). Thus (1°) => K is 
minihedral, which completes the proof of the theorem. 

Remark 1. A basis {xn} of the whole space E can have property (1°) without 
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being an unconditional basis of E, as shown, for example, by the basis 

n 

(6) xn = J2 eu n = 1, 2, . . . (where et = {$0}?=i)> 
i=i 

of the space E = c0. 

Remark 2. The converse of the last assertion of Theorem 1 is not valid, as 
shown by the following example: Let E be the closed hyperplane 

\x= {£„} e / 1 ! £ * < = <>} 

in the space Z1, and let 

(7) xn = en - en_! {n = 1, 2, . . .)• 

Then {xw} is a basis of E (see, e.g., 11, p. 364), with the associated sequence of 
coefficient functionals 

(8) /„(*) = Ê it (* = tf») € £), 

whence 

(9) ^ = { ^ = { f c } € £ | è f « è 0 ( n = 1 , 2 , . . . ) } . 

The cone X is minihedral and generating. In fact, if 53f=ia*ff* € E, we have 

CO CD CO 

]C aiXi = X «<(^i "~ ei+l) == «1^1 + S (ai — Oii-i)ei 

(where {en} denotes the unit vector basis of I1), i.e. 

CO 

l«ll + Z) \ai — ai-l\ < °°> 
t=2 

and conversely. Since | \at\ — |a*_i| | ^ |a* — «z_i| (i = 2, 3, . . .) , it follows 
that S r = i |a*|#* converges whenever X r = i a ^ i converges, and thus for each 
x G £ there exists the element |x| 6 E, whence also the elements 
x+ = sup(x, 0), X- = sup(—x, 0), whence K is minihedral and generating. 
However, K is not normal, since for the sequences {xn}, {zn} C E defined by 

yn = (l/n)[ei + ez + . . . + e2n-i] - (l/w)l>2 + eA + . . . + ^ ] 

(» = 1 , 2 , . . . ) , 

zn = (l/»)[ei - e2n], 

we have 0 ^ yn ^ JSW, ||ytt|| = 2, ||zn|| = 2/w (w = 1, 2, . . .) . (One can also 
observe that if K would be normal, then since it is generating, {xn} would be 
an unconditional basis of E (6, Theorems 1 and 4, Lemma 3), which is not 
the case (11, p. 364).) 
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Remark 3. I t is essential in Theorem 1 to assume that {xn} is a basis of K, 
as shown by the example of the unit vectors xn in the space E = m, for which 
we have (3°) and (4°) but not (1°), (2°) or (5°). Let us mention that if {/„} 
is total on E and K is "acute angled" in the sense that 

(10) \\x + y\\ - 1 ^ ô(t) > 0 (x,y € K,\\x\\ ^ 1, \\y\\ è 0 , 

then {xn} is a basis of K. (5, Theorem 2) ; obviously, every acute angled cone 
is normal, but the converse is not true, as shown by simple two-dimensional 
examples. Furthermore, the natural positive cone of the space E = m, men
tioned in this remark is also normal but not acute angled. Let us also observe 
that for the usual Schauder basis {xn} of the space E = C([0, 1]) the associated 
cone K — K{Xn\ is contained in the natural positive cone of the space E, which 
is obviously normal. Therefore K is normal, whence, by Theorem 1, for every 
x G K the series E ^ i / i W ^ t is unconditionally convergent (although {xn} is 
not an unconditional basis of E). However, K is not acute angled. (It is easy 
to give two consecutive elements, xk and xk+i, of the Schauder basis {xn} such 
that 11**11 = H^+ill = \\xk + xk+1\\ = 1.) 

In the case when K is also sequentially weakly complete, we have the 
following result. 

THEOREM 2. Let E be a Banach space and let (xnffn) ({xn} C E, {fn} C E*) 
be a biorthogonal system such that the associated cone K = K(Xntfn) is normal 
and sequentially weakly complete. Then {xn) is an unconditional basis of K, 
which is also boundedly complete on K {i.e., the relations flj^0(i= 1 , 2 , . . . ) , 
suprc||2Ti = i a<i%i\\ < °° imply that Y,i°=i &ixi converges). 

Proof. Let us first prove that {xn} is boundedly complete on K. Let \an) be 
a sequence of scalars such that an ^ 0 (n = 1, 2, . . .), sup« 11X^=1 aiXt\\ = 
M < oo, and let J be an arbitrary finite set of positive integers. Choose n 
such that J C [1, w]. Then 

n 

0 S X) ai%i = 12 ai%U 

whence, since K is normal, 

II II H n II 
II i £ J II II i = l II 

Consequently, by a theorem of Gel'fand (4, p. 242, Proposition 2), the series 
X)r=i atXi is weakly unconditionally Cauchy, i.e. 

oo oo 

Z at\f(xt)\ = E \f(aiXl)\ < oo (/ 6 £*), 

whence, since K is sequentially weakly complete, every subseries YL7=i ^m^m 
converges weakly to an element of K. Therefore, by the Orlicz-Pettis theorem 
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(2, p. 318, Theorem l ) , the series Y,7=i a<i%i converges strongly. Thus \xn) is 
boundedly complete on K. Now, since (xn,fn) is a biorthogonal system, for 
every x £ K we have 

n 

0 £ £ / , ( * ) * « ^x (n = 1 ,2 , . . . ) , 

whence, since K is normal, 

sup Z/*(*)** ^ L| |x | | < oo, 

and therefore, by the above, the series S T=i/*(#)#* converges strongly to an 
element y £ K. Since {/n} is total on E, we must have y = x, and thus {xn} is 
a basis of X, whence, by the normality of K and by Theorem 1, it is also an 
unconditional basis of K. This completes the proof. 

Remark 4. The converse of Theorem 2 is not valid, as shown by the following 
example. Let E and {xn} be as in Remark 1. Then {xn} C K is a weak Cauchy 
sequence which is not weakly convergent to any element of E, and thus K is 
not sequentially weakly complete. However, as observed in Remark 1, {xn} is 
an unconditional basis of K and it is also boundedly complete on K since the 
relations an ^ 0 (n = 1, 2, . . .), 

sup 7 , CLiXi 

n n 

sup sup Z) ai = sup Z ai 
n 1̂ 5 j^n i=j n i=l 

< 00 

imply that ^ J L i ^ i < oo and that the series £ " = 1 ^ ^ converges to 
XT=i (]Cr=^#*)^ € K (where {en} is the unit vector basis of E = Co). 

3. Let us now turn to a base B of the cone K = K(Xntfn) associated with a 
biorthogonal system (xnyfn). The problem of the existence of such a base has 
an affirmative answer, namely, we have the following result. 

PROPOSITION 1. Let Ebea Banach space and let (xn,fn) ({xn} C E, {fn} C £*) 
be a biorthogonal system such that \fn] is total. Then the associated cone 
K = K(Xntfn) has an unbounded base. 

Proof. Define / Ç E* by 

(11) 

It is true that the set 

•^"S^ I IA I •ft(x) (x € E). 

(12) B = {y e K\f(y) = 1} 

is an unbounded base of K. In fact, B is convex and closed and for every 
x G K ~ {0} we have x = \;y, where X = fix) > 0 and y = (l/f(x))x € J5. 
This representation is unique since the relations x = Xiji = X2J2, Xi, X2 > 0, 
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yi, y2 G B imply by (12) tha t / (# ) = Xi = X2, whence also yi = y2) therefore 
B is a base of K. Furthermore, we have 

oo -i 

fQr\M*n) = E _i—/^a"!!/,!^) = 1 in = 1,2,...), 

i.e. 2W||/W||xw G B (n = 1, 2, . . .) and this sequence is unbounded, since 

||2»||/B| W | = 2»||/n|| \\xn\\ ^ 2n\fn(xn)\ =2n in = 1, 2, . . . ) . 

This completes the proof of Proposition 1. 

All the results stated in the remainder of the paper for normalized bases 
{xn}} i.e., bases satisfying ||xn|| = 1 (n = 1, 2, . . .), remain valid, obviously, 
for * 'bounded" bases (12, p. 546, Theorem 1.6), i.e. bases satisfying 

0 < infw ||#w|| ^ supw ||#n|| < oo ; 

we state them here only for normalized bases in order to avoid confusion with 
boundedness of a base B of K. We recall that a normalized basis {xn} of a 
Banach space E is said to be of type 1+ (11, p. 353) if there exists a constant 
7) > 0 such that 

(13) /.\ OifXi ^ V!L, <*t 

for any finite sequence ai, . . . , <xn ^ 0. As shown in (11, Proposition 1), this 
happens if and only if there exists a functional/ G E* such that 

(14) f{xn) è l {n = 1, 2, . . .) . 

THEOREM 3. A normalized basis {xn} of a Banach space E is of type 1+ if and 
only if the associated cone K = K{Xn) has a bounded base. 

Proof. Assume that {xn} is a normalized basis of type l+. Put 

(15) B = {y € K\f(y) = 1}, 

where / G £* is any functional satisfying (14). Then B is a base of K and for 
every y = Y^7=i°Lixi G B we have, taking into account \\xn\\ = 1 and an ^ 0 
(n = 1 , 2 , . . . ) , 

OO OO / CO \ 

^ X on ^ X) «*/(**) = /( X) «^J = i, 

i.e. B is bounded. Conversely, assume that the cone K associated with the 
normalized basis {xn} has a bounded base B. Then 0 (? B (since otherwise 
by the convexity of B, for any y G J3 one would have Jy G J3, whence the 
element^ G i£ would have two representations y = 1 • y = 2 • 53/, i.e. i? would 
not be a base), whence, since B is closed and convex, there exists a functional 
/ G E* such that 

(16) inf/(y) = « > 0. 
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Since xn £ if ~ {0}, there exists a unique representation xn — Xnyn, with 
Xn > 0, yn G 5 , whence xw/Xn € 5 , whence 1/X„ = ||^/X»|| ^ supy€fi||y|| = 
C < oo and thus Xn ^ l/C (n = 1, 2, . . .). Therefore, taking also into account 
(16), we obtain 

f(pcn) = Xnf{xn/Xn) è ô/C (n = 1, 2, . . .), 

which proves that [xn] is of type l+. This completes the proof of Theorem 3. 

We recall that a normalized basis {xn} of a Banach space E is said to be 
(a) shrinking, if \\f \[xm . ] | | —» 0 as n —> oo, for all / € E* (where 
[xn, xn+i> xn+2y . . .] denotes the closed linear subspace spanned by {x;} JLn); 
(b) of type P (11, p. 354) if sup„ H E w ^ l l < oo. ' 

COROLLARY 1. If {xn} is a normalized shrinking basis or a normalized basis of 
type P of a Banach space E, then every base B of the associated cone K = K\Xn) 
is unbounded. 

In fact, every shrinking basis and every basis of type P is not of type l+ 

(11, Theorem 1). 

In connection with the above results, the following proposition on general 
cones (not necessarily associated with biorthogonal systems) will be useful. 

PROPOSITION 2. If a cone K in a Banach space E has a bounded basey then K 
is normal. 

Proof. Let B be a bounded base of K. Then sup^u | \y\ | = M < oo, and 
since B is closed and 0 g B, we also have inf^B \\y\\ = m > 0. Let 0 ^ x ^ z 
be arbitrary with 0 ^ x ^ 2. Then x, z, and z — x have unique representations 
x = Xiyu z = X2̂ 2, z — x = Xzyz, with Xt > 0, yt (E B (i = 1, 2, 3). Hence 

\2y2 = z = (z- x) +x = X3̂ 3 + Xtfi = (X3 +
 Xl)[_x~"+"x":y3 + ^ j T ^ M • 

Since B is convex, we have 

X3 , Xi 7, 

X3 + Xi X3 + Xi 

whence by the unique representation property occurring in the definition of a 
base of a cone, 

X3 + Xi = X2 and - — p — yz + T~ , \ yi = y 2. 
A3 T Ai A3 -h Ai 

We observe that the second equality is also a consequence of the first equality, 
since it amounts to 

z — x __x JL • 
Xi + X3 Xi + X3 X2 
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Since A3 > 0, from the first of these equalities we obtain Ai < X2, whence 

||*|| = Xilbill è \iM < \2M= X2m—^ Ailloli— = \\z\\ — , 
II II ! ! • Il m \W II m II II m 

which completes the proof of Proposition 2. 

Obviously, the converse of Proposition 2 is not valid, since, e.g., the positive 
cone K associated with the unit vector basis {xn} of the space E = c0 is normal, 
but has no bounded base (since {xn} is not of type /+). From Propositions 1 
and 2 also follows the following result. 

COROLLARY 1. If {xn} is a normalized basis of type 1+ of a Banach space E, 
then the associated cone K = K{Xn] is normal. 

One can also prove this result directly, observing that if {xn} is a normalized 
basis of type /+ and 0 ^ ai: ^ fit (i = 1, 2, . . . , n), then 

n I n n -i n 

X <xtXi ^ X «< ^ X Pi ^ -1 X Pixi 
t=i II i=i i=i V 11 i=i 

(where 77 > 0 is the constant occurring in (13)), whence the same also holds 
for convergent infinite series Y^î=iaixu H7=ifiiXi with 0 ^ at • :g (3t 

(i= 1 , 2 , . . . ) . 
Taking also into account Theorem 1, we obtain the following result. 
COROLLARY 2. If {xn} is a normalized basis of type l+ of a Banach space E, 

and K = K{Xn] is the associated cone, then for every x £ K the series ]£f=i/*(*)** 
is unconditionally convergent. 

Actually, for bases of type /+, one can prove more, namely the result 
which follows. 

PROPOSITION 3. A normalized basis {xn} of a Banach space E is of type l+ 

if and only if there exists a constant M > 0 such that for every x £ K the series 
^?=ifi(x)Xi is absolutely convergent {i.e. XT=i ILA(#)#i|| < °° ) and 

(17) £ \\ft(x)xt\\ £M\\x\\ (xtK). 
i=l 

Proof. If {xn} is a normalized basis of type /+, then for every x £ K and 
n = 1, 2, . . . , we have 

X WfiWXiW =HfiW ^-\Œfi(pc)Xi 

whence, taking n —» co, we obtain (17) with M = 1/rj. Conversely, if {xn\ is 
a normalized basis satisfying (17), then for any ai, . . . , an ^ 0 we have, 
setting x = Z^Lia^x* in (17), 

1 n 1 n 

X aiXi 

i.e., {xn} is of type /+, which completes the proof. 
In particular, the bases equivalent to the unit vector basis of the space ll 

can be characterized as follows. 
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THEOREM 4. A normalized basis {xn} of a Banach space E is equivalent to the 
unit vector basis of I1 if and only if the associated cone K = K{Xn} is generating 
and has a bounded base. 

Proof. The cone K{en} associated with the unit vector basis [en) of ll is 
generating and by Theorem 3 it has a bounded base. Therefore, the cone 
K{Xn] associated with any basis {xn} equivalent to {en} has the same properties. 
Conversely, assume that {xn} is a normalized basis such that K = K{Xn} is 
generating and has a bounded base B. Then by Proposition 2, K is normal, 
whence, since it is also generating, {xn} is an unconditional basis (by Theorem 1, 
or by (6)). On the other hand, by Theorem 3, {xn} is of type Z+. Consequently 
(11, p. 353, Remark 1), {xn\ is equivalent to the unit vector basis of Z1, which 
completes the proof. 

The sufficiency part of Theorem 4 can also be proved using Proposition 3, 
as follows. By Theorem 3, {xi} is of type /+. Let x £ E be arbitrary. Then, 
since K is generating, x = y — z, with y, z Ç K, whence, by Proposition 3, 

OO OO OO CO CO 

Z !/«(*)I £ £ l/.GOl + E l/«(*)l = E \\fi(y)*i\\ + Z ll/«(*)*«ll < ». 
t = l i=l i=l i = l i = l 

The converse implication (£ f= i \at\ < °° =* HT=i <*i%i converges) being 
obvious (since {xn} is normalized and E is complete), {xn} is equivalent to 
the unit vector basis of Z1, which completes the proof. 

We shall call a subset B of a cone K in a Banach space E a hyperbase of K 
if there exists a strictly positive functional / Ç E* (i.e. /(x) > 0 for all 
x G i£ ~ {0}) such that J3 = {y Ç X | / (y ) = 1}. I t is immediate that every 
hyperbase is a base, but the converse is not true, even for compact bases, as 
shown by the following example. Consider in the space E = I2 the compact 
convex set 

Q= {* = {£.} € P | | M ^ V i ( i = 1,2,...)}-
Then the linear subspace G = KJn^inQ spanned by Q is dense in E = Z2 

(since it contains all almost zero sequences), but does not coincide with E 
(since otherwise by the theorem of Baire (2, p. 20, Theorem 9) some n0Q 
would have an interior point, in contradiction with dim £ = oo). Take an 
arbitrary x Ç E ~ G and put 

K= [\(y-x)\y e Q, X ^ O } . 

Then one can show that K is a cone and B = Q — x={y— x\y£Q} is a 
compact base of K, but not a hyperbase of i£. 

If (xn,fn) ({xn} C £ , {fn} C £*) is a biorthogonal system (respectively, if 
{xn} is a normalized basis of E) then for every sequence {en} with ew = ± 1 
(n — 1, 2, . . .), the sequence (enxn, enfn) is also a biorthogonal system (respec
tively, {enxn} is also a normalized basis of E). One can therefore consider the 
associated cone 

Kl'»] = K(enxa,(nfn) = \x G E\ ejn(x) è 0 (n = 1, 2 , . . .)} 
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(respectively, KUn] = K{enXn])f and a hyperbase BUn] of KUn}. This will 
permit us to characterize geometrically some other classes of bases in Banach 
spaces. We shall use the notation 

Bn
Ui] = B{€j] O [xn, xn+1, xn+2, ...] (n = 1, 2, . . .). 

We recall (11, p. 354) that a normalized basis {xn} of a Banach space E is 
said to be (a) of type P*, if supw ||Z)l=i/z|| < °°> where \fn) is the associated 
sequence of coefficient functionals; (b) of type al+, if there exists a sequence 
{ew}, where en = ± 1 (n = 1, 2, . . .), such that { of type /+; (c) of type 
wco, if 

( i . e . / ( * , ) - * 0 for all / 6 £ * ) -

PROPOSITION 4. A normalized basis {xn} of a Banach space E is 

(a) of type P*, if and only if there exists a hyperbase B of K containing all 
xn (n = 1, 2, . . . ) ; 

(b) not of type al+, if and only if for every {en}, en = ± 1 and for every hyperbase 
BUn] of the cone Klen] the (unique) numbers \n > 0 for which B[tn) D \\nenxn} 
satisfy sup„ Xn = oo; 

(c) of type wco, if and only if for every {en}, en = ± 1 , and every hyperbase 
B{en} of the cone K[en\ the (unique) numbers \n > 0 for which B{en] Z) {Kenxn} 
satisfy l im^^ Xn = oo; 

(d) shrinking, only if for every {en}, en = ± 1 , and every hyperbase BUn] of 
the cone K{tn] we have dist(0, Bn

[*i]) —> oo as n —> oo. 

Proof, (a) If {xn} is of type P*, then by (11, Proposition 3), there exists an 
/ G E* such t h a t / f e ) = 1 (n = 1, 2, . . . ) . Put B = {y e K\f(y) = 1}. Then 
^ is a hyperbase of X containing all xn (n = 1, 2, . . . ) . Conversely, if 5 is a 
hyperbase of X such that xn G 5 (n = 1, 2, . . .), then there exists a n / G E* 
such that J5 = {y G ^ l / O O = !}• Then/(x n ) = 1 (w = 1, 2, . . .) and there
fore, by (11, Proposition 3), {xn} is of type P*. 

(b) If {xn} is not of type al+, then by (11, Proposition 1, we have 
infn \f(xn)\ = 0 (f G £*). Let en = d=l (n = 1, 2, . . .) and let Bl'"} be an 
arbitrary hyperbase of the cone K{tn]. Then there ex i s t s / G £* such that 
£ ^ } = {y G Ki'»*\f(y) = 1}, whence (l/f(enxn))enxn G £{en} and thus 

Xw = l/f(enXn) (n = 1, 2, . . .), 

whence supw Xw = oo. Conversely, if {xn} is of type al+, then by (11, Propo
sition 1), there exists an / G E* such that \f(xn)\ ^ 1 (n = 1, 2, . . .)• Put 
en = signf(xn). Then f(enxn) ^ 1 (w = 1, 2, . . .), whence the set B{en] = 
{̂  G X{ € n } | /(^) = 1} is a hyperbase of the cone K{*n] and 

(l/f(enxn))enxn G £ u » } (» = 1, 2, . . .) , 

whence \n = l//(e„3») < 1 (n = 1, 2, . . . ) . 
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(c) The proof is similar to that of (b), with slightly more computation in 
the converse part. 

(d) If {xn} is shrinking, let en = ± 1 (n = 1, 2, . . .) and let BUn] be an 
arbitrary hyperbase of the cone K{en}. Then there exists a n / G E* such that 
glen) = {y ç. KUn}\f(y) = 1}, whence for any y £ Bn

uJ], 

J = HT^nOifXu at à O ( i = n , n + l , . . . ) 
we have 

1 = / ( ^ T ) < € torn>N^ l l y l l - 'MMI '^- «»»-"«> 
(since {xn} is shrinking). Therefore \\y\\ > 1/e for all y Ç Bn

{e'] whenever 
n > N(e), which completes the proof. 

Remark 5. For a biorthogonal system (#*,/*} with {ft} total, if £ is the 
closed linear span of {Xi} and W is the closure of the set 

{ X) ai**: a4 è 0, i = 1, 2, . . . ; w = 1, 2 , . . . r , 

Schaeffer (10, p. 139; 9, p. 251) has shown that {xufi} is an unconditional 
basis for E if and only if W is a normal Z>-cone. 
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