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Symmetry breaking in model theories

In Chapter 9, ‘effective’ weak interaction Lagrangian densities were constructed.

When used in low orders of perturbation theory, these account well for the observed

phenomena at low energies. Difficulties arise in higher order perturbation theory, as

they do in quantum electrodynamics. There is, however, an important difference: it

has been proved that these effective Lagrangian theories cannot be renormalised and

they are therefore unsatisfactory. Furthermore, at higher energies new phenomena

appear, and it is now well established experimentally that the weak interaction is

mediated by the W+, W− and Z bosons. How are these particles to be incorporated in

a theory of the weak interaction that can be renormalised, and which has the same

seeming inevitability as QED? The answer lies in the Weinberg–Salam unified

theory of the electromagnetic and weak interactions. As an introduction to the

Weinberg–Salam theory we shall in this chapter consider ‘model’ theories, the

mathematics of which is fairly simple, but which contain the basic ideas we shall

need.

10.1 Global symmetry breaking and Goldstone bosons

A possible Lagrangian density for a complex scalar field � = (φ1 + iφ2)/
√

2 is

L = ∂μ�†∂μ� − m2�†� (10.1)

(cf. equation (3.32)).

In this expression (∂�†/∂t)(∂�/∂t) can be regarded as the kinetic energy density

and ∇�† · ∇� + m2�†� as the potential energy density (see Section 3.3). If � is

constant, independent of space and time, the only contribution to the energy is

m2�†�. Since m2 is positive this will be a minimum when φ1 = φ2 = 0. Thus

� = 0 corresponds to the ‘vacuum’ state. Consider now the Lagrangian density

obtained by changing the sign in front of m2. This would be unstable: the potential
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10.1 Global symmetry breaking: Goldstone bosons 103

Figure 10.1 Plot of V = (m2/2φ2
0)[�∗� − φ2

0]2 as a function of |�|; � is here a
classical field.

energy density is then unbounded below. Stability can be restored by introducing

a term (m2/2φ2
0)(�†�)2 where φ2

0 is another (real) parameter. For convenience we

add a constant term m2φ2
0/2, and then

L = ∂μ�†∂μ� − V (�†�)

where

V (�†�) = m2

2φ2
0

[
�†� − φ2

0

]2
. (10.2)

The form of V is shown in Fig. (10.1). The minimum field energy is now obtained

with � constant independent of space and time, but such that �†� = |�|2 = φ2
0 .

Such a field is not unique but is defined by a point on the circle |�| = φ0 in the

state space (φ1, φ2), so that the number of possible vacuum states is infinite.

An analogy with magnetism is helpful. The Hamiltonian describing a

Heisenberg ferromagnet has rotational symmetry: all directions in space are equiv-

alent. However, in its ground state a ferromagnet is magnetised in some particular

direction, which is not determined within the theory, and the rotational symmetry

is lost. This is an example of spontaneous symmetry breaking.
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104 Symmetry breaking in model theories

The Lagrangian density (10.2) has a ‘global’ U(1) symmetry: � → �′ =
e−iα�, L → L′ = L, for any real α. Equivalently,

φ′
1 = φ1 cos α + φ2 sin α,

φ′
2 = − φ1 sin α + φ2 cos α.

The transformation rotates the state round a circle |�|2 = constant in the state space

(φ1, φ2). If we pick out the particular direction in (φ1, φ2) space for which � is real,

and take the vacuum state to be (φ0, 0), we break the U(1) symmetry.

Expanding about this ground state (φ0, 0), we put � = φ0 + (1/
√

2)(χ + iψ).

The Lagrangian density becomes

L = 1

2
∂μχ∂μχ + 1

2
∂μψ∂μψ − m2

2φ2
0

[√
2φ0χ + χ2

2
+ ψ2

2

]2

. (10.3)

After breaking the U(1) symmetry we must interpret the new fields. (In much the

same way, the excited states of a ferromagnet cannot be discussed until the spatial

symmetry has been broken.) In place of the complex field �, we have two coupled

scalar real fields χ and ψ . We write

L = Lfree + Lint

where

Lfree = 1

2
∂μχ∂μχ − m2χ2 + 1

2
∂μψ∂μψ. (10.4)

Lfree represents free particle fields, and contains all the terms in L that are quadratic

in the fields. For classical fields and small oscillations, these terms dominate. The

rest of the Lagrangian density, Lint, corresponds to interactions between the free

particles and higher order corrections to their motion.

There is a quadratic term −m2χ2 in (10.4), so that the χ field corresponds to

a scalar spin-zero particle of mass
√

2m (by comparison with (3.18)). In the case

of the ψ field there is no such quadratic term: the corresponding scalar spin-zero

particle is therefore massless. The massless particles that always arise as a result of

global symmetry breaking are called Goldstone bosons.

10.2 Local symmetry breaking and the Higgs boson

We now generalise further, and construct a Lagrangian density that is invariant

under a local U(1) gauge transformation,

� → �′ = e−iqθ�,
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where θ = θ (x) may be space and time dependent. This requires the introduction

of a (massless) gauge field Aμ, as in Section 7.5, and we take

L = [(∂μ − iq Aμ)�†][(∂μ + iq Aμ)�] − 1

4
Fμν Fμν − V (�†�), (10.5)

where Fμν = ∂μ Aν − ∂ν Aμ, and again

V (�†�) = m2

2φ2
0

[
�†� − φ2

0

]2
.

L is invariant under the local gauge transformation

�(x) → �′(x) = e−iqθ�(x), Aμ(x) → A′
μ(x) = Aμ(x) + ∂μθ (x).

A minimum field energy is obtained when the fields Aμ vanish, and � is constant,

defined by a point on the circle |�| = φ0. Any gauge transformation on this field

configuration is also a minimum. Again we have an infinity of vacuum states.

Given �(x), we can always choose θ (x) so that the field �′(x) = e−iqθ�(x) is

real. This breaks the symmetry, since we are no longer free to make further gauge

transformations.

Putting �′(x) = φ0 + h(x)/
√

2, where h(x) is real, gives

L = [(∂μ − iq A′
μ)(φ0 + h/

√
2)][(∂μ + iq A′μ)(φ0 + h/

√
2)]

− 1

4
F ′

μν F ′μν − m2

2φ2
0

[√
2φ0h + 1

2
h2

]2

. (10.6)

For clarity, we again separate this into

L = Lfree + Lint

where, dropping the primes on the gauge field,

Lfree = 1

2
∂μh∂μh − m2h2 − 1

4
Fμν Fμν + q2φ2

0 Aμ Aμ,

Lint = q2 Aμ Aμ

(√
2φ0h + 1

2
h2

)
− m2h2

2φ2
0

(√
2φ0h + 1

4
h2

)
.

(10.7)

Before symmetry breaking, we had a complex scalar field � = (φ1 + iφ2)/
√

2,

and a massless vector field with two polarisation states (Section 4.4). In Lfree we

have a single scalar field h(x) corresponding to a spinless boson of mass
√

2m,

and a vector field Aμ, corresponding to a vector boson of mass
√

2qφ0, with three

independent components (Section 4.9).

This mechanism for introducing mass into a theory was invented by Higgs (1964)

and others (for example Anderson, 1963), and the particle corresponding to the field

h(x) is called a Higgs boson. As a consequence of local symmetry breaking the gauge
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106 Symmetry breaking in model theories

field acquires a mass, and the massless spin-zero Goldstone boson that appeared

in our example of global symmetry breaking in Section 10.1 is replaced by the

longitudinal polarised state of this massive spin one boson.

In the Weinberg and Salam ‘electroweak’ theory, the masses of the W± and

Z particles arise as a result of symmetry breaking. The resulting theory can be

renormalised, whereas the phenomenological theory of Chapter 9 cannot be renor-

malised. The form of V (�†�) that has been introduced in this chapter appears also

in the electroweak theory. It may seem a somewhat arbitrary feature. However, it

can be shown to be the most general form that can be renormalised.

Problems

10.1 What interaction term in the model Lagrangian density (10.3) allows the massive

boson to decay into two Goldstone bosons? Show that the decay rate in lowest order

perturbation theory is

1

τ (χ → ψψ)
= mχ

128π

(
mχ

φ0

)2

.

10.2 Show that with the model Lagrangian density (10.7), the vector boson would be

stable, but if the coupling constant q < m/(2φ0) the scalar boson would decay into

two vector bosons.
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