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Abstract

To answer database queries over incomplete data, the gold standard is finding certain answers:
those that are true regardless of how incomplete data is interpreted. Such answers can be found
efficiently for conjunctive queries and their unions, even in the presence of constraints. With
negation added, the problem becomes intractable however. We concentrate on the complexity of
certain answers under constraints and on effficiently answering queries outside the usual classes
of (unions) of conjunctive queries by means of rewriting as Datalog and first-order queries.
We first notice that there are three different ways in which query answering can be cast as a
decision problem. We complete the existing picture and provide precise complexity bounds on
all versions of the decision problem, for certain and best answers. We then study a well-behaved
class of queries that extends unions of conjunctive queries with a mild form of negation. We
show that for them, certain answers can be expressed in Datalog with negation, even in the
presence of functional dependencies, thus making them tractable in data complexity. We show
that in general, Datalog cannot be replaced by first-order logic, but without constraints such a
rewriting can be done in first order.

KEYWORDS: incomplete information, certain answers, datalog rewritings, first-order rewrit-
ings, functional dependencies, chase

1 Introduction

Answering queries over incomplete databases is crucial in many different scenarios such

as data integration (Lenzerini 2002), data exchange (Arenas et al. 2014), inconsistency
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management (Bertossi 2011), data cleaning (Geerts et al. 2013), ontology-based data ac-

cess (OBDA) (Bienvenu and Ortiz 2015), and many others. The common thread running

through all these applications lies in computing certain answers (Imielinski and Lipski

1984). Intuitively, this produces answers that are true in all possible worlds, that is, com-

plete databases that an incomplete database represents. An incomplete database in itself

is a set of tuples with missing information, plus integrity constraints. One can think, for

example, of relations with nulls on which keys can be specified. Then, a possible world

is obtained by substituting values for nulls so that all the keys are satisfied.

The notion of certain answers is sometimes too restrictive (for example, for some queries

no answers are certain). In that case, an alternative is best answers: for them, there is

no other tuple that is an answer in more possible worlds. However, computationally one

encounters serious problems with both approaches. To start with, computing certain

answers and best answers is intractable for first-order queries (Abiteboul et al. 1991;

Libkin 2018) (already for data complexity). Finding such answers in restricted subclasses

of first-order queries often relies on sophisticated algorithms – not naturally expressible

by other queries – that are therefore difficult to implement in a DBMS. We know that

restricting to unions of conjunctive queries allows one to overcome this difficulty by

using näıve evaluation which computes certain answers in polynomial time (Imielinski

and Lipski 1984). This amounts to evaluating queries over incomplete databases as if

nulls were usual data values, thus merely using the standard database query engine to

compute certain answers.

We address these problems in the present paper whose goal is two-fold.

1. We start by filling gaps in our knowledge of the complexity of answering queries

over incomplete databases. Intractable bounds on certain and best answers cited

above were obtained under different formulations of query answering as a decision

problem. We show that there are three natural ways to represent query answering

as a decision problem and classify the complexity of certain and best answers for

all of them.

2. We then look at a way of finding query answers by leveraging the existing database

technology, namely by finding query rewritings which, when evaluated on the in-

complete database, give us certain answers. We show that for a class extending

unions of conjunctive queries with a form of negation (but still falling short of all

first-order queries), such rewritings can be found in Datalog with negation, thus

giving us a tractable complexity bound.

To elaborate on the first point, the two existing decision versions of the query answering

problem are as follows: (a) is a tuple in the answer? and (b) is the answer a member of

a given family of sets? We add a third: (c) is the answer equal to a given set. We then

prove that for certain answers, the complexity is coNP, PNP[logn], and DP-complete

for (a), (b), (c). The result for (a) has long been known of course. For best answers,

the complexity is uniform: PNP[logn]-complete for all variations (the result for (b) was

previously known). We shall define these complexity classes in the next section; for the

reader not familiar with them, they all lie within the second level of the polynomial

hierarchy.

For the second theme of the paper, we look at query rewritings. This is a standard way

of leveraging database technology in the case of incomplete or imperfect information,

https://doi.org/10.1017/S1471068423000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000364


Querying incomplete data 281

and such rewritings were heavily used in data integration, data exchange, OBDA, query

answering using views, consistent query answering, etc. (Calvanese et al. 2000; 2007; Cal̀ı

et al. 2013; 2003b). First-order rewritings are particularly useful, as they allow to use the

power of standard database query engines. In fact when they exist, the rewritten queries

can be implemented in any relational query engine by expressing them in SQL, with

no need to implement ad-hoc algorithms. Next best are rewritings into Datalog (with

negation): these let us express queries using recursive features of SQL.

As already mentioned, for unions of conjunctive queries (and even some mild restric-

tions with guarded negation Gheerbrant et al. 2014) certain answers are computed by

näıve evaluation without the presence of constraints. Under constraints, even such simple

ones as keys, the picture is less complete. Indeed, keys and in general equality-generating

dependencies (EGD) change the syntactic shape of a query that makes naive evaluation

work.

• Certain answers to a conjunctive query Q (or a union of CQs) on a database D

under key constraints Σ can be found by näıve evaluation of Q on the result of the

chase ofD with Σ. Mathematically, certΣ(Q,D) = Q(chaseΣ(D)), where on the left-

hand side we have certain answers under constraints and on the right-hand side the

näıve evaluation of Q over the result of the chase. Here, chaseΣ refers to the classical

textbook chase procedure with keys or more generally functional dependencies. In

fact, the above result applies when Σ is a set of functional dependencies or equality

generating dependencies (EGDs), not just keys.

Unfortunately, the above result does not work when we move outside the class of select-

project-join-union queries or unions of CQs. In fact even without constraints, certain

answers to a query of the form Q1 − Q2, where both Q1 and Q2 are CQs, are not

necessarily produced by näıve evaluation. To see why, take a database containing one

fact R(1,⊥) where ⊥ is a null and Q1 returning R while Q2 is given by a formula

R(x, y) ∧ x = y. Here, näıve evaluation of Q1 − Q2 returns R (as 1 is not equal to ⊥),
while certain answers is empty (as 0 is a possible value for ⊥).
This motivates our question whether we can extend the class of CQs and their unions

to obtain tractable evaluation of certain answers under constraints such as functional

dependencies and EGDs. The answer is positive; in fact the query of the form Q1 −Q2

above will be an example of a query in this class. To start with, the class must be such

that finding certain answers for its queries without constraints is already tractable. We

know one such class: it consists of arbitrary Boolean combinations of CQs, not just their

union. We shall denote it by BCCQ. It was proved in Gheerbrant and Libkin (2015) that

certain answers for it can be found in polynomial time (for data complexity), though the

procedure was tableau-based and not suitable for implementation in a database system.

This is precisely what we do in the second part of this paper. We establish three main

results:

1. For an arbitrary BCCQ Q and a set of EGDs Σ, one can construct a Datalog

(with negation) query Q′ whose naive evaluation computes certain answers, thereby

ensuring their polynomial-time data complexity.

2. There are however simple BCCQs, in fact even CQs, and keys, such that certain

answers cannot be expressed as a first-order queries. Therefore, using Datalog was

necessary.
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3. Without constraints present, certain answers to BCCQs are not only polynomial-

time computable as had been shown previously, but also can be expressed by first-

order queries and thus efficiently implemented in SQL databases without using

recursion.

The Sections 4.2, 4.3, and 4.4 address these items, respectively.

Note that the material from this paper is based on the two conference papers Gheer-

brant and Sirangelo (2019) and Gheerbrant et al. (2022).

2 Preliminaries

2.1 Incomplete databases and constraints

We represent missing information in relational databases in the standard way using nulls

(Abiteboul et al. 1995; Imielinski and Lipski 1984; van der Meyden 1998). Incomplete

databases are populated by constants and nulls, coming respectively from two countably

infinite sets Const and Null. We denote nulls by ⊥, sometimes with sub- or superscript.

We also allow them to repeat, thus adopting the model of marked nulls, as customary in

the context of applications such as OBDA or data integration and exchange.

A relational schema, or vocabulary σ, is a set of relation names with associated arities.

A database D over σ associates to each relation name of arity k in σ, a k-ary relation

which is a finite subset of (Const∪Null)k. Sets of constants and nulls occurring in D are

denoted by Const(D) and Null(D). A database is complete if it contains no nulls, that is

Null(D) = ∅.
The active domain of D is the set of all values appearing in D, that is adom(D) =

Const(D) ∪ Null(D).

A valuation v : Null(D)→ Const on a database D is a map that assigns constant values

to nulls occurring in D. By v(D) and v(ā), we denote the result of replacing each null ⊥
by v(⊥) in a database D or in a tuple ā. The semantics [[D]] of an incomplete database D

is the set {v(D) | v is a valuation on D} of all complete databases it can represent. Here

as is common in research on incomplete data, we use closed-world assumption (Imielinski

and Lipski 1984; Reiter 1977) (i.e. everything we do not know to be true is automatically

assumed to be false and no new tuple can be added).

An equality-generating dependency (EGD) is a first-order sentence of the form

∀x̄ (ϕ(x̄) → z = z′), where ϕ(x̄) is a conjunction of atoms (without constants),

each variable in x̄ occurs in some atom of ϕ, and z, z′ are distinct variables in x̄. As

a special case, a functional dependency (FD) over a relation name R is of the form

∀x̄, ȳ, z, z′ (R(x̄, ȳ, z) ∧ R(x̄, ȳ′, z′) → z = z′). Throughout this paper, we will assume

that a (possibly empty) set of EGDs Σ is associated with the database schema σ.

A valuation v is consistent with Σ (or just consistent, when Σ is clear from the context)

if v(D) |= Σ. We denote by V(D) the set of all consistent valuations defined on D.

2.2 Query answering

An m-ary query Q of active domain adom(Q) ⊆ Const is a map that associates with a

database D a subset of (adom(D) ∪ adom(Q))m. To answer an m-ary query Q over an
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incomplete database D, we follow (Lipski 1984) and adopt a slight generalization of the

usual intersection-based certain answers notion, defined as ∩vQ(v(D)), and furthermore

incorporate constraints into query answering.

The set of certain answers to Q over D, with respect to a set of constraints Σ, is

certΣ(Q,D) = {ā ∈ (adom(D) ∪ adom(Q))m | v(ā) ∈ Q(v(D)) for all consistent v} .
For queries that explicitly use constants, we shall expand this to allow ā range over

adom(D) and those constants. The only difference with the usual notion is that we allow

answers to contain nulls, to avoid pathological situations when answers known with

certainty are not returned (e.g. in a query returning a relation R one would expect R to

be returned while the intersection-based certain answer will only return null-free tuples).

If the set of constraints Σ is empty, we omit it and write simply cert(Q,D). Of course,

every valuation is consistent with the empty set of constraints.

Following Libkin (2018), given a query Q, a database D, a set of constraints Σ, and

a tuple ā over adom(D) ∪ adom(Q), we let the support of ā be the set of all valuations

that witness it:

SuppΣ(Q,D, ā) = {v ∈ V(D) | v(ā) ∈ Q(v(D))} .
Again if Σ = ∅ we omit the subscript.

Supports thus measure how close a tuple is to certainty. We consider one answer to be

better than another if it has more support. That is, given a database D, a k-ary query

Q, and k-tuples ā, b̄ over adom(D) ∪ adom(Q), we let

ā�Σ
Q,D b̄ ⇔ SuppΣ(Q,D, ā) ⊂ SuppΣ(Q,D, b̄) .

The set of best answers to Q over D is defined as the set of answers for which there is no

better one:

bestΣ(Q,D) = {ā | ¬∃b̄ : ā�Σ
Q,D b̄}.

As the set of certain answers to Q over D is the set of answers that are witnessed by

all valuations, note that it could also be defined using the notion of support. Namely,

certΣ(Q,D) consists of all tuples ā ∈ adom(D)m for which SuppΣ(Q,D, ā) contains all

consistent valuations in V(D).

Example 2.1

Let Q(x) = ∃y(R(y) ∧ S(y, x)) and D = {R(⊥1), R(1), S(⊥2,⊥2)}.
We have Supp(Q,D,⊥2) = {v ∈ V(D) | v(⊥2) = 1 or v(⊥1) = v(⊥2)},

Supp(Q,D, 1) = {v ∈ V(D) | v(⊥2) = 1} and Supp(Q,D,⊥1) = {v ∈ V(D) |
v(⊥1) = v(⊥2)}.

It follows that cert(Q,D) = ∅ and best(Q,D) = {(⊥2)}.

2.3 Näıve evaluation and certain answers

For a query Q written in FO or Datalog, we write Q(D) to mean that such a query is

evaluated näıve ly. That is, if D contains nulls, nulls of D are treated as new constants

in the domain of D, distinct from each other, and distinct from all the other constants

in D and ϕ. For example, the query ϕ(x, y) = ∃z (R(x, z) ∧ R(z, y)), on the database

D = {R(1,⊥1), R(⊥1,⊥2), R(⊥3, 2)} selects only the tuple (1,⊥2).
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There are known connections between näıve evaluation and certain answers. If Σ is

empty and Q is a union of conjunctive queries, then certΣ(Q,D) = Q(D), see Imielinski

and Lipski (1984). If Σ contains a set of EGDs, then certΣ(Q,D) = Q
(
chaseΣ(D)

)
;

cf. Greco et al. (2012). Here chaseΣ refers to the standard chase procedure with a set of

EGDs, see Abiteboul et al. (1995).

2.4 Query languages

Here we shall study best and certain answers to first-order (FO) queries, possibly in the

presence of constraints, by means of their rewriting in FO and Datalog. FO queries of

vocabulary σ use atomic relational and equality formulae and are closed under Boolean

connectives ∧,∨,¬ and quantifiers ∃, ∀. We write ϕ(x̄) for an FO-formula ϕ with free

variables x̄. With slight abuse of notation, x̄ will denote both a tuple of variables and the

set of variables occurring in it. The set of constants used by ϕ is denoted by adom(ϕ).

We interpret FO-formulas under active domain semantics, that is quantified variables

range over adom(D)∪ adom(ϕ). Thus, an FO-formula ϕ(x̄) represents a query (of active

domain adom(ϕ)) mapping each database D into the set of tuples {t̄ over adom(D) ∪
adom(ϕ) | D |= ϕ(t̄)}.

To evaluate FO-formulas with free variables, we use assignments ν from variables to

constants in the active domain. Note that with a little abuse of notation, we write D |=
ϕ(t̄) for D |=ν ϕ(x̄) under the assignment ν sending x̄ to t̄.

Here it is important to note that the query associated with ϕ is a mapping defined

on all databases D, possibly with nulls. If D contains nulls, D |= ϕ(t̄) is to be intended

“näıvely,” that is nulls ofD are treated as new constants in the domain ofD, distinct from

each other, and distinct from all the other constants in D and ϕ. For example, the query

ϕ(x, y) = ∃z (R(x, z) ∧ R(z, y)), on the database D = {R(1,⊥1), R(⊥1,⊥2), R(⊥3, 2)}
selects only the tuple (1,⊥2).

Conjunctive queries (CQs) are given by the ∃,∧-fragment of FO, and their unions

(UCQs) by the ∃,∧,∨-fragment of FO; these are also captured by the positive fragment

of relational algebra (select-project-union-join queries).

We also consider Boolean combination of conjunctive queries (BCCQs), that is, the

closure of conjunctive queries under operations q ∩ q′, q ∪ q′, and q − q′.
A Datalog rule (Abiteboul et al. 1995) is an expression of the form R1(u1) ←

R2(u2), . . . , Rn(un) where n ≥ 1, R1, . . . , Rn are relation names and u1, . . . , un are tu-

ples of appropriate arities. Each variable occurring in u1 must occur in at least one of

u2, . . . , un. A Datalog program is a finite set of Datalog rules. The head of the rule is

the expression R1(u1); and R2(u2), . . . , Rn(un) forms the body. The semantics is the

standard fixed-point semantics.

As the language of our rewritings, we shall be using FO, but also a fragment of stratified

Datalog with negation in bodies that can be seen in two different ways.

1. A program is evaluated in two steps. First, we can have a Datalog program P

defining new idb predicates S1, . . . , S�. Then, we ask an FO query over the schema

extended with these predicates S1, . . . , S�.

2. We evaluate a stratified Datalog with negation program in which the first stratum

has no negation (but may have recursion) and the second stratum has no recursion

(but may have negation).
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From the rewritings, we produce it will be clear that they fall in these classes. The

key point about them is that they can be implemented in recursive SQL and that they

both have PTIME data complexity, making their evaluation feasible. Note that recursive

SQL as it is currently implemented, for example, in PostgreSQL 8.4, is actually Turing

complete (Gierth 2011; Coelho 2013).

2.5 Complexity classes

In order to study the complexity of best and certain answer computation, we shall need

two classes in the second level of the polynomial hierarchy. Both of these contain NP and

coNP and are contained in Σp2 ∩Πp2. The class DP consists of languages L1 ∩ L2 where

L1 ∈ NP and L2 ∈ coNP. This class has appeared in database applications (Fagin et al.

2005; Barceló et al. 2014). The class P
NP[logn] consists of problems that can be solved

in polynomial time with a logarithmic number of calls to an NP oracle (Buss and Hay

1991). Equivalently, it can be described as the class of problems solved in P with an NP

oracle where calls to the oracle are done in parallel, that is, independent of each other.

This class has appeared in the context of AI, modal logic, OBDA (Gottlob 1995; Eiter

and Gottlob 1997; Calvanese et al. 2006; Bienvenu and Bourgaux 2016), data exchange

(Arenas et al. 2013).

3 Complexity of best and certain answers

We start by looking at complexity of certain and best answers of first-order queries

and answer a few questions that are (perhaps somewhat surprisingly) missing in the

literature. In this case, we look at arbitrary first-order queries; thus, we do not men-

tion constraints since certΣ(Q,D) = cert(Σ → Q,D) and likewise for best answers. In

the subsequent sections, when we consider rewritings for sublanguages of first order, we

shall again mention constraints explicitly since queries of the form Σ → Q will nor-

mally not belong to the same syntactic class as Q itself. In this context, we will refer to

�AnswerΣ(Q).

As is common in database theory, we look at complexity in terms of complexity classes,

which necessitates looking at decision versions of problems. The most common one that

is found, stated here for � ∈ {Certain, Best}, is the following problem:

Problem: �Answer(Q)

Input: A database D, a tuple ā

Question: Is ā ∈ �(Q,D)?

We are thus interested in data complexity: the query is fixed. We do not study com-

bined complexity in this paper. In the remainder, we thus often omit the query and

write �Answer instead of �Answer(Q). Recall that in this case, for a language L,

we say that the problem �Answer is C-complete in data complexity for a complexity

class C, if �Answer(Q) is solvable in C for every Q ∈ L, and there exists a spe-

cific Q0 ∈ L so that �Answer(Q0) is hard for C. We know from Abiteboul et al.
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(1991) that CertainAnswer(Q) is coNP-complete in data complexity for first-order

queries.

For best answers, it is a different version of the decision problem for which the com-

plexity is known. Specifically, Libkin (2018) considered the problem of checking whether

the set �(Q,D) belongs to a specified family of sets:

Problem: �Answer
∈(Q)

Input: A database D, a family X of sets of tuples

Question: Is �(Q,D) ∈ X ?

For this decision version, the complexity of the problem was shown to be P
NP[logn]-

complete. This version looks a bit artificial, but we include it for the sake of completeness,

because it has appeared in the literature.

However, this presentation of a decision suggests another rather natural presentation

of a decision version, namely asking if a given set is �(Q,D):

Problem: �Answer
=(Q)

Input: A database D, a set X of tuples

Question: Is �(Q,D) = X?

Our current state of knowledge is the complexity of CertainAnswer (coNP-

complete) and BestAnswer
∈ (PNP[logn]-complete). Thus, we now fill the gap and clas-

sify complexities of all the problems – for data complexity – in the case of FO queries.

We start by showing that all the alternatives for best answers – BestAnswerΣ,

BestAnswer
=, and BestAnswer

∈ – are computationally equivalent.

Theorem 3.1

For FO queries, the problems BestAnswerΣ, BestAnswer
∈, and BestAnswer

= are

P
NP[logn]-complete in data complexity.

Proof

The upper bound for BestAnswer
= immediately follows from the upper bound for

BestAnswer
∈ (take the family X to be a singleton {X}). As for BestAnswerΣ, we

only need a slight modification of the upper bound proof in Libkin (2018). To check

whether ā ∈ best(Q,D) we proceed as follows. Since the query is fixed, and has there-

fore fixed arity k, in polynomial time we can enumerate all the k-tuples of adom(D).

Then, using parallel calls to the NP oracle, we can check for each such tuple b̄ whether

Supp(Q,D, ā) ⊆ Supp(Q,D, b̄) and whether Supp(Q,D, b̄) ⊆ Supp(Q,D, ā). With this

information, in polynomial time we know whether ā�Q,D b̄ for some b̄.

Assuming Σ empty, we prove the two remaining lower bounds, reducing from the same

P
NP[logn]-complete problem (Wagner 1990): given an undirected graph G, is its chromatic

number χ(G) odd? With each undirected graph G = 〈N,E〉 with nodes N and edges

E, we associate a database DG over binary relations L,E and unary relations C,O as
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follows. We use a null ⊥n in DG for each node n of G. For each edge {n, n′} of G, we

have pairs (⊥n,⊥n′) and (⊥n′ ,⊥n) in the relation E of DG. In relation C, we have m

constants {c1, . . . , cm} (intuitively representing possible colors), where m is the number

of nodes of G. Relation O of DG is defined as {ci | i is odd}, and L is a linear ordering

on them, that is, (ci, cj) ∈ L iff i ≤ j, for i, j ≤ m.

Remark that any valuation v of DG that maps each null into a constant of C represents

an assignment of colors in {c1, . . . , cm} to nodes of G. Then, we define a query

φ(x) = C(x) ∧ ∀y, z (
E(y, z)→ L(y, x)

) ∧ ∀y (
L(y, x)→ ∃z E(y, z)

) ∧ ¬∃y E(y, y).

For any valuation v, φ(c) holds in v(DG) iff (1) c = cj for some j = 1..m (ensured by the

first conjunct). (2) For such a cj , the valuation v maps each null into {c1, . . . , cj} (second
conjunct), that is v represents an assignment of colors to nodes of G, using at most the

first j colors. (3) Each color {c1, . . . , cj} is used by v, that is v represents an assignment

of colors to nodes of G, using precisely the first j colors (third conjunct). (4) There are

no loops in E (fourth conjunct).

Thus, for a valuation v, the formula φ(cj) is true in v(DG) iff v represents a coloring

of G using precisely the first j colors {c1, . . . , cj} (which in the sequel we refer to as an

exact j-coloring of G).

Next, we define:

Q(x) = C(x) ∧ (φ(x) ∨ ∃y (O(y) ∧ L(x, y) ∧ φ(y)))
For a valuation v, we have that Q(ci) holds in v(DG) iff either v represents an exact

i-coloring of G; or v represents an exact j-coloring of G with j odd, and i ≤ j. In other

words, valuations representing exact j-colorings, with j even, support only the maximal

color cj ; while valuations representing exact j-colorings, with j odd, support all colors

{c1...cj}.
With this in place, we can conclude the reduction for the BestAnswerΣ problem:

Claim. c1 ∈ best(Q,DG) iff the chromatic number of G is odd.

First, we prove the above claim. Let χG be the chromatic number of G. Then, there

exist no exact colorings of G which are prefixes of {c1, . . . cχG
}, while {c1, . . . cχG

} is an
exact coloring of G.

Assume first that χG is even. Then, there exist no valuations representing the exact

coloring {c1}. Thus, the support of c1 is the set of valuation representing an exact coloring

{c1...cj} of G with j odd and j > χG. This support is not maximal. In fact, the support

of cχG
is:

• the valuations representing the exact coloring {c1...cχG
} (there exists at least one);

• the valuations representing an exact coloring {c1...cj} of G with j odd and j > χG.

This support strictly contains the support of c1; in fact valuations in the first item

cannot be also in the second.

Assume now that χG is odd. Then, the support of c1 is the set of valuations representing

an exact coloring {c1...cj} of G with j odd and j ≥ χG. We show that this set is maximal;

that is, no color ck can have a support strictly containing it.

• if k ≤ χG then the support of ck is the set of valuations representing an exact coloring

{c1...cj} of G with j odd, and j ≥ χG. So same support as c1.
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• if k > χG, the support of ck cannot contain the valuations representing {c1, . . . cχG
}.

There exists at least one such valuation and it belongs to the support of c1. Thus, the

support of ck does not contain the support of c1.

We now move to BestAnswer
=. With any undirected graph G, we associate a rela-

tional structure D′
G obtained from DG by adding a new color c0 in C with L(c0, ci) for

every 0 ≤ i ≤ m. We define a restriction ψ of the original formula φ by disallowing c0 in

colorings: to obtain ψ it suffices to replace L(y, x) in φ by L(y, x) ∧ y �= c0, and C(x) by

C(x)∧ x �= c0. Thus, it is still true that ψ(cj) is true in v(D′
G) iff v represents a coloring

of G using precisely {c1, . . . , cj}.
We define a new query:

Q′(x) := O(x)∧ (ψ(x) ∨ ∃y (O(y) ∧ L(x, y) ∧ ψ(y))
∨

¬O(x)∧ (ψ(x) ∨ ∃y (O(y) ∧ x+ 2 < y ∧ ψ(y))
∨

¬O(x)∧ ∃y(x �= y ∧ L(x, y)) ∧ ∀y∀z (E(y, z)→ (y = c0 ∧ z = c0))

Note that x+ 2 < y is used as a shorthand, as it is definable in our language.

Q′(ci) holds in v(D′
G) iff

• either i is odd and v represents an exact j-coloring of G, with j odd and i ≤ j;
• or i is even and:

— either v represents an exact coloring {c1...cj} of G with j odd, and i+ 2 < j;

— or v represents an exact coloring {c1...ci} of G;
— or i < m and v(⊥j) = c0 for all 1 ≤ j ≤ m;

The following claim completes the reduction for BestAnswer
= :

Claim. {ci | i is even} = best(Q′, D′
G) iff χ(G) is even.

In the following, we call v0 the unique valuation such that v0(⊥j) = c0 for all 1 ≤
j ≤ m. First assume that χG is even. For all 0 < i ≤ m odd, Supp(ci) is not maximal

as Supp(c0) ⊃ Supp(ci) ∪ {v0}. Hence, best(Q′, D′
G) ⊆ {ci | i is even}, so we show

{ci | i is even} ⊆ best(Q′, D′
G). The inclusion holds whenever ci ≥ χ(G), as Supp(ci)

contains all valuations representing exact colorings {c1...ci} of G, while no other Supp(cj)

with i �= j contains them. Now take ci < χ(G) with i even, then Supp(ci) contains v0
together with all exact odd colorings (if there are any). First assume that there exists odd

exact colorings of G, so there are χ(G)+1 ones and valuations representing them are not

contained in Supp(χ(G)). Also, v0 �∈ Supp(ck) with k odd and k < χ(G). It follows that

Supp(ci), which is the union of v0 and of all valuations representing odd exact colorings,

is maximal. Now assume that there is no exact odd coloring. This corresponds to the

special case χ(G) = m where Supp(cm) contains only the exact colorings {c1...cm} of G,
but not v0 ; while Supp(cj) = ∅ whenever j odd. In such a case, Supp(ci) = {v0} is also
maximal.

We assume now χ(G) is odd and show {ci | i is even} �= best(Q′, D′
G). First notice

that Supp(c1) is maximal whenever χ(G) = 1, as neither Supp(c0) nor any Supp(ci) with
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Type of problem ā ∈ Answer X = Answer Answer ∈ X
Certain Answer coNP-complete1 DP-complete PNP[logn]-complete

Best Answer PNP[logn]-complete PNP[logn]-complete PNP[logn]-complete2

Fig. 1. Summary of data complexity results for FO queries.
1Abiteboul et al. (1991); 2Libkin (2018).

i ≥ 2 contain valuations representing the exact {c1} colorings. So we assume χ(G) ≥ 3,

from which it follows that there exists a constant cχ(G)−3 in the active domain which

support contains v0 together with all valuations representing exact odd colorings. As

Supp(cχ(G)−1) contains exactly the same set of valuations, to the exclusion of those

representing {c1...cχ(G)} colorings, it follows that Supp(cχ(G)−3) ⊃ Supp(cχ(G)−1) and

so cχ(g)−1 �∈ best(Q′, D′
G).

Now that we showed that all three formulations of best answers actually collapse

computationally, another natural question arises. Does a similar result hold for certain

answers ? It is well known that data complexity of CertainAnswerΣ is coNP-complete

for FO queries (Abiteboul et al. 1991). We complete the picture as follows and summarize

results in Figure 1.

Theorem 3.2

For FO queries, CertainAnswer
= is DP -complete and CertainAnswer

∈ is PNP[logn]-

complete in data complexity.

Proof

To prove membership of CertainAnswer
= in DP , notice that for a query Q, this prob-

lem is the intersection of two languages L1 ∩ L2 where L1 = {(D,X) | X ⊆ cert(Q,D)}
and L2 = {(D,X) | X ⊆ cert(Q,D)}. L1 is known to be in coNP : we guess a tuple

ā ∈ X and a valuation v ∈ V (D) with v(ā) �∈ Q(v(D)). Similarly, L2 is in NP : we guess

a tuple b̄ ∈ X and a valuation v′ ∈ V (D) with v′(b̄) ∈ Q(v(D)).

To prove membership of CertainAnswer
∈ in P

NP[logn], suppose the query Q is k-ary,

and we are given a family of sets of k-ary tuples X = {X1, . . . , Xn} and a database D.

For each Xi ∈ X , we use the NP oracle to decide in parallel whether Xi = cert(Q,D)

(for each Xi, the two calls to the oracle do not depend on each other and they can also

be done in parallel).

ForDP -hardness, we reduce from the problem of checking whether χ(G), the chromatic

number of an undirected graph G, equals 4 (Rothe 2003) and for P
NP[logn] -hardness,

we reduce from the related problem of checking whether χ(G) is odd. With such a graph

G, we associate the same database DG as in the proof of Theorem 3.1. Using the exact

coloring formula ϕ in the proof of Theorem 3.1, we define a query

Q(x) := C(x) ∧ ∀y (ϕ(y)→ L(x, y))

We claim that cert(Q,D) = {c1, . . . , cn} iff χ(G) = n, which entails cert(Q,D) =

{c1, . . . , c4} iff χ(G) = 4 and cert(Q,D) ∈ {{c1, . . . , cj} | j is odd and 1 ≤ j ≤ |G|} iff

χ(G) is odd. Recall that v(DG) |= ϕ(ci) iff ci is a color in {c1, ..., c|G|} and v represents

https://doi.org/10.1017/S1471068423000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000364


290 A. Gheerbrant et al.

an exact i-coloring of the graph. Now v(DG) |= Q(cj) iff cj is a color and there is no i < j

such that v represents an exact i-coloring of the graph, which holds exactly whenever

cj ∈ {c1, ..., cχ(G)}.

4 Query rewritings for tractable fragments

Considering arbitrary FO queries brought us an intrinsic intractability result for all vari-

ants of the considered decision problems. This motivates restricting to well-behaved frag-

ments such as CQs and UCQs. Recall that conjunctive queries (CQs) are given by the

∃,∧-fragment of FO, and their unions (UCQs) by the ∃,∧,∨-fragment of FO. We extend

them with a mild form of negation (since adding negation leads to coNP-hardness of

certain answers). This mild form comes in the shape of Boolean combination of conjunc-

tive queries (BCCQs), that is, the closure of conjunctive queries under operations q ∩ q′,
q ∪ q′, and q − q′.
If there are no constraints in Σ, finding certain answers to BCCQs is known to be

tractable (Gheerbrant and Libkin 2015), though by tableau-based techniques that are

hard to implement in a database system. We now extend this in two ways. First, we

show that tractability is preserved even in the presence of EGDs (and thus functional de-

pendencies and keys). Second, we show that certain answers can be obtained by rewriting

into a fragment of Datalog as described in Section 2. In particular, it means that certain

answers can be found by a query expressible in recursive SQL (and even in SQL in the

absence of constraints).

For BestAnswerΣ a polynomial-time evaluation algorithm (in data complexity) al-

ready exists (Libkin 2018). The resolution-based procedure is however in sharp contrast

with näıve evaluation, which allows to compute certain answers to unions of conjunc-

tive queries via usual model checking. We thus show how to apply our query rewriting

techniques to the best answers problem.

4.1 A normal form for queries: neutralizing variable repetition

Towards our rewritings, we start by putting each conjunctive query in a normal form

which eliminates repetition of variables, by introducing new equality atoms.

Definition 4.1 (NRV normal form)

A conjunctive query Q is in non-repeating variable normal form (NRV normal form)

whenever it is of the form Q(x̄) = ∃w̄ (q(w̄) ∧ e(x̄, w̄)) where variables in x̄w̄ are

pairwise distinct, and:

• q(w̄) is a conjunction of relational atoms without constants, where each free variable

in w̄ has at most one occurrence in q,

• e(x̄, w̄) is a conjunction of equality atoms, possibly using constants, where each variable

of x̄ is involved in at least one equality.

We say that q(w̄) is the relational subquery of Q, and e(x̄, w̄) is the equality subquery

of Q. A BCCQ is in NRV normal form if it is a Boolean combination of CQs in NRV

normal form.
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Example 4.2

The query Q(x) from Example 2.1 is equivalent to ∃w1w2w3(R(w1) ∧ S(w2, w3) ∧ w1 =

w2 ∧ w3 = x), which is in NRV normal form.

Clearly every conjunctive query Q is equivalent to a query in NRV normal form;

moreover, Q can be easily rewritten in NRV normal form (in linear time in the size of

the query). Thus in what follows, we assume w.l.o.g. that conjunctive queries are given

in NRV normal form. Intuitively, the NRV normal form allows us to separate the two

ingredients of a conjunctive query: the existence of facts in some relations of the database,

on the one side, and a set of equality conditions on data values occurring in these facts,

on the other side. The existence of facts does not depend on the valuation of nulls and

thus can be directly tested on the incomplete database. Instead equality atoms in an

NRV normal form imply conditions that valuations need to satisfy in order for the query

to hold. We can thus first concentrate on the support of equality subqueries. This will

be encoded in FO and then integrated in the rewriting of the whole conjunctive query.

We introduce a notion of equivalence of database elements w.r.t. to a set of equalities.

Intuitively, equivalent elements of a tuple t̄ are the ones which should be collapsed into

a single value in order for a valuation of t̄ to satisfy all the given equalities.

Definition 4.3

Given a database D, a conjunction of equality atoms γ(ȳ) and an assignment ν : ȳ ∪
adom(γ) → adom(D) ∪ adom(γ) preserving constants, we say that u, u′ ∈ adom(D) ∪
adom(γ) are equivalent w.r.t. γ and ν and write u ≡νγ u′, if either u = u′ or (u, u′)
belongs to the reflexive symmetric transitive closure of {(ν(x), ν(w)) | x = w ∈ γ}.

The relation ≡νγ is clearly an equivalence relation over adom(D)∪adom(γ), where each

element outside the range of ν forms a singleton equivalence class.

Example 4.4

Let γ be x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x6 = 1. Let ν assign ⊥i to xi for i ≤ 5, and ⊥5

to x6. The equivalence classes of ≡νγ are {⊥i | i ≤ 3} and {1,⊥4,⊥5}, plus one singleton

for each other element of the active domain.

In what follows, we denote by ∼γ the reflexive symmetric transitive closure of

{(x,w) | x = w ∈ γ}. Note that this is an equivalence relation among variables and

constants of γ. We will provide two syntactic encodings of this relation, one in Datalog

and one in FO.

4.2 Datalog rewriting for certain answers for BCCQs with EGDs

Recall that, given a query Q, a database D, and a tuple ā over adom(D) ∪ adom(Q) we

let the support of ā be the set of all valuations that witness it:

Supp(Q,D, ā) = {v ∈ V(D) | v(ā) ∈ Q(v(D))}
In order to look for rewritings of BCCQs, a key observation is that ā is a certain answer

to Q iff Supp(¬Q,D, ā) = ∅. When Q is a BCCQ, so is ¬Q, thus we look for ways of

expressing (non-)emptiness of the support for BCCQs.

We start by concentrating on the support of equality subqueries. This will be encoded in

Datalog and then integrated, as a key ingredient, in the rewriting of the whole query. We
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let γ(ȳ) be an arbitrary set of equality atoms among variables ȳ and possibly constants.

Intuitively, we will be interested in the case that γ(ȳ) is the equality subquery e(x̄, w̄) of a

CQ in NRV normal form (thus notice that in the Datalog program below ȳ encompasses

variables x̄w̄ of an equality subquery).

Remark that we can always write an EGD so that no variable in its body occurs more

than once; it suffices to add to the body a set of variable equalities. Thus, we assume

that EGDs in Σ are of the form ∀ū((ϕ(ū) ∧ ψ) → z = z′) where z, z′ are in ū, the

conjunction of atoms ϕ(ū) contains no constants, no variable occurs twice in ϕ(ū), and

ψ is a set of equalities among variables of ū. Remark also that membership in the set

adom(D)∪adom(γ) can be expressed by a UCQ formula that we call Dom(x). We encode

equivalence of database elements in adom(D) ∪ adom(γ) w.r.t. a set of equalities γ(ȳ)

using the following Datalog program1:

equivγ(ȳ, z, z)← ∧i Dom(yi), Dom(z)

equivγ(ȳ, z, z
′)← z = yk, z

′ = yl,∧i Dom(yi) for each (yk = yl) ∈ γ
equivγ(ȳ, z, z

′)← equivγ(ȳ, z, u), equivγ(ȳ, u, z
′)

equivγ(ȳ, z, z
′)← equivγ(ȳ, z

′, z)

equivγ(ȳ, z, z
′)← ϕ(ū) ∧(w=w′)∈ψ(ū) equivγ(ȳ, w, w′)

for each EGD ∀ū((ϕ(ū) ∧ ψ(ū))→ z = z′) ∈ Σ

Intuitively, if t̄ is a tuple of database elements assigned to ȳ, equivalent elements of

D are the ones which should be collapsed into a single value in order for a valuation

of D to satisfy all the equalities γ(t̄) and the EGDs. For fixed γ and t̄, the relation

{(s, s′) | D |= equivγ(t̄, s, s
′)} is an equivalence relation over adom(D) ∪ adom(γ) where

each element of adom(D) neither in t̄ nor in adom(γ) forms a singleton equivalence class.

The formula equivγ is a key ingredient in our rewriting; as formalized in the following

lemma, it selects precisely the pairs of elements that a consistent valuation needs to

collapse to satisfy a set of equalities.

Lemma 4.5

Let γ(ȳ) be a conjunction of equality atoms, D a database, and ν(ȳ) = t̄ an assignment

over adom(D)∪adom(γ). Assume v is a consistent valuation of nulls, then v(D) |= γ(v(t̄))

if and only if v(s) = v(s′) for all s, s′ such that D |= equivγ(t̄, s, s
′).

Proof

⇒ Assume v(D) |= γ(v(t̄)) and let s, s′ such that D |= equivγ(t̄, s, s
′). We prove

v(s) = v(s′). We proceed by induction on the derivation of equivγ(t̄, s, s
′) by the fix-

point evaluation of the Datalog program. Assume equivγ(t̄, s, s
′) is derived at the first

iteration, and then, it follows from one of the first two rules. If it is derived by the fist

rule then s = s′ and therefore v(s) = v(s′) trivially. Assume equivγ(t̄, s, s
′) is derived

using the second rule then there exists (yk = yl) ∈ γ, and s = tk and s′ = tl; now

since v(D) |= γ(v(t̄)), we have v(tk) = v(tl). Now assume that equivγ(t̄, s, s
′) is de-

rived at some subsequent step. If it follows from the second rule, then it follows from

1 Queries we write hereafter can be domain dependent. So it is important to recall that we always use
active domain semantics.
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equivγ(t̄, s, p) and equivγ(t̄, p, s
′) derived at previous steps, thus by the induction hy-

pothesis v(s) = v(p) = v(s′). Similarly if equivγ(t̄, s, s
′) is derived by the third rule, then

it follows from equivγ(t̄, s
′, s), and thus by induction v(s) = v(s′). The last case is that

equivγ(t̄, s, s
′) is derived by the last rule for some EGD (ϕ(ū) ∧ ψ(ū)) → z = z′). So

there exists a mapping μ of ū such that D |= φ(μ(ū)) and D |= equivγ(t̄, μ(w), μ(w
′))

for each (w = w′) ∈ ψ(ū)) and s = μ(z) and s′ = μ(z′); so by the induc-

tion hypothesis v(μ(w)) = v(μ(w′)). It follows that v(D) |= φ(v(μ(ū))) ∧ ψ(v(μ(ū)))
and because v(D) satisfies the EGDs (v being consistent), v(μ(z)) = v(μ(z′)), thus

v(s) = v(s′).
⇐ Assume ∀s, s′, D |= equivγ(t̄, s, s

′) implies v(s) = v(s′). We show that v(D) |=
γ(v(t̄)). In fact for each (yk = yl) ∈ γ, we have D |= equivγ(t̄, tk, tl) (derived by the

second rule). By our hypothesis v(tk) = v(tl), thus γ(v(t̄)) holds.

Example 4.6

Let γ and ν be as in Example 4.4, then Lemma 4.5 implies that a valuation v(D) |= γ(v(t̄))

iff v(⊥i) = v(⊥j) for all i, j = 1..3, and v(⊥i) = 1 for all i = 4, 5.

Formulas we write in the remainder are over signature σ∪Null, where σ is the database

schema. In any incomplete database D over σ ∪Null, Null is always interpreted by the

set of nulls occurring in D (in accordance with the semantics of the SQL construct

IS NULL). That is we allow rewritings to test whether a database element is null or not.

For γ(ȳ) a conjunction of equality atoms, using equivγ we define a new formula

compγ(ȳ) stating the existence of a consistent valuation that collapses all equivalent

elements of a tuple:

compγ(ȳ) := ∀zz′(equivγ(ȳ, z, z′) ∧ ¬Null(z) ∧ ¬Null(z′)→ z = z′)

Proposition 4.7

Let γ(ȳ) be a conjunction of equality atoms, D a database, and ν(ȳ) = t̄ an assignment

over adom(D) ∪ adom(γ), then D |= compγ(t̄) if and only if there exists a consistent

valuation v of nulls such that v(D) |= γ(v(t̄)). Moreover if such valuation exists, there

exists one further satisfying v(s) = v(s′) iff D |= equivγ(t̄, s, s
′), for all s, s′ ∈ adom(D)∪

adom(γ) .

Proof

⇒ Assume D |= compγ(t̄). Then, ∀c, c′ constants, D |= equivγ(t̄, c, c
′) implies c = c′.

As {(s, s′)|D |= equivγ(t̄, s, s
′)} is an equivalence relation over adom(D) ∪ adom(γ), its

equivalence classes form a partition of this set. In each equivalence class, there is at most

one constant, so we define a valuation v mapping all nulls of a class to the unique constant

of that class (or to a new fresh constant if the class does not contain any). Note that v

has the property that v(s) = v(s′) iff D |= equivγ(t̄, s, s
′); this allows to prove that v is

a consistent valuation.

In fact, consider an arbitrary EGD (ϕ(ū) ∧ ψ(ū)) → z = z′) in Σ and assume

v(D) |= ϕ(μ(ū)) ∧ ψ(μ(ū)) for some μ; we prove μ(z) = μ(z′). Since ϕ is a conjunc-

tion of atoms with no constants and no repeated variables, there exists μ′ such that

D |= ϕ(μ′(ū)) and v(μ′(ū)) = μ(ū). Take any equality w = w′ in ψ(ū), we show that

D |= equivγ(t̄, μ
′(w), μ′(w′)). In fact because v(D) |= ψ(μ(ū)) we have μ(w) = μ(w′),
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and therefore v(μ′(w)) = v(μ′(w′)). By definition of v then D |= equivγ(t̄, μ
′(w), μ′(w′)).

By the last rule of the Datalog program defining equivγ , we thus have that D |=
equivγ(t̄, μ

′(z), μ′(z′)); then again by definition of v, we have v(μ′(z)) = v(μ′(z′), and
therefore μ(z) = μ(z′). This shows that v(D) satisfies all the EGDs; thus, v is consistent.

We have proved that v satisfies the characterization of Lemma 4.5, and can conclude

that v(D) |= γ(v(t̄)).

⇐ Assume v is a consistent valuation and v(D) |= γ(v(t̄)). Let s, s′ such that D |=
equivγ(t̄, s, s

′) ∧ ¬Null(s′) ∧ ¬Null(s). By Lemma 4.5 we have v(s) = v(s′). Moreover,

s, s′ are both constants, then s = s′. Hence, D |= equivγ(t̄, s, s
′)∧¬Null(s′)∧¬Null(s)→

s = s′, that is, D |= compγ(t̄).

We are now ready to define a formula capturing the inclusion of supports between two

conjunctions of equality atoms, which will be a crucial ingredient in our rewriting. Let

γ(x̄) and γ′(ȳ) be conjunctions of equality atoms with adom(γ) = adom(γ′). We define:

implyγ,γ′(x̄, ȳ) := ∀zz′ (equivγ′(ȳ, z, z′)→ equivγ(x̄, z, z
′))

Using Proposition 4.7 and Lemma 4.5, we obtain:

Proposition 4.8

Let γ(x̄), γ′(ȳ) be conjunctions of equality atoms with adom(γ) = adom(γ′),D a database

and ν(ȳ) = t̄, ν′(ȳ) = t̄′ assignments over adom(D)∪adom(γ). ThenD |= implyγ,γ′(t̄, t̄′)∨
¬compγ(t̄) iff for all consistent valuations v, one has v(D) |= γ(v(t̄)) implies v(D) |=
γ′(v(t̄′)).

Proof

⇒ Assume D |= implyγ,γ′(t̄, t̄′)∨¬compγ(t̄). If D |= ¬compγ(t̄) then by Proposition 4.7,

there is no consistent valuation v such that v(D) |= γ(v(t̄)) and so the implication trivially

holds. Now assume D |= implyγ,γ′(t̄, t̄′), that is:

D |= ∀zz′ (equivγ′(t̄′, z, z′)→ equivγ(t̄, z, z
′))

We want to show that for all consistent valuations v of nulls such that v(D) |= γ(v(t̄)),

one also has v(D) |= γ′(v(t̄′)). Consider a valuation v of nulls such that v(D) |= γ(v(t̄)).

Using Lemma 4.5, it is enough to show that ∀s, s′ such that D |= equivγ′(t̄′, s, s′) one

has v(s) = v(s′). So assume D |= equivγ′(t̄′, s, s′), by our assumption it follows that

D |= equivγ(t̄, s, s
′)), and therefore, again by Lemma 4.5, v(s) = v(s′).

⇐ Assume for all consistent valuations v of nulls such that v(D) |= γ(v(t̄)), one also has

v(D) |= γ′(v(t̄′)). By Proposition 4.7, if there is no such valuation, then D |= ¬compγ(t̄).
So assume now there is one such valuation. This entails that in particular, there exists

a consistent v∗ satisfying v∗(D) |= γ(v∗(t̄)) and v∗(s) = v∗(s′) iff D |= equivγ(t̄, s, s
′).

By our assumption we have v∗(D) |= γ′(v∗(t̄′)). Hence, by Lemma 4.5, ∀s, s′ such that

D |= equivγ′(t̄′, s, s′) one has v∗(s) = v∗(s′). By the properties of v∗ mentioned above,

this implies D |= equivγ(t̄, s, s
′). We have thus shown that D |= implyγ,γ′(t̄, t̄′).

So far, we have dealt with equality subqueries and we have characterized the empti-

ness and inclusion of their supports (cf. Propositions 4.7 and 4.8, respectively). We can

now use this machinery to characterize the support of a BCCQ. We start by expressing

membership in the support of an individual CQ:
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Lemma 4.9

Let D be a database, v a consistent valuation of D and Q(x̄) a conjunctive query in

NRV normal form, with relational subquery q(w̄) and equality subquery γ(x̄, w̄). Then,

v ∈ Supp(Q,D, r̄) if and only there exists s̄ such that D |= q(s̄)∧ compγ(r̄s̄) and v(D) |=
γ(v(r̄s̄)).

Proof

⇒ Assume v ∈ Supp(Q,D, r̄), that is v is consistent and v(r̄) ∈ Q(v(D)) and so there

exists an assignment μ of x̄w̄ over adom(v(D)) ∪ adom(Q) such that μ(x̄) = v(r̄) and

v(D) |= q(μ(w̄)) ∧ γ(μ(x̄w̄)).
Recall that q(w̄) is a conjunction of relational atoms, with no constants and where

each one of the free variables w̄ has at most one occurrence in q. Thus, there exists a

mapping ν of w̄ over adom(D) such that D |= q(ν(w̄)) and v(ν(w̄)) = μ(w̄). We let

s̄ = ν(w̄). Recall that x̄ and w̄ do not share variables, so we can extend the mapping ν

by setting ν(x̄) = r̄. We thus have that ν(x̄w̄) = r̄s̄ and v(r̄s̄) = μ(x̄w̄). It follows that

v is a consistent valuation for which v(D) |= γ(v(r̄s̄)); then by Proposition 4.7, we also

have D |= compγ(r̄s̄).

⇐ Since D |= q(s̄), we have v(D) |= q(v(s̄)). Moreover by the hypothesis v(D) |=
γ(v(r̄s̄)), thus v(D) |= Q(v(r̄)).

In the remainder, we consider BCCQs Q(x̄) := Q1(x̄)∨. . .∨Qn(x̄) in NRV disjunctive

normal form (DNF) where for all 1 ≤ i ≤ n :

Qi := Qi0(x̄) ∧ ¬Qi1(x̄) ∧ . . . ∧ ¬Qim(x̄)

and for all 1 ≤ j ≤ m :

Qij := ∃w̄ijqij (w̄ij ) ∧ γij with γij := eij (x̄w̄ij )

For convenience, we assume w.l.o.g every conjunction of literals to be of the same length

m. We can also assume without loss of generality that for each i we have adom(γij ) =

adom(γi0) for all j. In fact, we can always pad any γij with dummy equalities c = c to

extend its active domain.

Given a disjunct Qi in a BCCQ in DNF, we now define possQi
, encoding the set of

possible answers to Qi, and consQi
, checking the compatibility of an answer with the

negative literals in Qi.

possQi
(x̄w̄) := qi0(w̄) ∧ compγi0 (x̄w̄) ∧ consQi

(x̄w̄)

consQi
(x̄w̄) :=

∧

1≤j≤m
∀w̄′((qij (w̄

′) ∧ compγij (x̄w̄′))→ ¬implyγi0 ,γij (x̄w̄, x̄w̄′))

Using these new formulae, we show that the non-emptiness of Supp(Q(x̄), D, r̄) can be

expressed as the existence of a possible answer.

Proposition 4.10

Let D be a database and Q(x̄) a DNF BCCQ in NRV normal form, then

Supp(Q(x̄), D, r̄) �= ∅ if and only if D |= ∨
1≤i≤n ∃w̄ possQi

(r̄w̄).
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Proof

⇐ Let D |= ∨
1≤i≤n ∃w̄ possQi

(r̄w̄), then there exists 1 ≤ i ≤ n and an assignment ν

with ν(w̄) = s̄, D |= qi0(s̄) ∧ compγi0 (r̄s̄) and for all 1 ≤ j ≤ m, for all s̄′ such that

D |= qij (s̄
′) ∧ compγij (r̄s̄′), one has D |= ¬implyγi0 ,γij (r̄s̄, r̄s̄′). Since D |= compγi0 (r̄s̄),

by Proposition 4.7 there exists a consistent valuation v∗, such that v∗(D) |= γi0(v
∗(r̄s̄))

and for all s, s′ ∈ adom(D)∪adom(γi0), we have v
∗(s) = v∗(s′) iff D |= equivγi0 (r̄s̄, s, s

′).
Moreover, we can prove the following claim:

Claim 4.11

For all conjunction of equalities γ′(ȳ) with adom(γ′) = adom(γi0) and all t̄ over

adom(D) ∪ adom(γi0), one has v∗(D) |= γ′(v∗(t̄)) iff for all consistent valuations v,

v(D) |= γi0(v(r̄s̄)) implies v(D) |= γ′(v(t̄)).

Proof of the Claim

⇒ Assume v∗(D) |= γ′(v∗(t̄)) and let v be a consistent valuation such that v(D) |=
γi0(v(r̄s̄)). We want to show v(D) |= γ′(v(t̄)). By Lemma 4.5, it is enough to show that

∀s, s′ ∈ adom(D) ∪ adom(γi0), D |= equivγ′(t̄, s, s′) implies v(s) = v(s′). So let s, s′ be
such that D |= equivγ′(t̄, s, s′). As v∗(D) |= γ′(v∗(t̄)), by Lemma 4.5, v∗(s) = v∗(s′). By
the properties of v∗, so D |= equivγi0 (r̄s̄, s, s

′). As v(D) |= γi0(v(r̄s̄)), by Lemma 4.5 it

follows that v(s) = v(s′).
⇐ Assume for all consistent valuations v, v(D) |= γi0(v(r̄s̄)) implies v(D) |= γ′(v(t̄)).

By Lemma 4.5, v∗ being consistent v∗(D) |= γ′(v∗(t̄)).

Now fix some arbitrary j ≥ 1 and s̄′ with D |= qij (s̄
′) ∧ compγij (r̄s̄′). By Propo-

sition 4.8, it follows from D |= ¬implyγi0 ,γij (r̄s̄, r̄s̄′) ∧ compγi0 (r̄s̄) that there exists a

consistent valuation v′ with v′(D) |= γi0(v
′(r̄s̄)) but v′(D) �|= γij (v

′(r̄s̄′)). By the above

claim v∗(D) �|= γij (v
∗(r̄s̄′)). In summary, we have:

(i) D |= qi0(s̄) ∧ compγi0 (r̄s̄) and v∗(D) |= γi0(v
∗(r̄s̄)) and so by Lemma 4.9, we have

v∗ ∈ Supp(Qi0(x̄), D, r̄), that is, v
∗(D) |= Qi0(v

∗(r̄)).
(ii) For all 1 ≤ j ≤ m and assignment ν′ with ν′(w̄) = s̄′, if D |= qij (s̄

′) ∧ compγij (r̄s̄′)
then v∗(D) �|= γij (v

∗(r̄s̄′)) and so by Lemma 4.9, we have v∗ �∈ Supp(Qij (x̄), D, r̄),

that is, for all 1 ≤ j ≤ m, v∗(D) |= ¬Qj(v∗(r̄)).
This means we have v∗ ∈ Supp(Qi0(x̄) ∧ ¬Qi1(x̄) ∧ . . . ∧ ¬Qim(x̄), D, r̄) for all 1 ≤ i ≤ n
and so v∗ ∈ Supp(Q(x̄), D, r̄).

⇒ Let v ∈ Supp(Q(x̄), D, r̄), so v is consistent and there is some 1 ≤ i ≤ n

with: (i) v ∈ Supp(Qi0 , D, r̄), (ii) for all 1 ≤ j ≤ m, v �∈ Supp(Qij , D, r̄). Using

Lemma 4.9 (i) implies that there exists s̄ such that D |= qi0(s̄) ∧ compγi0 (r̄s̄) and

v(D) |= γi0(v(r̄s̄)). Again by Lemma 4.9, (ii) implies that for all 1 ≤ j ≤ m and

s̄′, if D |= qij (s̄
′) ∧ compγij (r̄s̄′) then v(D) �|= γij (v(r̄s̄

′)). This entails by Proposi-

tion 4.8 that D |= compγi0 (r̄s̄) ∧ ¬implyγi0 ,γij (r̄s̄, r̄s̄′). This shows D |= ∨
1≤i≤n ∃w̄

possQi
(r̄w̄).

Now that we have defined the formula expressing for a BCCQ Q non-emptiness

of Supp(Q(x̄), D, r̄) (Proposition 4.10), we can easily define a rewriting for the prob-

lem CertainAnswerΣ(Q). To do so, we rely on the fact that r̄ ∈ certΣ(Q,D) iff

Supp(¬Q,D, r̄) = ∅.
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Theorem 4.12 (Datalog rewriting)

Let D be a database whose schema contains a set of equality-generating dependencies Σ,

and letQ(x̄) be a BCCQ in NRV normal form. LetQ′ = Q′
1(x̄)∨. . .∨Q′

n(x̄) be ¬Q in DNF

normal form. Then, r̄ ∈ certΣ(Q,D) if and only if D |= ρ(r̄) where ρ(x̄) =
∧

1≤i≤n ∀w̄
¬possQ′

i
(x̄w̄).

Proof

One has that r̄ ∈ certΣ(Q,D) iff Supp(Q′, D, r̄) = ∅. Q′ being still a BCCQ, Proposi-

tion 4.10 tells us that Supp(Q′, D, r̄) = ∅ iff D |= ∧
1≤i≤n ∀w̄ ¬possQ′

i
(r̄w̄).

Corollary 4.13

For each fixed BCCQ query Q and a set of EGDs Σ, the complexity of

CertainAnswerΣ(Q) is in PTIME.

4.3 Non-rewritability in FO

The basic starting points for our investigation was the fact that certΣ(Q,D) =

Q(chaseΣ(D)) for a CQ Q and a set Σ of FDs, for every database D. This remained

true for unions of CQs, but failed for BCCQs, forcing us to produce a Datalog rewrit-

ing to obtain certain answers. But can a first-order rewriting be obtained instead? This

would make it possible to produce certain answers using the core of SQL as opposed to

its recursive features which do not always perform as well in practice.

In this section, we show that the answer, in general, is negative even for CQs (and thus

for BCCQs). In the next section, however we show that such rewritings can be obtained

in FO for BCCQs whenever Σ is empty.

The main result of this section is the following.

Theorem 4.14

There exists a Boolean CQ Q and single FD Σ over a relational schema of binary and

unary relations such that certΣ(Q,D) is not expressible as an FO query.

Proof

Consider a schema with one binary relation E and two unary relations A and B. The

only FD in Σ is ∀x∀y∀z (
E(x, y) ∧ E(x, z)→ y = z

)
; in other words, the first attribute

of E is a key. The query Q is a Boolean CQ ∃x (A(x) ∧B(x)).

To prove inexpressibility of certΣ(Q, ·) in FO, for each n > 0 we create two databases

Dn and D′
n. In both of them, E is interpreted as a disjoint union T1∪T2 where T1 and T2

are balanced binary trees of depth n in which all nodes are distinct nulls. In both A and

B are singleton sets. In Dn, the set A contains a leaf of T1 and B contains a leaf of T2.

In D′
n, both A and B contain leaves of T1 such that their only common ancestor in the

tree is the root (in other words, they are leaves of subtrees rooted at different children

of the root of T1).

Because of the constraint Σ, for every valuation v such that the resulting database

satisfies it we have that both v(T1) and v(T2) are chains. Indeed, consider any node ⊥
with children ⊥1,⊥2 in Ti. If v(⊥1) �= v(⊥2) then the resulting tuples (v(⊥), v(⊥1)) and
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(v(⊥), v(⊥2)) violate the constraint. Thus, v(⊥1) = v(⊥2) and applying this construction

inductively we see that v(Ti) is a chain. Hence, it has a single leaf, and thus certΣ(Q,D
′
n)

is true, since A and B must be interpreted as that leaf. On the other hand, certΣ(Q,Dn)

is false, since there is a valuation v that sends T1 and T2 into two disjoint chains, and

thus, A and B are interpreted as two distinct elements.

Assume now that certΣ(Q, ·) is rewritable as an FO sentence φ. Then, for every n > 0,

we have D′
n |= φ and Dn |= ¬φ. We next show that such a sentence cannot exist, thereby

proving non-FO-rewritability.

Recall that in a database (with one binary relation, like considered here), a radius r

neighborhood of an element a is its restriction to the set of all elements reachable from a

by a path of length at most r, where the path does not take into account the orientation

of edges of E (e.g. if we have E(a, b) and E(c, a) then both b and c are in the radius 1

neighborhood of a). When two neighborhoods, of elements a and b, are isomorphic, it

means that there is an isomorphism between them that sends a to b. In other words,

centers of neighborhoods are viewed as distinguished elements when it comes to defining

neighborhoods. It is known that each first-order sentence ψ is Hanf-local (Fagin et al.

1995): that is, there exists a number r > 0 such that for any two databases D1 and D2,

if there is a bijection f between D1 and D2 such that the radius r neighborhoods of a in

D1 and f(a) in D2 are isomorphic then D1 and D2 agree on ψ, that is either both satisfy

it or both do not.

Now let r be such a number for the sentence φ we assumed exists. Consider Dn and

D′
n and let T1a, T1∗ be the subtrees of the root of T1 in Dn such that the first contains

A while the second contains neither A not B, and let T2b, T2∗ be defined similarly for

subtrees of the root of T2 with respect to B. In D′
n we define T ′

1a, T
′
1b as subtrees of the

root of the tree containing A,B such that the first contains the A leaf and the second

contains the B leaf, while T ′
2∗, T

′
2∗∗ be the subtrees of the root of the tree having neither

A nor B elements. Then, it is easy to see that the following pairs of trees are isomorphic:

T1a and T ′
1a, T2b and T

′
1b, T1∗ and T ′

2∗, T2∗ and T ′
2∗∗.

We now define the bijection f as the union of those isomorphisms plus mapping roots

of trees Ti in D into roots of Ti in D
′. It is an immediate observation that if n > r + 1

(i.e. leaves are not in the radius r neighborhood of children of roots) then f satisfies the

condition that neighborhoods of a and f(a) of radius r are isomorphic. This would tell

us that Dn and D′
n agree on φ but we know they do not. This contradiction completes

the proof.

As a corollary to the proof, we obtain the following result showing that non-recursive

SQL is incapable of computing certΣ(Q,D) in the setting of Theorem 4.14.

Corollary 4.15

There exists a Boolean CQ Q and single FD Σ over a relational schema of bi-

nary and unary relations such that certΣ(Q,D) is not expressible in the basic

SELECT-FROM-WHERE-GROUP BY-HAVING fragment of SQL with arbitrary aggregate func-

tions.

This is due to the fact that queries in this fragment of SQL with grouping and aggre-

gation can be translated into a logic with aggregate functions (Libkin 2003) which itself

is known to be Hanf-local (Hella et al. 2001).
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4.4 FO rewriting for certain answers

We now focus on the special case where Σ is empty. First notice that the only Data-

log component in our rewriting was the equivγ formula; moreover, notice that without

constraints, equivγ simply computes a reflexive symmetric transitive closure. More pre-

cisely, for a given t̄ = ν(ȳ), one has that equivγ(t̄, s, s
′) holds in D iff (s, s′) belongs

to the reflexive symmetric transitive closure of {(ν(x), ν(w)) | x = w ∈ γ(ȳ)} over

adom(D) ∪ adom(γ).

Definition 4.16

Given a database D, a conjunction of equality atoms γ(ȳ) and an assignment ν : ȳ ∪
adom(γ) → adom(D) ∪ adom(γ) preserving constants, we say that u, u′ ∈ adom(D) ∪
adom(γ) are equivalent w.r.t. γ and ν and write u ≡νγ u′, if either u = u′ or (u, u′)
belongs to the reflexive symmetric transitive closure of {(ν(x), ν(w)) | x = w ∈ γ}.

As Σ is empty, we can rewrite as follows the equivγ formula in FO, where m is the

number of equivalence classes of ∼γ :
equivFOγ(ȳ, z, z

′) := z = z′ ∨
∨

u1,v1...um,vm∈ ȳ ∪ adom(γ) |
ui∼γvi for all 1≤i≤m

(z = u1 ∧ z′ = vm ∧
∧

1≤i<m
vi = ui+1)

Proposition 4.17

Given an incomplete database D, a conjunction of equality atoms γ(ȳ) and an as-

signment ν(ȳ) = t̄ over adom(D) ∪ adom(γ), given s, s′ in t̄ ∪ adom(γ), we have that

D |= equivFOγ(t̄, s, s
′) if and only if s ≡νγ s′.

Intuitively, this holds because each disjunct of equivFOγ(t̄, s, s
′) corresponds to a pos-

sible derivation of (s, s′) in the reflexive symmetric transitive closure of {(ν(x), ν(w)) | x =

w ∈ γ}, and one can prove that there is a bound only depending on γ on the number of

steps of this derivation.

Proof

To start with we naturally extend ν to be the identity on adom(γ). Assume first D |=
equivFOγ(t̄, s, s

′). If s = s′ then s ≡νγ s′. Now assume s �= s′. Then, there exist variables

and/or constants u1, v1 . . . um, vm ∈ ȳ ∪ adom(γ) with ui ∼γ vi for all i, such that

s = ν(u1), s
′ = ν(vm) and ν(vi) = ν(ui+1) for all i < m. Clearly ui ∼γ vi implies

ν(ui) ≡νγ ν(vi). Then, ν(ui) ≡νγ ν(ui+1) for all i < m. We conclude by transitivity that

s = ν(ui) ≡νγ ν(um) ≡νγ ν(vm) = s′, and therefore, s ≡νγ s′.
Assume now that s ≡νγ s′. If s = s′ then clearly D |= equivFOγ(t̄, s, s

′). Thus, assume

s �= s′. We proceed by induction on the number of transitive closure steps needed to

derive (s, s′) starting for the base relation {(ν(x), ν(w))|x = w ∈ γ}. In the base case,

(s, s′) = (ν(x), ν(w)) for some equality x = w ∈ γ. Then, D satisfies the following

disjunct of equivFOγ(t̄, s, s
′): take u1 = x, v1 = w, ui = vi = w for all i = 2..m (this is a

disjunct since ui ∼γ vi for all i = 1..m). The disjunct is satisfied since s = ν(x) = ν(u1),

s′ = ν(w) = ν(vm), and for all i = 1..m− 1, ν(vi) = ν(ui+1) = ν(w).

In the general inductive case, there exists r such that (r, s′) = (ν(x), ν(w)) for some

equality x = w (or w = x) ∈ γ, with s ≡νγ r derived at the previous step. By the induction
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hypothesis D |= equivFOγ(t̄, s, r). We can assume s �= r since otherwise (s, s′) would

be in the base relation. Therefore, D satisfies one of the disjuncts of equivFOγ(t̄, s, r).

Then, there exists a sequence of m+ 1 pairs in ȳ ∪ adom(γ)

(u1, v1)(u2, v2) . . . (um, vm)(um+1, vm+1)

such that

• um+1 = x and vm+1 = w,

• ui ∼γ vi, i = 1..m+ 1,

• s = ν(u1), r = ν(vm), s′ = ν(vm+1),

• ν(vi) = ν(ui+1), for all i ≤ m,

We now show that from this sequence of pairs, one can construct another one of exactly

m pairs, (u′i, v
′
i), i = 1..m still connecting s ans s′, that is such that:

(a) u′i ∼γ v′i, i = 1..m

(b) s = ν(u′1), s
′ = ν(v′m)

(c) ν(v′i) = ν(u′i+1), for all i < m.

The idea is to first cut the sequence (ui, vi), i = 1..m + 1, removing at least one pair,

then pad it to size m if necessary.

In order to cut the original sequence, remark that it contains m+ 1 pairs where m is

the number of ∼γ equivalence classes. Thus, there exist i < j such that ui ∼γ uj . We

remove from the sequence all elements between ui and vj (excluded), the new sequence

is

(u1, v1)...(ui−1, vi−1)(ui, vj)(uj+1, vj+1)...(um+1, vm+1)

Note that this sequence satisfies (a) (b) and (c) above since ui ∼γ uj ∼γ vj . Let the new

sequence contain k pairs. We know k ≤ m because we have removed at least one pair

from the original sequence (recall i < j). If k < m, we pad the sequence on the right with

m−k pairs (vm+1, vm+1). The new sequence still satisfies (a), (b), and (c); therefore, the

corresponding disjunct of equivFOγ(t̄, s, s
′) is satisfied by D.

Example 4.18

Let γ := y1 = y2∧z = x be the equality subquery of the query Q(x) in Example 4.2. Up to

logical equivalence, equivFOγ(y1, y2, z, x, w,w
′) contains precisely the disjuncts w = w′,

w = y1 ∧ w′ = y2, w = z ∧ w′ = x, w = y1 ∧ w′ = x ∧ y2 = z, plus all disjuncts obtained

from them by applying one or more of the following transformations: switch w and w′,
switch y1 and y2, switch x and z. Let D be the database from Example 2.1, then we have

for instance D |= equivFOγ(1,⊥2,⊥2, 1, a, a
′) and D |= equivFOγ(1,⊥2,⊥2,⊥2, a, a

′)
for all a, a′ ∈ {1,⊥2}. Similarly D |= equivFOγ(⊥1,⊥2,⊥2, 1, a, a

′) for all a, a′ ∈
{1,⊥1,⊥2}.
As a consequence of Proposition 4.17, for fixed γ and t̄, the relation {(s, s′) | D |=

equivFOγ(t̄, s, s
′)} is an equivalence relation over adom(D)∪adom(γ) where each element

of adom(D) neither in t̄ nor in adom(γ) forms a singleton equivalence class.

As in Section 4.2, equivFOγ selects precisely the pairs of elements of a tuple that a

valuation needs to collapse to satisfy a set of equalities.
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As a consequence, we can rewrite in FO the formula possQi
of Subsection 4.2 encoding

the set of possible answers to Qi. It is enough to replace each occurrence of the Datalog

equivγ(ȳ, z, z
′) program in it by equivFOγ (ȳ, z, z′). We denote by possFOQi

the rewriting so

obtained.

Theorem 4.19 (FO rewriting)

Let D be a database, Σ = ∅ and let Q(x̄) be a BCCQ in NRV normal form. Let Q′ =
Q′

1(x̄) ∨ . . . ∨ Q′
n(x̄) be ¬Q in DNF normal form. Then, r̄ ∈ certΣ(Q,D) if and only if

D |= ρ(r̄) where ρ(x̄) =
∧

1≤i≤n ∀w̄ ¬possFOQ′
i
(x̄w̄).

Note that tractability of BCCQ was already proved in Gheerbrant and Libkin (2015)

using tableau-based methods. We now refine complexity as follows.

Corollary 4.20

For each fixed BCCQ query Q, the complexity of CertainAnswerΣ(Q) is in

DLOGSPACE whenever Σ = ∅.

4.5 FO rewriting for best answers

Considering arbitrary FO queries brought us an intrinsic intractability result for all vari-

ants of best answers. This motivates restricting to unions of conjunctive queries, for

which a polynomial-time evaluation algorithm (in data complexity) already exists(Libkin

2018). The resolution-based procedure is however in sharp contrast with näıve evalua-

tion, which allows to compute certain answers to unions of conjunctive queries via usual

model checking. We thus initiate a descriptive complexity analysis of the best answers

problem, showing that for unions of conjunctive queries, it can essentially be reduced –

modulo a preprocessing of the query – to (näıve) evaluation of an FO-formula.

Given a union of conjunctive queries Q, our starting point towards an FO rewriting for

best answers is finding an FO-formula Q⊆(x̄, ȳ) encoding the inclusion of supports, that

is selecting tuples s̄, t̄ over adom(D) ∪ adom(Q) iff Supp(Q,D, s̄) ⊆ Supp(Q,D, t̄). From

Q⊆, one can easily define an FO-formula selecting precisely all best answers to Q on D:

bestQ(x̄) := ∀ȳ(Q⊆(x̄, ȳ)→ Q⊆(ȳ, x̄)) (1)

As in Section 4.2, we assume all CQs to be in NRV normal form. We can thus first

concentrate on the support of equality subqueries. This will be encoded in FO and then

integrated in the rewriting of the whole conjunctive query.

We now go back to an arbitrary union of conjunctive queries of vocabulary σ in NRV-

normal form:

Q(x̄) :=
∨

1≤i≤n
Qi(x̄)

where each Qi is in NRV normal form with relational subquery qi(ȳi, z̄i) and equality

subquery eqi(x̄, ȳi, z̄i).

Recall the formula compγ , defined in Section 4.2, stating the existence of a valuation

that collapses all equivalent elements of a tuple:

compγ(ȳ) := ∀zz′(equivFOγ(ȳ, z, z′) ∧ ¬Null(z) ∧ ¬Null(z′)→ z = z′)

Notice that if D |= compγ(t̄) then for each s ∈ adom(D)∪adom(γ) there exists at most

one constant c such that D |= equivFOγ(t̄, s, c). In fact if for constants c1 and c2, D |=
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equivFOγ(t̄, s, c1) and D |= equivFOγ(t̄, s, c2), by transitivity D |= equivFOγ(t̄, c1, c2),

implying c1 = c2.

Example 4.21

LetD and γ be as in Example 4.18. Consider compγ(y1, y2, z, x). Given the tuples selected

by equivFOγ in Example 4.18, we can conclude that D |= compγ(1,⊥2,⊥2, 1).

We now define a formula capturing the inclusion of supports between two conjunctions

of equality atoms, which will be a crucial ingredient in our rewriting.

Let γ(x̄) and γ′(ȳ) be conjunctions of equality atoms with adom(γ) = adom(γ′). We

define:

implyγ,γ′(x̄, ȳ) := ∀zz′ (equivFOγ′(ȳ, z, z′)→ equivFOγ(x̄, z, z
′))

Example 4.22

Let γ and D be as in Example 4.18. Let γ′ := y′1 = y′2 ∧ z′ = x′, then

it follows from Example 4.18 that D |= implyγγ′(⊥1⊥2⊥21, 1⊥2⊥2⊥2) and D |=
implyγγ′(1⊥2⊥21, 1⊥2⊥2⊥2).

By combining Propositions 4.8 and 4.7, we get:

Corollary 4.23

Let γ(ȳ), γ′(ȳ) be conjunctions of equality atoms with adom(γ) = adom(γ′),D a database

and ν(ȳ) = t̄, ν′(ȳ) = t̄′ assignments over adom(D) ∪ adom(γ). If D |= compγ(t̄) ∧
implyγ,γ′(t̄, t̄′), then D |= compγ′(t̄′).

Proof

Assume D |= compγ(t̄) ∧ implyγ,γ′(t̄, t̄′), that is, D |= ∀zz′ (equivFOγ(t̄, z, z
′) ∧

¬Null(z) ∧ ¬Null(z′) → z = z′) and D |= ∀zz′ (equivFOγ′(t̄′, z, z′) →
equivFOγ(t̄, z, z

′)). Now let s, s′ ∈ adom(D) ∪ adom(γ) with D |= equivFOγ′(t̄′, s, s′) ∧
¬Null(s) ∧ ¬Null(s′). As D |= implyγ,γ′(t̄, t̄′), it follows that D |= equivFOγ(t̄, s, s

′)
and so D |= ¬Null(s) ∧ ¬Null(s′) → s = s′ now follows from D |= compγ(t̄). Hence

D |= compγ′(t̄′).

We are now ready to define the FO-formula encoding the inclusion of supports.

Q⊆(x̄, x̄′) :=
∧

1≤i≤n
(∀ȳz̄((qi(ȳ, z̄) ∧ compeqi(x̄, ȳ, z̄))→

∨

1≤j≤n
∃ȳ′z̄′(qj(ȳ′, z̄′) ∧ implyeqi,eqj (x̄ȳz̄, x̄′ȳ′z̄′)) ) )

Combining Lemmas 4.5, 4.9, Propositions 4.7, 4.8, and Corollary 4.23, we get:

Proposition 4.24

D |= Q⊆(s̄, t̄) iff Supp(Q,D, s̄) ⊆ Supp(Q,D, t̄).

Proof

⇒ Assume D |= Q⊆(s̄, t̄) and let v ∈ Supp(Q,D, s̄) be a valuation of D. By

Lemma 4.9, ∃iāb̄ D |= qi(āb̄) ∧ compeqi(s̄āb̄) and v(D) |= eqi(v(s̄āb̄)). So by our as-

sumption there exists j, ā′b̄′ with D |= qj(ā
′b̄′) ∧ implyeqi,eqj (s̄āb̄, t̄ā′b̄′) and by Corol-

lary 4.23 D |= compeqj (t̄ā
′b̄′). Now let t1, t2 such that D |= equiveqj (t̄ā

′b̄′, t1, t2). By
D |= implyeqi,eqj (s̄āb̄, t̄ā

′b̄′), we have D |= equiveqi(s̄āb̄, t1, t2), and by Lemma 4.5,
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v(t1) = v(t2). But then, again by Lemma 4.5, v(D) |= eqi(v(t̄ā
′b̄′)) and by Lemma 4.9 it

follows that v ∈ Supp(Q,D, t̄).
⇐ Assume Supp(Q,D, s̄) ⊆ Supp(Q,D, t̄) and let i, ā, b̄ with D |= qi(ā, b̄) ∧

compeqi(s̄, ā, b̄). By Proposition 4.7, there exists a valuation v (that we assume w.l.o.g. to

be tight) such that v(D) |= eqi(v(s̄āb̄)) and so by Lemma 4.9 v ∈ Supp(Q,D, s̄). Hence

by our assumption, we also have v ∈ Supp(Q,D, t̄), and so by Lemma 4.9, there exists

j, ā′b̄′ with D |= qj(ā
′b̄′) ∧ compeqj (t̄ā′b̄′) and v(D) |= eqj(v(t̄ā

′b̄′)).

Claim 4.25

Let D be a database, γ(ȳ), γ′(ȳ) conjunctions of equality atoms with adom(γ) =

adom(γ′), ν(ȳ) = t̄, ν′(ȳ) = t̄′ assignments over adom(D) ∪ adom(γ) and v∗ a valua-

tion of D w.r.t. ν and γ satisfying the conditions of Lemma 4.7 (i.e., v∗(s) = v∗(s′) iff

D |= equivγ(t̄, s, s
′), for all s, s′ ∈ adom(D) ∪ adom(γ)). Then v∗(D) |= γ′(v∗(t̄′)) iff for

all valuations v, v(D) |= γ(v(t̄)) implies v(D) |= γ′(v(t̄′)).

Proof of the claim

⇒ Assume v∗(D) |= γ′(v∗(t̄′)) and let v be a valuation such that v(D) |= γ(v(t̄)). We

want to show v(D) |= γ′(v(t̄′)). By Lemma 4.5 it is enough to show that ∀s, s′ ∈ t̄′,
D |= equivγ′(t̄′, s, s′) implies v(D) |= v(s) = v(s′). So let s, s′ ∈ t̄′ such that D |=
equivγ′(t̄′, s, s′). As v∗(D) |= γ′(v∗(t̄′)), by Lemma 4.5, v∗(D) |= v∗(s) = v∗(s′). Now

v∗ satisfies the conditions of Lemma 4.7, so D |= equivγ(t̄, s, s
′). As v(D) |= γ(v(t̄)), by

Lemma 4.5 it follows that v(D) |= v(s) = v(s′).
⇐ Assume for all valuations v, v(D) |= γ(v(t̄)) implies v(D) |= γ′(v(t̄′)). By

Lemma 4.5, v∗ satisfying the conditions of Lemma 4.7, we have v∗(D) |= γ(v∗(t̄)) and so

by our assumption v∗(D) |= γ′(v∗(t̄′)).

As v satisfies the conditions of Lemma 4.7, by Claim 4.25 it follows from v(D) |=
eqj(v(t̄ā

′b̄′)) that ∀v with v(D) |= eqi(v(s̄āb̄)), also v(D) |= eqi(v(t̄ā
′b̄′)). Now by Propo-

sition 4.8 D |= implyeqi,eqj (s̄āb̄, t̄ā
′b̄′) ∨ ¬compeqi(s̄, ā, b̄). But D |= compeqi(s̄, ā, b̄), so

D |= ∃ȳz̄( qj(ȳ, z̄) ∧ implyeqi,eqj (s̄āb̄, t̄ȳz̄)).
Recall that from Q⊆ one can easily define a first-order rewriting bestQ(x̄) for best

answers as in (1).

Theorem 4.26

Given Q a union of conjunctive queries over schema σ and an incomplete database D,

t̄ ∈ best(Q,D) iff D |= bestQ(t̄).

Proof

By Proposition 4.24, D |= bestQ(t̄) if and only if ∀sSupp(Q,D, t̄) ⊆ Supp(Q,D, s̄) im-

plies Supp(Q,D, s̄) ⊆ Supp(Q,D, t̄). Notice that this holds exactly whenever ¬∃s̄ with

Supp(Q,D, t̄) ⊂ Supp(Q,D, s̄), that is, whenever t̄ ∈ best(Q,D).

Example 4.27

For Q,D, γ, γ′ as in Examples 2.1 and 4.22:

Q⊆(x, x′) := ∀y1y2z((R(y1) ∧ S(y2, z) ∧ compγ(y1, y2, z, x))
→

∃y′1y′2z′(R(y′1) ∧ S(y′2, z′) ∧ implyγ,γ′(y1y2zx, y
′
1y

′
2z

′x′))).

https://doi.org/10.1017/S1471068423000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000364


304 A. Gheerbrant et al.

This allows to derive for instance Supp(Q,D, 1) ⊆ Supp(Q,D,⊥2) (as observed in

Example 2.1). In fact the subquery R(y1)∧S(y2, z)∧compγ(y1, y2, z, x) with free variables

y1, y2, z, x selects on D tuples (1,⊥2,⊥2, 1), (⊥1,⊥2,⊥2, 1), and no other tuple with last

element 1. Moreover, as shown in Example 4.22

D |= implyγγ′(⊥1⊥2⊥21, 1⊥2⊥2⊥2)

D |= implyγγ′(1⊥2⊥21, 1⊥2⊥2⊥2)

Thus, D |= Q⊆(1,⊥2). Similarly, one can show D |= Q⊆(⊥1,⊥2), and therefore D |=
bestQ(⊥2).

As a corollary of Theorem 4.26, for a union of conjunctive queries Q one can compute

best(Q,D) by first computing the formula bestQ(x̄) from Q, then evaluating bestQ on D.

Since data complexity of FO query evaluation is DLogSpace (and in particular AC
0),

this gives the following corollary:

Corollary 4.28

For each fixed union of conjunctive queries Q, the data complexity of BestAnswerΣ is

DLogSpace.

Note that it was known from Libkin (2018) that the data complexity of computing

best answers for unions of conjunctive queries is polynomial time. In terms of com-

bined complexity (i.e. when either Q, D and ā are in the input), the rewriting approach

(i.e. the procedure of computing bestQ from Q and then evaluating bestQ on D), can

be easily shown to be in PSPACE. In fact it is well known that a first-order query φ

can be evaluated on a database D in space at most qr(φ) log |D| + log|φ|, where qr(φ)
is the quantifier rank of φ. Note that although bestQ has size exponential in Q, the

quantifier rank of bestQ is linear in the size of Q. Thus whether ā ∈ best(Q,D) can

be checked using space O(|Q|, |D|). Moreover one can easily check that bestQ can be

computed from Q in space polynomial in the size of |Q|. Since space bounded com-

putations can be composed without storing the intermediate output, computing bestQ
from Q and then evaluating bestQ on D can be done overall in PSPACE in the size

of |Q| and |D|. The rewriting approach thus implies a PSPACE upper bound for the

combined complexity of BestAnswerΣ for unions of conjunctive queries. However,

we can show that the problem actually stands in the third level of the polynomial

hierarchy.

Theorem 4.29

For unions of conjunctive queries, combined complexity of BestAnswerΣ is Πp3-

complete. Hardness already holds for conjunctive queries.

Proof

For membership, first note that one can check in Πp2 whether Supp(Q,D, ā) ⊆
Supp(Q,D, b̄) on input given by a database D, a UCQ Q, and tuples ā and b̄. In fact in

order to check Supp(Q,D, ā) � Supp(Q,D, b̄) one guesses a valuation v of D, then calls

an NP oracle to check v(ā) ∈ Q(v(D)) and v(b̄) /∈ Q(v(D)).

On input given by a database D, a UCQ Q, and a tuple ā one can check ā /∈ best(Q,D)

as follows. First guess a tuple b̄ over adom(D) of the same arity as ā; then, using two
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calls to a Σp2 oracle, check that Supp(Q,D, ā) ⊆ Supp(Q,D, b̄) and Supp(Q,D, b̄) �
Supp(Q,D, ā).

For hardness, we reduce from ∀∃∀3DNF , which is known to be Πp3-complete (Schaefer

and Umans 2002). We take as input a ∀∃∀3DNF -formula of the form

F := ∀z1, . . . zl∃x1 . . . xk∀y1 . . . yp
n∨

i=1

conji

where the each conji is a conjunction of 3 (not necessarily distinct) literals over variables

z1, . . . zl, x1, . . . , xk, y1, . . . , yp.

We construct a database DF with adom(DF ) = {0, 1, good, bad} ∪ {i, ī,⊥i, ⊥̄i, |i =

1..k}, and a conjunctive query QF (z1, ..zl, z) such that (0̄, good) ∈ best(QF , DF ) if and

only if F is true.

DF is of signature {S4, C2, A2, B3} as follows:
• The extension of S and A and B is fixed and does not depend on F :

— S contains tuple (1, 1, 1, good), and tuples (b1, b2, b3, good) and (b1, b2, b3, bad)

for every b1, b2, b3 ∈ {0, 1} with (b1, b2, b3) �= (1, 1, 1). Intuitively, S encodes the

possible truth assignment of each disjunct of F. Note that only the satisfying

assignment (i.e. (1,1,1)) appears together with the only constant good, all the

others appear both with good and bad.

— A contains only two tuples: (0, 1) and (1, 0). Intuitively, A will be used to encode

truth values for pairs of literals (w,¬w), w ∈ y1, . . . yp, z1, . . . zl.
— B contains tuples (0, 0, bad), (1, 1, bad) and tuples (b1, b2, good) and (b1, b2, bad)

for every b1, b2 ∈ {0, 1}, b1 �= b2. Intuitively, B encodes assignments for pairs

of literals (w,¬w), w ∈ {x1, . . . xk}. Note that here inconsistent pairs (i.e. same

truth value) are possible, but these are the only ones which do not appear to-

gether with constant good.

• The extension of C depends on F and contains tuples {(⊥i, i)|i = 1..k} and {(⊥̄i, ī)|i =
1..k}. Intuitively, a valuation (b, i) (resp. (b, ī)) of one of these tuples, with b ∈ {0, 1},
will encode truth value b for the literal xi (resp, ¬xi) of F .
QF is defined as follows. For each variable w of F , the conjunctive query QF will use

variables w and w̄ (either quantified or free). For a literal α of F, the corresponding

variable of QF will be denoted as enc(α). More precisely if α = w is a positive literal,

then, enc(α) := w, otherwise if α = ¬w then enc(α) := w̄.

QF (z1, . . . zl, z) := ∃x1, . . . xk, x̄1, . . . x̄k, y1, . . . yp, ȳ1, . . . ȳp, z̄1, . . . z̄p
∧
i=1,..k B(xi, x̄i, z) ∧

∧
i=1,..pA(yi, ȳi) ∧

∧
i=1,..lA(zi, z̄i) ∧

∧
i=1,..k(C(xi, i) ∧ C(x̄i, ī)) ∧

∧
(α1∧α2∧α3)∈F S(enc(α1), enc(α2), enc(α3), z)

We can prove that all tuples of the form (t̄, good) (which we refer to as good tuples)

have the same support. This is given by the set of all consistent boolean valuations (i.e.
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valuations of ⊥i, ⊥̄i in {0, 1} such that v(⊥i) �= v(⊥̄i) for all i). Moreover we can prove

that if there exists a (t̄, bad) whose support contains all consistent boolean valuations

then the support of (t̄, bad) strictly contains the support of good tuples. Therefore, any

good tuple (including (0̄, good)) is a best answer iff for all tuples t̄ there exists a consistent

boolean valuation which is not in the support of (t̄, bad). We can finally show that the

last holds iff F is true.

Therefore, under standard complexity theoretic assumptions, our rewriting approach

is not optimal in terms of combined complexity, as it is often the case with generic

approaches. However, it has the advantage of exploiting standard FO query evaluation,

which despite the PSPACE combined complexity is highly optimized in database systems

and works well in practice.

5 Future work

Our rewriting techniques are closer to a practical implementation than the previous

tableau-based method from Gheerbrant and Libkin (2015). This is due to their ex-

pressibility in recursive SQL (or even non-recursive in the case of Theorems 4.19 and

4.26). However, while theoretically feasible, an actual implementation will need addi-

tional techniques to achieve acceptable performance. To see why, notice that the first

rule in the definition of equivγ creates a cross product over the full active domain,

that is, the set of all elements that appeared in the database. This of course will be

prohibitively large. While this may appear to be a significant obstacle, a similar situa-

tion with computing or approximating certain answers is not new in the literature. For

instance, the first approximation scheme for certain answers to SQL queries that ap-

peared in Libkin (2016) has done exactly the same, and generated very large Cartesian

products even for simple queries with negation. Nonetheless, an alternative was found

quickly (Guagliardo and Libkin 2016) that completely avoided the need for such expen-

sive queries, and it was shown to work well on several TPC-H queries. Thus, looking

for a practical and implementable rewriting is one of the possible directions for future

work.

As another open problem, we note that the query for which we have shown certain an-

swers to be non-rewritable in FO has DLOGSPACE data complexity. Indeed the problem

is essentially reachability over trees, which can be easily encoded using deterministic tran-

sitive closure (Immerman 1987). To express DLOGSPACE problems, we need a language

weaker than Datalog with negation. Thus, it is natural to ask whether a low complexity

Datalog fragment would be sufficient to express rewritings of BCCQ, or a separating

example that is PTIME-complete can be found.

Another direction would be to investigate how our techniques can be extended to dif-

ferent semantics of incompleteness. We used here the closed-world semantics (Abiteboul

et al. 1995; Imielinski and Lipski 1984; van der Meyden 1998), in which data values are

the only missing information, but there are other possible semantics, for example needed

in order to cope with data inconsistencies (Cal̀ı et al. 2003a), where query rewritings

could still be found. Quantitative variations of the notion of certainty as proposed in

Libkin (2018) could also be investigated.
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