SOME EXAMPLES OF NONMEASURABLE SETS

EDWIN HEWITT and KARL STROMBERG

(Received 25 July 1972)
Communicated by B. Mond

In a recent issue of this Journal, Pu [3] has given an interesting construction of a nonmeasurable subset A of R such that

$$
\begin{equation*}
\lambda(A \cap I)=\lambda(I) \tag{1}
\end{equation*}
$$

for all intervals I in R. [Throughout this note, the symbol λ denotes Lebesgue outer measure on R or Haar outer measure on a general locally compact group.] This solves a problem stated in [2], p. 295, Exercise (18.30).

We present in this note two examples, different from Pu's, that have properties like (1).

First consider any nonmeasurable [additive] subgroup B of R. There are many such subgroups: see for example [1], (16.13). A specific construction is the following. Let H be any Hamel basis for R over the rationals Q, let a be an element of H, and let B be the set of all linear combinations $\sum_{j=1}^{n} r_{j} h_{j}$ where $r_{j} \in Q$ and no h_{j} is equal to a. Steinhaus's theorem ([2], (10.43)) shows that B is nonmeasurable. Note that every measurable subset F of B has measure 0 : if $F \subset B$ and $\lambda(F)>0$, Steinhaus's theorem shows that $F-F$ contains an interval J about 0 , and so $J \subset F-F \subset B-B=B$. This implies of course that $B=R$. Now if I is any open interval and U is an open set such that $I \backslash B \subset U \subset I$, then we have $\lambda(U)=\lambda(I)$, since otherwise we would have

$$
0<\lambda(I \backslash U) \text { and } I \backslash U \subset B .
$$

Hence the complement $R \backslash B$ has property (1).
Our second example is somewhat different. Following Sierpiński [4], we construct a set C of irrational numbers such that if x, y are irrational and $x+y$ is rational, then exactly one of x and y is in C. Well order the set S of irrational numbers in any fashion, by an ordering \leqq. Let the first element be in C. Now suppose that for all $x<y$, we have determined whether or not $x \in C$. If $y=-x+r$ for some $x<y, x \in C$, and rational r, then y is not in C. Otherwise, y is in C. If $u, v \in S$ and $u+v \in Q$, then plainly not both u and v are in C.

Assume that neither u nor v is in C. Then there are a $u^{\prime}<u$ and a $v^{\prime}<v$ such that $u^{\prime}+u$ and $v^{\prime}+v$ are in Q, and u^{\prime}, v^{\prime} are in C. We may suppose that $u^{\prime} \leqq v^{\prime}$. Then $\left(u^{\prime}+v^{\prime}\right)+u+v$ is in Q, so that $u^{\prime}+v^{\prime}$ is in Q, an evident contradiction.

Next consider any rational number r and consider the mapping τ_{r} of R onto R defined by $\tau_{r}(x)=2 r-x$ [reflection in the point r]. It is clear that τ_{r} preserves Lebesgue outer measure: $\lambda\left(\tau_{r}(X)\right)=\lambda(X)$ for all $X \subset R$. Now consider any interval $I=] r-\alpha, r+\alpha[$, for $\alpha>0$. It is simple to show that

$$
\tau_{r}(I \cap C)=(I \backslash C) \cup(Q \cap I)
$$

and so $\lambda(I \cap C)=\lambda(I \backslash C)$. Accordingly, we have

$$
\begin{aligned}
1 & =\frac{\lambda(I)}{2 \alpha} \leqq \frac{\lambda(I \cap C)+\lambda(I \backslash C)}{2 \alpha} \\
& =\frac{2 \lambda(I \cap C)}{2 \alpha}
\end{aligned}
$$

that is,

$$
\lambda(I \cap C) \geqq \frac{1}{2} \lambda(I)
$$

Now given an arbitrary interval] $x, x+h$ [, where $h>0$, consider any h^{\prime} such that $0<h^{\prime}<h$ and $x+\frac{1}{2} h^{\prime}$ is rational. Then $] x, x+h^{\prime}[$ is an interval of the type I, so that we have

$$
\frac{\lambda(C \cap] x, x+h^{\prime}[)}{h^{\prime}} \geqq \frac{1}{2}
$$

We may also write

$$
\begin{aligned}
\frac{\lambda(C \cap] x, x+h[)}{h} & \geqq \frac{\lambda(C \cap] x, x+h^{\prime}[)}{h^{\prime}} \cdot \frac{h^{\prime}}{h} \\
& \geqq \frac{1}{2} \frac{h^{\prime}}{h}
\end{aligned}
$$

Since h^{\prime} / h can be made arbitrarily close to 1 , we see that

$$
\frac{\lambda(C \cap] x, x+h[)}{h} \geqq \frac{1}{2}
$$

for all $x \in R$ and $h>0$. Exactly the same argument shows that

$$
\frac{\lambda(] x, x+h[\backslash C)}{h} \geqq \frac{1}{2}
$$

for all $x \in R$ and $h>0$.
Plainly then C is nonmeasurable and

$$
\begin{equation*}
\lambda(I \cap C) \geqq \frac{1}{2} \lambda(I) \tag{2}
\end{equation*}
$$

for all intervals I.
Finally we note that our first exmaple admits a generalization to any locally compact Hausdorff group G with left Haar measure λ that contains a non λ-measurable subgroup B. [For example, every nondiscrete Abelian G contains such a subgroup: see [1], (16.13.c).] Then if E is a λ-measurable subset of G and $\lambda(E)<\infty$, the equality $\lambda(E \backslash B)=\lambda(E)$ holds.

References

[1] Edwin Hewitt, and Kenneth A. Ross, Abstract Harmonic Analysis, Vol. I (New York Heidelberg - Berlin: Springer-Verlag 1963).
[2] Edwin Hewitt, and Karl R. Stromberg, Real and Abstract Analysis, 2nd printing. (New York - Heidelberg - Berlin: Springer-Verlag 1969).
[3] H. W. Pu, 'Concerning non-measurable subsets of a given measurable set', J. Austral. Math. Soc. 13 (1972), 267-270.
[4] W. Sierpiński, 'Sur un problème conduisant à un ensemble non mesurable'. Fund. Math. 10 (1927), 177-179.

The University of Washington, Seattle U.S.A.

