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The Chen–Ruan Cohomology of
Weighted Projective Spaces

Yunfeng Jiang

Abstract. In this paper we study the Chen–Ruan cohomology ring of weighted projective spaces. Given

a weighted projective space Pn
q0,...,qn

, we determine all of its twisted sectors and the corresponding

degree shifting numbers. The main result of this paper is that the obstruction bundle over any 3-multi-

sector is a direct sum of line bundles which we use to compute the orbifold cup product. Finally we

compute the Chen–Ruan cohomology ring of weighted projective space P5
1,2,2,3,3,3.

1 Introduction

The notion of Chen–Ruan orbifold cohomology has appeared in physics as a result
of studying the string theory on global quotient orbifold, (see [6, 7]). In addition to
the usual cohomology of the global quotient, this space included the cohomology of

so-called twisted sectors. Zaslow [18] gave many examples of global quotients and
computed their orbifold cohomology spaces. But the real mathematical definition of
orbifold cohomology was given by Chen and Ruan [5] for arbitrary orbifolds. The
most interesting feature of this new cohomology theory, besides the generalization

of non global quotients, is the existence of a ring structure which was previously
missing. This ring structure is obtained from Chen–Ruan’s orbifold quantum coho-
mology construction by restricting to the class called ghost maps, the same as the
ordinary cup product may be obtained by quantum cup product. Since the Chen–

Ruan cohomology appeared, the problem of how to calculate the orbifold cohomol-
ogy ring has been considered by several authors.1 Chen and Ruan gave several simple
examples. Park and Poddar [16] considered the Chen–Ruan cohomology ring of
the mirror quintic. In this paper we calculate the Chen–Ruan cohomology ring of

weighted projective spaces.
To achieve this goal, we take the weighted projective space as a simplicial toric

variety with local isotropy groups the finite cyclic groups. Using the properties of
toric varieties induced from the fans, we calculate the Chen–Ruan cohomology group

of any weighted projective space. To compute the Chen–Ruan cohomology ring of
the weighted projective space, we first prove that the obstruction bundle is the di-
rect sum of some line bundles; then we introduce the localization techniques which

should work for toric varieties to compute the 3-point function which is the key in
the orbifold cup product [5]. In particular, we give a concrete example.
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1Recently Borisov, Chen and Smith used the algebraic method to solve the orbifold Chow ring of all
simplicial toric varieties, see [3].
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On the other hand, a very interesting aspect of calculating the Chen–Ruan co-
homology ring of weighted projective spaces lies in a conjecture of Ruan. In string

theory, physicists suggest that the orbifold string theory of an orbifold should be
equivalent to the ordinary string theory of its crepant resolution. For the orbifold
cohomology, Ruan’s cohomology hyperkahler resolution conjecture (see [17]) states
that the Chen–Ruan cohomology ring of an orbifold should be isomorphic to the

ordinary cohomology ring of its hyperkahler resolution. I hope that my calculation
of the Chen–Ruan cohomology ring of the weighted projective space may contribute
to this interesting problem.

The paper is organized as follows. Section 2 is a review of some facts concerning
Chen–Ruan cohomology. In Section 3 we introduce the basic concept of the weighted

projective space. In Section 4 we discuss the Chen–Ruan cohomology group of any
weighted projective space. And in the Section 5 we compute the ring structure of the
Chen–Ruan cohomology of the weighted projective space.

2 Preliminaries on Chen–Ruan Cohomology

2.1 Orbifold and Orbifold Vector Bundle

Definition 2.1.1 An orbifold structure on a Hausdorff, separable topological space
X is given by an open cover U of X satisfying the following conditions.

(i) Each element U in U is uniformized, say by (V, G, π). Namely, V is a smooth

manifold and G is a finite group acting smoothly on V such that U = V/G with π as
the quotient map. Let Ker(G) be the subgroup of G acting trivially on V .

(ii) For U ′ ⊂ U , there is a collection of injections (V ′, G ′, π ′) → (V, G, π).

Namely, the inclusion i : U ′ ⊂ U can be lifted to maps ĩ : V ′ → V and an injective
homomorphism i∗ : G ′ → G such that i∗ is an isomorphism from Ker(G ′) to Ker(G)
and ĩ is i∗-equivariant.

(iii) For any point x ∈ U1 ∩ U2, U1,U2 ∈ U, there is a U3 ∈ U such that

x ∈ U3 ⊂ U1 ∩U2.

For any point x ∈ X, suppose that (V, G, π) is a uniformizing neighborhood and

x ∈ π−1(x). Let Gx be the stabilizer of G at x. Up to conjugation, it is independent of
the choice of x and is called the local group of x. Then there exists a sufficiently small
neighborhood Vx of x such that (Vx, Gx, πx) uniformizes a small neighborhood of
x, where πx is the restriction π|Vx, and (Vx, Gx, πx) is called a local chart at x. The

orbifold structure is called reduced if the action of Gx is effective for every x.

Let pr : E → X be a rank k complex orbifold bundle over an orbifold X [5]. Then a
uniformizing system for E | U = pr−1(U ) over a uniformized subset U of X consists
of the following data:

• A uniformizing system (V, G, π) of U .
• A uniformizing system (V × Ck, G, π̃) for E | U . The action of G on V × Ck is

an extension of the action of G on V given by g · (x, v) = (g · x, ρ(x, g)v) where

ρ : V × G → Aut(Ck) is a smooth map satisfying:

ρ(g · x, h) ◦ ρ(x, g) = ρ(x, hg), g, h ∈ G, x ∈ V.
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• The natural projection map p̃r : V × Ck → V satisfies π ◦ p̃r = pr ◦ π̃.

By an orbifold connection △ on E, we mean an equivariant connection that satis-
fies △ = g−1 △ g for every uniformizing system of E. Such a connection can always

be obtained by averaging an equivariant partition of unity.

2.2 Twisted Sectors and Chen–Ruan Cohomology

The most physical idea is twisted sectors. Let X be an orbifold. Consider the set of
pairs:

X̃k = {(p, (g)Gp
) | p ∈ X, g = (g1, . . . , gk), gi ∈ Gp},

where (g)Gp
is the conjugacy class of k-tuple g = (g1, . . . , gk) in Gp. We use Gk to

denote the set of k-tuples. If there is no confusion, we will omit the subscript Gp to
simplify the notation. Suppose that X has an orbifold structure U with uniformiz-
ing systems (Ũ , GU , πU ). From Chen and Ruan [5], see also [12], we have X̃k is

naturally an orbifold with the generalized orbifold structure at (p, (g)Gp
) given by

(V
g
p,C(g), π : V

g
p → V

g
p/C(g)), where V

g
p = V

g1
p ∩· · ·∩V

gk
p and C(g) = C(g1)∩· · ·∩

C(gk). Here g = (g1, . . . , gk) and V
g
p stands for the fixed point set of g in V p. When

X is almost complex, X̃k inherits an almost complex structure from X, and when X is
closed, X̃k is finite disjoint union of closed orbifolds.

Now we describe the connected components of X̃k. Recall that every point p

has a local chart (V p, Gp, πp) which gives a local uniformized neighborhood U p =

πp(V p). If q ∈ U p, up to conjugation there is a unique injective homomorphism
i∗ : Gq → Gp. For g ∈ (Gq)k, the conjugation class i∗(g)q is well defined. We define
an equivalence relation i∗(g)q

∼= (g)q. Let Tk denote the set of equivalence classes. To
abuse the notation, we use (g) to denote the equivalence class which (g)q belongs to.

We will usually denote an element of T1 by (g). It is clear that X̃k can be decomposed
as a disjoint union of connected components

X̃k =

⊔

(g)∈Tk

X(g),

where X(g) = {(p, (g ′)p) | g ′ ∈ (Gp)k, (g ′)p ∈ (g)}. Note that for g = (1, . . . , 1),

we have X(g) = X. A component X(g) is called a k-multisector, if g is not the identity.
A component of X(g) is simply called a twisted sector. If X has an almost complex,
complex or kahler structure, then X(g) has the analogous structure induced from X.

We define
T0

3 = {(g) = (g1, g2, g3) ∈ T3 | g1g2g3 = 1}.

Note that there is a one-to-one correspondence between T2 and T0
3 given by

(g1, g2) 7→ (g1, g2, (g1g2)−1).
Now we define the Chen–Ruan cohomology. Assume that X is an n-dimensional

compact almost complex orbifold with almost structure J. Then for a point p with

nontrivial group Gp, J gives rise to an effective representation ρp : Gp → GL(n, C).
For any g ∈ Gp, we write ρp(g), up to conjugation, as a diagonal matrix

diag
(

e
2πi

m1,g
mg , . . . , e

2πi
mn,g
mg diag r).
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where mg is the order of g in Gp, and 0 ≤ mi,g < mg . Define a function ι : X̃1 → Q

by

ι(p, (g)p) =

n∑

i=1

mi,g

mg

.

We see that the function ι : X̃1 → Q is locally constant and ι = 0 if g = 1. Denote
its value on X(g) by ι(g). We call ι(g) the degree shifting number of X(g). It has the

following properties:

• ι(g) is an integer if and only if ρp(g) ∈ SL(n, C);
• ι(g) + ι(g−1) = rank(ρp(g) − Id) = n − dimC X(g).

Definition 2.2.1 ([5]) Let X be a closed complex orbifold, we define the orbifold
cohomology group of X by

Hd
orb(X, Q) :=

⊕

(g)∈T1

Hd−2ι(g) (X(g), Q).

2.3 The Obstruction Bundle

Choose (g)= (g1, g2, g3) ∈ T0
3 . Let (p, (g)p) be a generic point in X(g). Let K(g) be

the subgroup of Gp generated by g1 and g2. Consider an orbifold Riemann sphere
with three orbifold points (S2, (p1, p2, p3), (k1, k2, k3)). When there is no confusion,

we will simply denote it by S2. The orbifold fundamental group is

πorb
1 (S2) = {λ1, λ2, λ3 | λki

i = 1, λ1λ2λ3 = 1},

where λi is represented by a loop around the marked pi . There is a surjective homo-
morphism ρ : πorb

1 (S2) → K(g) specified by mapping λi 7→ gi . Ker(ρ) is a finite-index

subgroup of πorb
1 (S2). Let C̃ be the orbifold universal cover of S2. Let C = C̃/ Ker(ρ).

Then C is smooth and compact, and C/K(g) = S2. The genus of C can be com-
puted using the Riemann–Hurwitz formula for Euler characteristics of a branched

covering, and turns out to be

(2.1) g(C) =
1

2

(
2 + |K(g)| −

3∑

i=1

|K(g)|

ki

)
.

Since K(g) acts holomorphically on C , K(g) acts on H1(C, OC ). The “obstruction
bundle” E(g) over X(g) is constructed as follows. On the local chart (V

g
p,C(g), π) of

X(g), E(g) is given by (TV p⊗H1(C, OC ))K(g)×V
g
p → V

g
p , where (TV p⊗H1(C, OC ))K(g)

is the K(g)-invariant subspace. We define an action of C(g) on TV p ⊗ H1(C, OC ),

which is the usual one on TV p and trivial on H1(C, OC ). The actions of C(g) and
K(g) commute, and (TV p ⊗ H1(C, OC ))K(g) is invariant under C(g). Thus we have
obtained an action of C(g) on (TV p ⊗ H1(C, OC ))K(g) × V

g
p → V

g
p , extending the

usual one on V
g
p . These trivializations fit together to define the bundle E(g) over X(g).

If we set e : X(g) → X to be the map given by (p, (g)p) 7→ p, one may think of E(g) as
(e∗TX ⊗ H1(C, OC ))K(g). The rank of E(g) is given by the formula (see [5])

(2.2) rankC(E(g)) = dimC(X(g)) − dimC(X) + Σ
3
j=1ι(g j ).
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2.4 Orbifold Cup Product

First, there is a natural map I : X(g) → X(g−1) defined by (p, (g)p) 7→ (p, (g−1)p).

Definition 2.4.1 Let n = dimC(X). For any integer 0 ≤ n ≤ 2n, the pairing

〈 , 〉orb : Hd
orb(X) × H2n−d

orb (X) → Q

is defined by taking the direct sum of

〈 , 〉
(g)
orb : Hd−2ι(g) (X(g); Q) × H2n−d−2ι

(g−1) (X(g−1); Q) → Q,

where

〈α, β〉
(g)
orb =

∫ orb

X(g)

α ∧ I∗(β)

for α ∈ Hd−2ι(g) (X(g); Q), and β ∈ H2n−d−2ι
(g−1) (X(g−1); Q).

Choose an orbifold connection A on E(g). Let eA(E(g)) be the Euler form computed
from the connection A by Chen–Weil theory. Let η j ∈ Hd j (X(g j ); Q), for j = 1, 2, 3.

Define maps e j : X(g) → X(g j ) by (p, (g)p) 7→ (p, (g j)p).

Definition 2.4.2 Define the 3-point function to be

(2.3) 〈η1, η2, η3〉orb :=

∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eA(E(g)).

Note that the above integral does not depend on the choice of A. As in Definition
2.4.1, we extend the 3-point function to H∗

orb(X) by linearity. We define the orbifold
cup product by the relation

(2.4) 〈η1 ∪orb η2, η3〉orb := 〈η1, η2, η3〉orb

Again we extend ∪orb to H∗
orb(X) via linearity. Note that if (g) = (1, 1, 1), then

η1 ∪orb η2 is just the ordinary cup product η1 ∪ η2 in H∗(X).

3 The Weighted Projective Spaces

3.1 The Orbifold Structure of the Weighted Projective Space

Definition 3.1.1 ([10]) Let Q = (q0, . . . , qn) be an (n+1)-tuple of positive integers.

The weighted projective space of type Q, P(Q) = Pn
q0,...,qn

is defined by

P(Q) =
{

z ∈ (Cn+1)∗ | z ∼ λ(q) · z, λ ∈ C∗
}

where λ(q) = diag(λq0 , . . . , λqn ).
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Remark 3.1.2 The above C∗-action is free if and only if qi = 1 for i = 0, . . . , n. If
gcd(q0, . . . , qn) = d 6= 1, then Pn

q0,...,qn
is homeomorphic to Pn

q0/d,...,qn/d(by identifica-

tion of λd with λ).

Weighted projective spaces are, in general, orbifolds where the singularities have
cyclic structure groups acting diagonally. Moreover, if all the qi ’s are mutually prime,
all these orbifold singularities are isolated. In fact, as is usually done for complex
projective spaces, we can consider the sets

Ui = {[z]Q ∈ P(Q) : zi 6= 0} ⊂ P(Q)

and the bijective maps φi from Ui to Cn/µqi
(Qi) given by

φi([z]Q) =

( z0

(zi)q0/qi
, . . . ,

ẑi

zi

, . . . ,
zn

(zi)qn/qi

)

qi

,

where (zi)
1/qi is a qi-root of zi and ( · )qi

is a µqi
-orbit in Cn/µqi

(Qi) with µqi
acting

on Cn by ξ · z = ξ(Qi)z, ξ ∈ µqi
. Here Qi = (q0, . . . , q̂i, . . . , qn) and ξ(Qi) =

diag(ξq0 , . . . , ξqn ).

3.2 Toric Structure of the Weighted Projective Spaces

Given Q = (q0, . . . , qn) ∈ Zn+1, define a grading of C[X0, . . . , Xn] by deg Xi = qi .
We denote this ring by S(Q). Then P(Q) := Pn

q0,...,qn
= proj(S(Q)) is the weighted

projective space of type Q, and P(Q) is covered by the affine open sets D+(Xi) :=

spec S(Q)Xi
, (i = 0, . . . , n). The monic monomials of S(Q)Xi

are of type X−l
i Π j 6=iX

λ j

j ,
where lqi = Σ j 6=iλ jq j and l, λ j are non-negative integers. So each such monomial is
uniquely determined by the n-tuple (λ0, . . . , λi−1, λi+1, . . . , λn) of its non-negative
exponents. The exponents occurring are just the points lying in the intersection of

the cone e := pos{e1, . . . , en} and the lattice NQ,qi
⊆ Zn that is defined as follows.

Consider Qi = (q0, . . . , q̂i, . . . , qn) as an element of HpmZ(Zn, Z) by setting

Qi(a1, . . . , an) := q0a1 + · · · + qnan,

where Zn is equipped with its canonical basis. Let πi : Z → Zqi
denote the canonical

projection. Then NQ,qi
:= Ker(πi ◦Qi) is a sublattice of Zn. Denote by MQ,qi

the dual

lattice. We have an isomorphism of semigroup rings

S(Q)(Xi )
∼= C[e ∩ NQ,qi

],

revealing D+(Xi) to be the affine toric variety associated with ě with respect to MQ,qi
.

Proposition 3.2.1 ([4]) Let Ci = (ci
1, . . . , ci

n) be a basis of NQ,qi
, and denote by

ri
1, . . . , ri

n the row vectors of Ci . Let σi := pos{ri
1, . . . , ri

n}. Then there is an isomor-

phism of semigroups

σ̌i ∩ Zn ≃ e ∩ NQ,qi
.
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From the above proposition we see that the weighted projective space P(Q) is a
toric variety. From Fulton [9], we construct the fan Σ of P(Q) as follows. Let the fan

Σ be generated by vectors {v0, . . . , vn} so that q0v0 + q1v1 + · · · + qnvn = 0. Then the
toric variety XΣ is the weighted projective space P(Q).

Remark 3.2.2

(i) Conrad [4] gives a method to compute the lattice vectors {v0, . . . , vn} such
that they generate a fan Σ for the weighted projective space P(Q);

(ii) If gcd(q0, . . . , qn) = d 6= 1, we see that Pn
q0,...,qn

and Pn
q0/d,...,qn/d have the same

fans, so they are homeomorphic.

4 The Chen–Ruan Cohomology Groups of Weighted
Projective Spaces

4.1 The Ordinary Cohomology Groups of Weighted Projective Spaces

Let Q = (q0, . . . , qn), gcd(q0, . . . , qn) = 1 and P(Q) be the weighted projective space

of type Q. The ordinary cohomology group of P(Q) has already been studied by
several authors, see [1, 11]. Here we only give the results.

Theorem 4.1.1 Let Q = (q0, . . . , qn) and P(Q) be the weighted projective space of

type Q. Then the cohomology group of P(Q) with rational coefficient is

Hi(P(Q), Q) =

{
Q if i = 2r, 0 ≤ r ≤ n,

0 if i is odd or i > 2n.

4.2 Orbiford Structure from Toric Varieties

Let P(Q) be the weighted projective space of type Q. And let {v0, . . . , vn} be the one
dimensional generators of the fan Σ of P(Q). We have the following proposition.

Proposition 4.2.1 P(Q) has the orbifold structure given by the following atlas.

{(Uσ ′

k
, Gσk

, πσk
) : σk = (v0, . . . , v̂k, . . . , vn), k = 0, . . . , n}

In particular, Gσk
= Zqk

is the cyclic group of order qk.

Proof Because the fan Σ of toric variety P(Q) is generated by {v0, . . . , vn}, we have
all n + 1 of the n-dimensional cones σ0, . . . , σn. From Poddar [15], we see that

{(Uσ ′

k
, Gσk

, πσk
) : σk = (v0, . . . , v̂k, . . . , vn), k = 0, . . . , n}

forms the orbifold structure of P(Q). Now we prove that for any σk, Gσk
= Zqk

. Since
we have Gσk

= N/Nσk
, let πk : Z → Zqk

be the standard projection. Define the map

Qk : Zn → Z such that Qk(a1, . . . , an) = q0a1 + · · ·+ qnan, Qk = (q0, . . . , q̂k, . . . , qn).
Then we let NQ,qk

:= Ker(πk ◦ Qk). From Proposition 3.2.1, NQ,qk
∼= Nσ̌k

. Because
Σ is simplicial, from the construction [9] of the toric variety we have Nσk

= Nσ̌k
, so

NQ,k = Nσk
. Thus we have: Gσk

= N/Nσk
= Zn/NQ,qk

∼= Zqk
.
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Remark 4.2.2 From the proposition above, Uσ ′

k
= Cn, so Uσk

= Uσ ′

k
/Gσk

=

Cn/Zqk
, and the action of Zqk

is the diagonal action. Its matrix representation can

be computed from Poddar’s method [15] which we will use in the following sections.

4.3 Twisted Sectors of Weighted Projective Spaces and Degree Shifting Numbers

The toric variety P(Q) has orbit decomposition P(Q) =
⊔

τ∈Σ
Oτ . From Proposi-

tion 4.2.1, if σ ∈ Σ is an n-dimensional cone, suppose σ = (v0, . . . , vn−1), then
Gσ = Zqn

. We also know that Gσ = {ka = Σ
n−1
i=0 aivi : ka ∈ N, ai ∈ [0, 1)}. If

τ = (v0, . . . , vi−1) is a face of σ, then Gτ = {ga ∈ Gσ : ai = 0 if j + 1 ≤ i ≤ n}, i.e.,

Gτ = {ka = Σ
i−1
j=1a jv j : ka ∈ N, a j ∈ [0, 1)}. Furthermore, Gτ can be taken as the

local group of the points in Oτ .

Proposition 4.3.1 Let τ = (v0, . . . , vi−1) be a cone of Σ. Then we have Gτ
∼=

Zd, where d = gcd(qi, . . . , qn). In particular, (qi , . . . , qn) is the maximal subset of

(q0, . . . , qn) whose gcd is d if and only if the dimension of the fixed point set of Zd is

n − i.

Proof Since Gτ is a subgroup of Gσk
for each i ≤ k ≤ n, |Gτ | divides d. It remains to

show that Gτ has an element of order d. Let u =
∑i−1

j=0(qi/d mod 1)v j ; then u ∈ Gτ ,

since
∑n

j=0 q jv j = 0. Now suppose u has order m. Then d divides m(q j mod d) for

each 0 ≤ j ≤ i−1. Hence d divides m·gcd{q0, . . . , qi−1}. Since gcd{q0, . . . , qn} = 1,

d and gcd{q0, . . . , qi−1} have no common factor. Thus d divides m. But m ≤ d. So
m = d and u ∈ Gτ is an element of order d. 2

Suppose (qi , . . . , qn) is a maximal subset of (q0, . . . , qn) that satisfies the condition
gcd(qi , . . . , qn) = d, while the dimension of the fixed point set of Zd is not n − i. Let

ga = a0v0 + · · · + ai−1vi−1 be a generator of Gτ = Zd. Because the dimension of Oτ

is n − i, we must have as = 0 for some s ≤ i − 1. If we let ρ = (v0, . . . , v̂s, . . . , vi−1),
then Gρ = Zd, and from the first part of the proposition, d = gcd(qs, qi, . . . , qn),
contradicting the maximality of (qi , . . . , qn).

Conversely, suppose the dimension of the fixed point set of Zd is n − i, i.e., the
dimension of the orbit Oτ . If we have a subset strictly bigger than (qi , . . . , qn) with
gcd d, say (qs, qi, . . . , qn) without loss of generality, then let

δ = (v0, . . . , vs−1, vs+1, . . . , vi−1).

From the first part of the theorem we have

Gδ = Zd = {ka = a0v0 + · · · + as−1vs−1 + as+1vs+1 + · · · + ai−1vi−1 : ai ∈ [0, 1)}.

We see that the dimension of the fixed point set of Zd exceeds n−i+1, a contradiction.

Now we discuss the twisted sectors of the weighted projective space P(Q). From
the theorem of Poddar[15] for the twisted sectors of general toric varieties, we have

the following.

2This proof was suggested by a referee.
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Theorem 4.3.2 ([15]) A twisted sector of a weighted projective space is isomorphic to

a subvariety Oτ of XΣ = P(Q) for some τ ∈ Σ. There is a one-to-one correspondence

between the set of twisted sectors of the type Oτ and the set of integral vectors in the

interior of τ which are linear combinations of the 1-dimensional generators of τ with

coefficients in (0, 1).

Proposition 4.3.3 Given a weighted projective space P(Q) of type Q = (q0, . . . , qn).

Let Σ = {v0, . . . , vn} be the fan of P(Q). If τ = (v0, . . . , vi−1) is a cone in Σ, then Oτ

is the weighted projective space P(Qτ ), where Qτ = (qi , . . . , qn).

Proof From Fulton[9], Oτ is a toric variety and the fan Star(τ ) can be described as
follows. Let Nτ be the sublattice of N generated by τ ∈ N , and let N(τ ) = N/Nτ ,
M(τ ) = τ⊥ ∩ M be the quotient lattice and the dual. The star of a cone τ can be
defined abstractly as the set of cones σ in Σ that contain τ as a face. Such cones σ are

determined by their images in N(τ ), i.e., by

σ = (σ + (Nτ )R)/(Nτ )R ⊂ NR/(Nτ )R = N(τ )R.

These cones {σ : τ < σ} form a fan in N(τ ), and we denote this fan by Star(τ ).
The corresponding toric variety is n − k-dimensional. For the toric variety P(Q), let
vi, . . . , vn be the images of v0, . . . , vn in the quotient lattice N(τ ). Since q0v0 + · · · +

qnvn = 0 in N , we have qivi + · · · + qnvn = 0 in the quotient lattice N(τ ). So from
the definition of weighted projective space, we conclude that the toric variety cor-
responding to the fan Star(τ ) in the quotient lattice N(τ ) is the weighted projective
space P(Qτ ), where Qτ = (qi , . . . , qn).

Remark 4.3.4 The gcd of (qi, . . . , qn) need not necessarily be 1. In general, if d =

gcd(qi , . . . , qn), then P(Qτ ) is a nonreduced orbifold, and it has a corresponding
reduced orbifold P(Q ′

τ ), where Q ′
τ = (qi/d, . . . , qn/d).

Theorem 4.3.5 If τ = (v0, . . . , vi−1) is a cone in Σ, then Oτ = P(Qτ ), where

Qτ = (qi , . . . , qn). Let gcd(qi, . . . , qn) = d. Then Oτ = P(Qτ ) is a twisted sector

if and only if (qi , . . . , qn) is the maximal subset of (q0, . . . , qn) that satisfies the condi-

tion gcd(qi , . . . , qn) = d.

Proof If Oτ is a twisted sector, then suppose Oτ = X(ga), where ga =
∑i−1

j=0 a jv j is a

generator of Gτ = Zd. If we have qk /∈ (qi , . . . , qn) with gcd(qk, qi, . . . , qn) = d, let
δ = (v0, . . . , v̂k, . . . , vi−1). Then by Proposition 4.3.1, Gδ = Zd. Therefore Gτ = Gδ

and ga ∈ Gδ . However from Poddar [15], Gδ = {Σi−1
j=0a jv j : j 6= k, a j ∈ [0, 1)}.

Hence the coefficient ak in ga must be zero. Then by Theorem 4.3.2, Oτ cannot be a

twisted sector, which is a contradiction.

Suppose (qi , . . . , qn) is the maximal subset of (q0, . . . , qn) whose gcd is d. Let τ =

(v0, . . . , vi−1). Then by Proposition 4.3.1, the fixed point set of Gτ has dimension

n − i. Therefore, all coefficients a j in a generator ga =
∑i−1

j=0 a jv j of Gτ must be

positive. Hence by Theorem 4.3.2, Oτ is a twisted sector.
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Remark 4.3.6 From the above analysis, if τ = (v0, . . . , vi−1) is a cone in Σ, we
describe the orbifold structure of twisted sector X(ga) = Oτ as follows. In the points of

Oτ , the local group is Zd, d = gcd(qi , . . . , qn), and C(ga) = Zd acts trivially. If δ > τ
is a cone, then Oδ ⊂ Oτ and the local group at a point y ∈ Oδ is the cyclic group Zt ,
where δ = (v0, . . . , vi−1, vt1

, . . . , vts
) and t = gcd(qi , . . . , q̂t1

, . . . , q̂ts
, . . . , qn).

The degree shifting numbers can be computed easily. For instance, let X(ga) = Oτ

be a twisted sector, and τ = (v0, . . . , vi−1). We can write ga as

ga =

i−1∑

j=0

a jv j , a j ∈ (0, 1).

The degree shifting number ι(ga) of X(ga) is

ι(ga) =

i−1∑

j=0

a j .

4.4 The Chen–Ruan Cohomology Groups of Weighted Projective Spaces

Based on Theorem 4.3.5, we can write the Chen–Ruan cohomology group of P(Q) as

follows.

Theorem 4.4.1 We write the orbifold cohomology group of P(Q) as

H
p
orb(P(Q); Q) ∼=

⊕

σ∈Σ,l∈Q

H p−2l(Oσ) ⊗
⊕

t∈σl

Qt,

where σl = {
∑

vi⊂σ aivi ∈ N : ai ∈ (0, 1),
∑

vi⊂σ ai = l}, and p is a rational number

in [0, n].

4.5 Example

For Q = (2, 3, 4), P(Q) = P2
2,3,4, and we have q0 = 2, q1 = 3, q2 = 4. From Conrads

[4], we compute the generators of the fan Σ: v0 = (−3,−2), v1 = (2, 0), v2 = (0, 1).
For σ2 = (v0, v1) = ((−3,−2), (2, 0)), we have Gσ2

= N/Nσ2
= Z4. We use 3-tuples

ga = (a0, a1, a2) to represent the action of the element ga ∈ Gσ2
. For example,

gσ2
= ( 1

2
, 1

4
, 0) represents the matrix

(
e2πi· 1

2 0

0 e2πi· 1
4

)
.

So Z4 is generated by gσ2
and the action on Uσ ′

2
= C2 is through the corresponding

matrix. For the later examples, we always use the n-tuple to represent the group
elements.
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For σ1 = (v0, v2) = ((−3,−2), (0, 1)), Gσ1
= Z3. We have gσ1

= ( 1
3
, 0, 2

3
),

g2
σ1

= ( 2
3
, 0, 1

3
), g3

σ1
= (0, 0, 0) = 1.

For σ0 = (v1, v2) = ((2, 0), (0, 1)), Gσ0
= Z2, we have the generator gσ0

=

(0, 1
2
, 0).

Then we have the twisted sectors: p1 = [0, 1, 0], p2 = [0, 0, 1], X(gσ2
) = X(g3

σ2
) =

p2, ι(gσ2
) =

3
4
, ι(g3

σ2
) =

5
4
; X(g

σ2
2

) and X(gσ0
) are the same twisted sector P(2, 0, 4), and

ι(g2
σ2

) = ι(gσ0
) =

1
2
; X(gσ1

) = X(g2
σ1

) = p1, ι(gσ1
) = ι(g2

σ1
) = 1. So

H
p
orb(P(Q); Q) = H p(P(Q); Q) ⊕ H p−2ι(gσ2

) ({p2}; Q) ⊕ H
p−2ι(g3

σ2
) ({p2}; Q)

⊕ H
p−2ι(g2

σ2
) (P(2, 0, 4); Q) ⊕ 2H p−2ι(gσ1

) ({p1}; Q)

We compute the orbifold cohomology group of P(Q) as

H0
orb(P(Q); Q) = Q, H1

orb(P(Q); Q) = Q,

H
3/2
orb (P(Q); Q) = Q, H2

orb(P(Q); Q) = Q ⊕ Q ⊕ Q, H
5/2
orb (P(Q); Q) = Q,

H3
orb(P(Q); Q) = Q, H4

orb(P(Q); Q) = Q.

All the other dimensions of the Chen–Ruan cohomology groups are zero.

5 The Chen–Ruan Cohomology Ring of Weighted Projective Spaces

5.1 The Ordinary Cohomology Ring of Weighted Projective Spaces

In this section we recall the ordinary cohomology ring of the weighted projective
space. The readers may refer to [1]. Let Q = (q0, . . . , qn) and P(Q) = Pn

q0,...,qn
be the

weighted projective space of type Q. Let Pn be the n-dimensional complex projective

space. As in [1], let ϕ : Pn → P(Q) be the map taking [x0, . . . , xn] to [x
q0

0 , . . . , x
qn
n ].

Take k ∈ {0, . . . , n}, and consider I = {i0, . . . , ik} with 0 ≤ i0 < · · · < ik ≤ n. Put
lI = lI(qi0

, . . . , qik
) = qi0

. . . qik
/ gcd(qi0

, . . . , qik
), and let

lk = lk(q0, . . . , qn) = lcm{lI |I ⊂ {0, . . . , n}, |I| = k + 1}.

Theorem 5.1.1 ([1]) For each k, 0 ≤ k ≤ n, there exists a unique βk ∈ H2k(P(Q); Q)
such that ϕ∗(βk) = lkβ

k, and {1, β, . . . , βn} is a Q-basis of the free abelian group

H2k(P(Q); Q). In other words there are commutative diagrams:

H2k(P(Q); Q)
ϕ∗

// H2k(Pn; Q)

Q
·lk

// Q
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So we can make precise the multiplicative structure of the cohomology H2k(P(Q); Q).
Since ϕ∗ : H∗(P(Q); Q) → H∗(Pn; Q) is a ring homomorphism,

ξiξ j =

{
ei jξi+ j if i + j ≤ n,

0 if not,

where ei j = li l j/li+ j , 1 ≤ i, j ≤ n.

5.2 Three-Multisectors

In this section for a 3-multisector Xg, we suppose that g = (g1, g2, g3) ∈ T0
3 .

Theorem 5.2.1 ([16]) If τ1[1] ∪ τ2[1] generates an element of Σ, then for every pair

ga1
∈ G(τ1) ∩ Int(τ1), ga2

∈ G(τ2) ∩ Int(τ2), we have a unique 3-multisector X(g),

which is analytically isomorphic to Oτ1
∩ Oτ2

. As we vary over τ1, τ2, we obtain all the

3-multisectors.

Since the fan Σ = {v0, . . . , vn} of P(Q) for Q = (q0, . . . , qn) has n + 1 primitive
1-dimensional generators. If τ1 and τ2 are two cones of Σ and the cardinality of
τ1[1] ∪ τ2[1] is less than n + 1, then we have that τ1[1] ∪ τ2[1] forms an element
τ = τ1[1] ∪ τ2[1] of Σ, so Oτ1

∩ Oτ2
is a 3-multisector of P(Q). Moreover, we can

prove the 3-multisectors of P(Q) are actually twisted sectors.

Theorem 5.2.2 Let X = P(Q). Suppose X(g1) and X(g2) are two twisted sectors of X

corresponding to the cones τ1 and τ2, respectively, i.e., X(g1) = Oτ1
,X(g2) = Oτ2

. Then

X(g) = X(g1,g2,(g1g2)−1) = Oτ1
∩ Oτ2

is still a twisted sector.

Proof First, if τ1 ⊂ τ2, then from Theorem 5.2.1, τ1[1] ∪ τ2[1] generates τ2, so

X(g) = Oτ2
= X(g2).

If τ1[1] ∩ τ2[1] = ∅, let τ = (τ1[1] ∪ τ2[1]). Then X(g) = X(g1,g2,(g1g2)−1) = Oτ .
Since Gτ = {

∑
vi⊂τ aivi | ai ∈ [0, 1) }, we can always find an element g ∈ Gτ such

that g =
∑

vi⊂τ aivi for all ai 6= 0. If we take g1 =
∑

vi⊂τ1
aivi(ai 6= 0) and g2 =∑

vi⊂τ2
aivi(ai 6= 0), and let g = g1g2, then from Theorem 4.3.2, X(g) = Oτ = X(g).

If τ1 and τ2 do not satisfy the above two types of conditions, without loss of gen-
erality, we suppose

τ1 = (v0, . . . , vs), τ2 = (v0, . . . , v j , vs+1, . . . , vt ), j < s < t < n.

Then let τ = τ1[1]∪ τ2[1] = (v0, . . . , v j , . . . , vs, vs+1, . . . , vt ). We know from Propo-
sition 4.3.3 that Oτ = P(Qτ ), where Qτ = (0, . . . , 0, qt+1, . . . , qn). While Oτ1

=

P(Qτ1
), where Qτ1

= (0, . . . , 0, qs+1, . . . , qt , qt+1, . . . , qn), we have Oτ2
= P(Qτ2

),

where Qτ2
= (0, . . . , 0, q j+1, . . . , qs, 0, . . . , 0, qt+1, . . . , qn). Let

(5.1) d1 = gcd(qs+1,...,qn
), d2 = gcd(q j+1, . . . , qs, qt+1, . . . , qn).

So from Theorem 4.3.5, (qs+1, . . . , qn) and (q j+1, . . . , qs, qt+1, . . . , qn) are the maxi-
mal subsets of (q0, . . . , qn) that satisfy the condition (5.1). We conclude that
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gcd(qt+1, . . . , qn) ≥ lcm(d1, d2) and that (qt+1, . . . , qn) must be the maximal subset
of (q0, . . . , qn) that satisfies this condition. So from Theorem 4.3.5, Oτ is a twisted

sector.

Remark 5.2.3 From the above theorem, every 3-multisector of weighted projective
space P(Q) is actually a twisted sector, so we can refer to Remark 4.3.6 to describe the

orbifold structure of the 3-multisectors.

5.3 The Chen–Ruan Cohomology Ring of Weighted Projective Spaces

In this section we discuss the key point of computing the ring structure of Chen–
Ruan cohomology of weighted projective space P(Q). The most important part for
the orbifold cup product is the obstruction bundle which was constructed in Sec-
tion 2.3.

Let X(g) be a 3-multisector of X = P(Q), g = (g1, g2, g3) ∈ T0
3 . Let E(g) → X(g) be

the obstruction bundle defined in Section 2.3.

Proposition 5.3.1 Let α ∈ H∗
orb(X(g1); Q), β ∈ H∗

orb(X(g2); Q), if
∑3

j=1 ι(g j ) > n,

then α ∪orb β = 0.

Proof From (2.2), we have Σ
3
j=1ι(g j )−n = rankC(E(g))−dimC(X(g)). If

∑3
j=1 ι(g j ) >

n, then rankC(E(g)) > dimC(X(g)), so the integral (2.3) is zero, α ∪orb β = 0.

Now in the next three sections we concretely discuss how to compute the 3-point
function defined in (2.3).

5.4 A Simple Case: q0, . . . , qn Mutually Prime

Let Q = (q0, . . . , qn), where the qi ’s are mutually prime. Let P(Q) be the weighted
projective space of type Q. Then the orbifold singularities are the n + 1 isolated
points: pi = [0, . . . , i, . . . 0] (i = 0, 1, . . . , n) with local orbifold groups Zqi

(i =

0, 1, . . . , n). If we let c0, . . . , cn be the generators of Zq0
, . . . , Zqn

, respectively, then
we have q0 − 1 twisted sectors isomorphic to X(c0) = p0, . . . , qn − 1 twisted sectors
isomorphic to X(cn) = pn. And we can also see that the 3-sectors are all isolated
points.

If we have α ∈ H∗(X(g1); Q) and β ∈ H∗(X(g2); Q), then X(g1,g2,(g1g2)−1) = {pt} if
and only if g1, g2 belong to some Zqi

(i = 0, 1, . . . , n). Without loss of generality, we
assume g1, g2 ∈ Zq0

. Then from the formula [5, (4.1.7)],

(5.2) α ∪orb β =

∑

(h1,h2)
hi∈(gi )

(α ∪orb β)(h1,h2),

where

(5.3) 〈(α ∪orb β)(h1,h2), γ〉orb =

∫

X(h1 ,h2)

e∗1 α ∧ e∗2 β ∧ e∗3γ ∧ e(E(g)),
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ei : X(g) → X(gi ) is the map mentioned above, and E(g) is the obstruction bundle over
X(g). From formula (2.2), the dimension of the bundle E(g) is

dim(e(E(g))) = 2(ι(g1) + ι(g2) + ι(g3)) − 2n.

Because X(g) is a point, the integral (5.3) is nonzero if and only if α ∈ H0(X(g1); Q),
β ∈ H0(X(g2); Q), γ ∈ H0(X(g3); Q), and dim(e(E(g))) = 0. At this moment, ι(g1) +
ι(g2) + ι(g3) = n. Suppose α and β are the generators of H0(X(g1); Q) and H0(X(g2); Q)
respectively. Let γ be the generator of H0(X(g3); Q). Then the integral (5.3) is

〈(α ∪orb β)(g1,g2), γ〉orb =
1

|Zq0
|

∫

{pt}

e∗1 α ∧ e∗2 β ∧ e∗3 γ =
1

q0
.

If we let δ be the generator of H0(X(g1g2); Q), then

〈δ, γ〉orb =

∫

X(g1g2)

δ ∧ I∗γ =
1

q0
.

So we have

(5.4) α ∪orb β = δ.

Example 5.4.1 For Q = (2, 3, 5), P(Q) = P2
2,3,5, we have q0 = 2, q1 = 3, q2 = 5.

From Conrads [4], we compute that the fan of P(Q) is generated by v0 = (−3,−4),
v1 = (2, 1), v2 = (0, 1). For σ2 = (v0, v1) = ((−3,−4), (2, 1)), we have Gσ2

=

N/Nσ2
= Z5. We write the generator gσ2

= ( 1
5
, 4

5
, 0) of Z5 as a 3-tuple as in Example

4.5.

For σ1 = ((−3,−4), (0, 1)), we have Gσ1
= Z3. We have the generator gσ1

=

( 1
3
, 0, 1

3
).

For σ0 = (v1, v2) = ((2, 1), (0, 1)), we have Gσ0
= Z2 and the generator gσ0

=

(0, 1
2
, 1

2
).

Then we have the twisted sectors p0 = [1, 0, 0], p1 = [0, 1, 0], p2 = [0, 0, 1],
X(gσ2

) = X(g2
σ2

) = X(g3
σ2

) = X(g4
σ2

) = p0, X(gσ1
) = X(g2

σ1
) = p1 and X(gσ0

) = p3. Then

ι(g1) + ι(g4
1 ) = 2, ι(g2

1 ) + ι(g3
1 ) = 2,

ι(g2) + ι(g2) + ι(g2) = 2, ι(g2) + ι(g2
2 ) = 2, ι(g3) + ι(g3) = 2.

Let α1, α2, α3, α4 be the generators of H0(X(gσ2
); Q), H0(X(g2

σ2
); Q), H0(X(g3

σ2
); Q),

H0(X(g4
σ2

); Q), respectively. Then let β1, β2 be the generators of

H0(X(gσ1
); Q) and H0(X(g2

σ1
); Q),

and let γ be the generators of H0(X(gσ0
); Q). We also let e0 be the generator of

H0(P(Q); Q). So from the above discussion in Section 5.4. and the formula (5.4),
we have

α1 ∪orb α4 = e0, α2 ∪orb α3 = e0,

β1 ∪orb β1 = β2, β1 ∪orb β2 = e0,

γ ∪orb γ = e0.

https://doi.org/10.4153/CJM-2007-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-042-6


Chen–Ruan Cohomology 995

5.5 The Obstruction Bundle

In this section we determine the obstruction bundle over any 3-multisector. Let
E(g → X(g) be the obstruction bundle over the 3-multisector X(g) constructed in Sec-
tion 2.3. For a weighted projective space P(Q) of type Q = (q0, . . . , qn), from Theo-

rem 5.2.2, every 3-multisector X(g) is a twisted sector. Assume X(g)) = Oτ = P(Qτ ),
τ = (v0, . . . , vi−1) is a cone in the fan Σ, Qτ = (qi , . . . , qn) and gcd(qi, . . . , qn) =

d > 1. From Theorem 5.2.2, we have g1, g2, g3 ∈ Zd and g1g2g3 = 1. P(Qτ ) =

Pn(0, . . . , 0, qi, . . . , qn) is a hyperplane of P(Q).

Let U j = {[z]Q ∈ P(Q) : z j 6= 0} ⊂ P(Q) for j = 0, . . . , n. Then since
Qτ = (qi , . . . , qn), we see that X(g) = P(Qτ ) can be covered by X(g)∩Ui, . . . , X(g)∩Un.
From Section 3.1, for j ≥ i, we have a bijective map φ j from U j to Cn/µq j

(Qq j
) given

by

φ j([z]Q) =

( z0

(z j)
q0/q j

, . . . ,
ẑ j

z j

, . . . ,
zn

(z j)
qn/q j

)

q j

.

So we choose the coordinates of Cn
= V j by

( z0

(z j )
q0/q j

, . . . , 1, . . . ,
zn

(z j )
qn/q j

)
.

If we let x0 = z0/(z j)
q0/q j , . . . , x j = 1, . . . , xn = zn/(z j)

qn/q j , then let

p j = [0, . . . , 1, . . . , 0]

be the point in V j , (TV j)p j
has the basis ∂

∂x0
, . . . , ∂

∂xn
, and g1 acts on (TV j)p j

in the

natural way. If we let {ω1, . . . , ωg} be a basis of H1(C, OC ), then on (H1(C, OC ) ⊗
(TV j)p j

) we have a basis

{ ∂

∂x0
⊗ ω1,

∂

∂x1
⊗ ω1, . . . ,

∂

∂xn

⊗ ω1,
∂

∂x0
⊗ ω2, . . . ,

∂

∂xn

⊗ ωg

}
,

and g1 acts on (H1(C, OC ) ⊗ (TV j)p j
).

Now assume k ≥ i, and Uk ∩ X(g) is another open subset of X(g). Let Uk = Vk/Zk,

from the above discussion, we can choose the coordinates of Vk as:

(
y0 =

z0

(zk)q0/qk
, . . . , yk = 1, . . . , yn =

zn

(zk)qn/qk

)
.

So we have a basis on (H1(C, OC ) ⊗ (TVk)pk
):

{ ∂

∂y0
⊗ ω1,

∂

∂y1
⊗ ω1, . . . ,

∂

∂yn
⊗ ω1,

∂

∂y0
⊗ ω2, . . . ,

∂

∂yn
⊗ ωg

}
.

Since yl =
xl

(xk)ql/qk
on Vk, we have

∂

∂x0
= Σ

∂yl

∂x0

∂

∂yl

=
∂

∂x0

( x0

(xk)q0/qk

) ∂

∂y0
=

1

(xk)q0/qk

∂

∂y0
= (y j)

q0/q j
∂

∂y0
.
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From the result above and the similar computation, we have

(5.5)

∂

∂x0
= (y j)

q0/q j
∂

∂y0
;

∂

∂x1
= (y j)

q1/q j
∂

∂y1
;

...

∂

∂xi−1
= (y j)

qi−1/q j
∂

∂yi−1
.

From Section 2.3, the obstruction bundle is E(g) = (e∗TX⊗H1(C, OC ))K(g). Consider

the exact sequence 0 → T(X(g)) → e∗TX → N(X(g)) → 0. From (5.5) we see that the

normal bundle N(X(g)) is the sum of i line bundles locally generated by ∂
∂x0

, . . . , ∂
∂xi−1

on U j ∩ X(g) and ∂
∂y0

, . . . , ∂
∂yi−1

on Uk ∩ X(g), and for each line bundle the transition

function can be described from (5.5). Now let N(X(g)) =
⊕i−1

l=0 Ll, where Ll is locally

generated by ∂
∂xl

on U j ∩ X(g) and ∂
∂yl

on Uk ∩ X(g) for 0 ≤ l ≤ i − 1. Now from the

above exact sequence, we have the exact sequence

T(X(g)) ⊗ H1(C, OC ) → e∗TX ⊗ H1(C, OC ) → N(X(g)) ⊗ H1(C, OC ) → 0.

We know that
(
T(X(g)) ⊗ H1(C, OC )

)K(g)
= 0, so E(g) =

(
e∗TX ⊗ H1(C, OC )

)K(g) ∼=(
N(X(g)) ⊗ H1(C, OC )

)K(g)
. We obtain

E(g) =

( i−1⊕

l=0

Ll ⊗ H1(C, OC )
) K(g)

.

The following theorem completely determines the bundle E(g).

Theorem 5.5.1 Let X(g) = X(g1,g2,g3) be a 3-mutisector of the weighted projective space

X = P(Q). Suppose X(g) = Oτ , where τ = (v0, . . . , vi−1). If g1 + g2 + g3 =
∑i−1

l=0 alvl,

then the obstruction bundle

E(g)
∼=

⊕

al=2

Ll.

Proof From (2.2), the dimension of the obstruction bundle E(g) is

dimC(E(g)) = dimC(X(g)) − n + ι(g1) + ι(g2) + ι(g3)

= ι(g1) + ι(g2) + ι(g3) − (n − dimC(X(g)))

= ι(g1) + ι(g2) + ι(g3) − i.

Because g1, g2, g3 ∈ K(g), from Section 2.4 we write g1 =
∑i−1

l=0 blvl, g2 =
∑i−1

l=0 clvl,

g3 =
∑i−1

l=0 dlvl, where 0 ≤ bl, cl, dl < 1. Then g1 + g2 + g3 =
∑i−1

l=0 alvl, so we
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have bl + cl + dl = al. Because g1g2g3 = 1, all al’s are 1 or 2. There are a to-
tal of i numbers al, so from the formula of the dimension of obstruction bundle,

dimC(E(g)) is the number of al that satisfy al = 2. For each Ll ⊗ H1(C, OC ), let Ll

be the line bundle over C induced by Ll, with action of K(g) on Ll the same as in
Ll. Then from [3], when (Ll ⊗ H1(C, OC ))K(g) is restricted to a point of X(g), we have
dim(Ll ⊗ H1(C, OC ))K(g)

= dim H1(C, Ll)
K(g)

= dim H1(P1, OP1 (−al)). So

dimC(Ll ⊗ H1(C, OC ))K(g)
=

{
0 al = 1,

1 al = 2.

So we have (Ll ⊗ H1(C, OC ))K(g) ∼= Ll. This completes the proof.

Now let at1
= · · · = ate

= 2. Then the the transition function of the obstruction

bundle can be written as:

(5.6) hk j(x; c1, . . . , ce) = (x; y
qt1

/q j

j (x) · c1, . . . , y
qte /q j

j (x) · ce).

So locally the transition matrix is

diag(y
qt1

/q j

j (x), . . . , y
qte /q j

j (x)).

Every line bundle Ll is generated by ξl on the neighborhood U j ∩ X(g). The group
Zd acts diagonally on the obstruction bundle E(g), so it acts on every line bundle El

naturally. Assume the matrix representation of the action of the generator of Zd on
the obstruction bundle E(g) is

diag(e2πi·
m1
d , . . . , e2πi· me

d ),

where 0 ≤ ml < d, 1 ≤ l ≤ e. Then we have the following facts: e2πi·
ml
d is a dl-root of

1 for 1 ≤ l ≤ e, and it is clear that dl is a divisor of d.

5.6 Computation of the 3-Point Function

In this section we use the localization technique [2, 8] to calculate the 3-point func-
tion defined in the orbifold cup product.

Let X = P(Q) be the weighted projective space of type Q = (q0, . . . , qn) and
X(g) be a 3-multisector. Then X(g) is a twisted sector from Theorem 5.2.2. Assume
X(g) = Oτ = P(Qτ ), where Qτ = (0, . . . , 0, qi, . . . , qn), g = (g1, g2, g3) ∈ T0

3 and
τ = (v0, . . . , vi−1) is a cone of the fan Σ = {v0, . . . , vn}. The orbifold structure of

X(g) can be described in Remark 4.3.6. From (2.3), the key calculation of the orbifold
cup product is to calculate the 3-point function

(5.7) 〈η1, η2, η3〉orb =

∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eA(E(g)),

where η j ∈ H∗(X(g j ); Q), for j = 1, 2, 3.
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Now we analyze the integral (5.7). In order to compute conveniently, we prove

that we always can suppose q0 = 1. If q0 6= 1, let Q̃ = (1, q0, . . . , qn), then

P(Q) ⊂ P(Q̃) = Pn+1
1,q0,...,qn

= Y is a hypersurface which is obtained by letting the

first homogeneous coordinate of P(Q̃) be zero. From Theorem 4.3.5 and Theo-

rem 5.2.2, it is easy to see that P(Q) and P(Q̃) have the same twisted sectors and

3-multisectors. Suppose that the matrix representations in P(Q̃) corresponding to

g1, g2, g3 in P(Q) are g̃1, g̃2, g̃3. Then Y(eg) = Y(eg1,eg2,eg3) = X(g). The cohomological
classes e∗1 η1, e∗2 η2, e∗3 η3 are invariant when they are taken as the cohomological classes

of Y(eg). Suppose the homogeneous coordinates of P(Q̃) are z = [z, z0, . . . , zn]. Let

Ũ j = {z j 6= 0 | z ∈ P(Q̃)}, (0 ≤ j ≤ n), Ũ = {z 6= 0 | z ∈ P(Q̃)}. Then Y(eg) can

be covered by
⊔n

j=i Ũ j ∩Y(eg). For the local chart Ũ j , let Ũ j = Ṽ j/Zq j
and choose the

coordinates of Ṽ j as

x =
z

(z j)
1/q j

, x0 =
z0

(z j)
q0/q j

, . . . , xn =
zn

(z j )
qn/q j

,

so we have a base of (TṼ j)p j
:

(
∂
∂x

, ∂
∂x0

, . . . , ∂
∂xn

)
. Because the invariant subspace

((TV j )p j
⊗ H1(C, OC ))K(g) is generated by ξ1, . . . , ξe, we see that

((TV j)p j
⊗ H1(C, OC ))K(g) ⊂ ((TṼ j)ep j

⊗ H1(C, OC ))K(eg).

We construct a new obstruction bundle E(eg) over Y(eg) as follows. On the local chart

Ũ j ∩ Y(eg), this bundle is given by Ṽ j ∩ H × ((TV j )p j
⊗ H1(C, OC ))K(eg) → Ṽ j ∩ H,

where H = {x ∈ Ṽ j | x = x0 = · · · = xi−1 = 0} is a hypersurface of Ṽ j . It is easy to
see that the transition function of this bundle is also given by (5.6), so it can also be
split into the direct sum of line bundles. It is clear that E(eg)

∼= E(g), so we have

(5.8)

∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eA(E(g)) =

∫ orb

Y(eg)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eeA(E(eg)).

In the following analysis, we assume that q0 = 1, and we give a formula to compute
the integral (5.7).

First from Remark 4.3.6, we know that if d = gcd(qi , . . . , qn) 6= 1, X(g) is a nonre-
duced orbifold. From the discussion of Section 5.5, let E(g) =

⊕e
l=1 El. Then for

every line bundle El, using the same method of Park and Poddar [16], consider the
associated orbifold principal bundle Pl of El such that El = Pl ×S1 C. We know that
there is a global action of Zdl

on each fibre F = S1. The quotient Pl/Zdl
is again an

orbifold principal bundle over the orbifold X(g). Let πl : Pl → Pl/Zdl
be the quo-

tient map, which extends to an orbifold bundle map. Choose an orbifold connection
Al that is the pullback π∗

l (A ′
l ), where A ′

l is an orbifold connection on the associated
bundle E ′

l = (Pl/Zdl
) ×S1 C. The Lie algebra of F can be identified with R, and then

the induced map on the lie algebra (πl)∗ : R → R is just given by a 7→ dla.
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Let Ωl and Ω
′
l be the curvature 2-forms for Al and A ′

l . By [13, Proposition 6.2],
(πl)

∗(Ω ′
l ) = dlΩl. So

∫ orb

X(g)

e∗1η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eA(E(g))

=

∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ Π
e
l=1eAl

(El)

=
1

Πldl

∫ orb

X(g)

e∗1 η1 ∧ e∗2η2 ∧ e∗3η3 ∧ Π
e
l=1eA ′

l
(E ′

l ).

(5.9)

Since the action of Zdl
in any uniformizing system of E ′

l is trivial, E ′
l induces an

orbifold bundle E ′ ′
l over the reduced orbifold X ′

(g) which has an induced connection

A ′ ′
l . The connections A ′

l and A ′′
l may be represented by the same 1-form over V for

(V × C, G ′/Zdl
, π̃ ′′

1 ) of E ′
l and E ′′

l , respectively. By Chern–Weil theory, Ω
′
l and Ω

′ ′
l

can therefore be represented by the same 2-form on V . We know that e∗1 (η1), e∗2 (η2)

and e∗3 (η3) are invariant when taken as the cohomology classes of X ′
(g). Since K(g)

acts on X(g) trivially, from the definition of the integral on orbifold we have
(5.10)∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧Π
e
l=1eA ′

l
(E ′

l ) =
1

|Zd|

∫ orb

X ′

(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧Π
e
l=1eA ′ ′

l
(E ′

l ).

Next we mainly discuss the method to calculate the integral in (5.10). From above,

X(g) = P(Qτ ), Qτ = (0, . . . , 0, qi, . . . , qn). So we have X ′
(g) = P(Qτ/d), Qτ/d =

(qi/d, . . . , qn/d), d = gcd(qi , . . . , qn). Let Nτ be the sublattice of N generated by
τ = (v0, . . . , vi−1), and let N(τ ) = N/Nτ be the quotient lattice. The fan of X ′

(g) is

given by the projection of Σ to N(τ )⊗R. The dual lattice of N(τ ) is M(τ ) = τ⊥∩M.
The torus T = spec(C[M(τ )]) = Oτ . The characters χm correspond to rational

functions on X ′
(g) when m ∈ M(τ ). Then we can use the localization technique of

[2], when reduced to orbifolds, to calculate the integral (5.10).
We know X ′

(g) is a toric variety, T acts on X ′
(g), and this action has n − i + 1 fixed

points p j for i ≤ j ≤ n. We let {ρi} be the basic characters of action T and {λi} the
parameters of the Lie algebra tC of T corresponding to the above base {ρi}. Because
q0 = 1, from Conrads [4] we compute that the fan of the weighted projective space

P(Q) is generated by v0, . . . , vn, where v0 = (−q1, . . . ,−qn), v j = e j for 1 ≤ j ≤ n.
Let {m1, . . . , mn} be the standard basis of M. We calculate the base of M(τ ) as

{
ρ1 =

qn

d
mi −

qi

d
mn, . . . , ρn−i =

qn

d
mn−1 −

qn−1

d
mn

}
.

We first study the action of T on the normal bundle of p j , i.e., the orbifold tangent
space (TX ′

(g))p j
.

Consider the fixed points p j (i ≤ j ≤ n − 1). Denote the local coordinates on

a uniformizing system of X ′
(g) around p j by [xi , . . . , 1, . . . , xn]. Let m1

= c1ρ1 +

· · · + cn−iρn−i , and 〈m1, vi〉 = 1, 〈m1, vk〉 = 0, for k > i, k 6= j. Then we have
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cr = −dqi/qnq j and c1 = d/qn, so χm1

= xi . Similarly, we compute χmt

= xt for
t 6= r, n − i and mt

= (d/qn)ρt − (dqi+t−1/qnq j)ρr . Using the same method, let

mn−i
= a1ρ1 + · · ·+ an−iρn−i , and 〈mn−i, vk〉 = 0 for k ≥ i, k 6= j, n, 〈mn−i, vn〉 = 1.

We have cr = −d/q j , mn−i
= −(d/q j)ρr , χmn−i

= xn. So the T-equivariant Euler

class of normal bundle of p j(i ≤ j ≤ n) is given by

(5.11) eT(νp j
) =

(
−

d

q j

λr

) ∏

k6=r

d

qn

(
λk −

qi+k−1

q j

λr

)
.

Now we consider the fixed point pn with local coordinates [wi, . . . , wn−1, 1] in the
uniformizing system of X ′

(g). Using the same method, we find that the T-equivariant

Euler class of normal bundle of pn(i ≤ j ≤ n) is given by

(5.12) eT(νpn
) =

n−i∏

k=1

d

qn

λk.

Since e∗1 (η1), e∗2 (η2), and e∗3 (η3) all belong to H∗(X ′
(g), Q), from the ordinary ring

structure of weighted projective space in Section 5.1, we only consider the generator
β of H2(X ′

(g), Q) = Q. Suppose L → X ′
(g) is the canonical line bundle whose first

chern-class is ξ1. The corresponding Cartier divisor is

D = D1D2 · · ·Di−1Di + · · · + D1D2 · · ·Di−1Dn,

where D j = {z j = 0} ⊂ P(Q) is the basic divisor. Then from Oda [14], in the

neighborhood U j ∩ X ′
(g), (i ≤ j ≤ n − 1), let m = u1ρ1 + · · · + un−iρn−i , and

〈−m, vi〉 = 1, . . . , 〈−m, v j−1〉 = 1, 〈−m, v j+1〉 = 1, . . . , 〈−m, vn〉 = 1. Then we

calculate

−m =

∑

k6=r

d

qn

ρk −
d

qn

( ∑

k6=r

qk+i−1

q j

)
ρr,

where j = i + r − 1. So the divisor D is given by the rational function χ−m on

U j ∩ X ′
(g). Similarly, it is given by the rational function χ−m

= χ
d

qn
(ρ1+···+ρn−i ) on

Un ∩ X ′
(g). Hence the action of T on the corresponding line bundle of D at the fixed

points p j has weights

∑

k6=r

d

qn

λk −
d

qn

( ∑

k6=r

qk+i−1

q j

)
λr at p j , (i ≤ j ≤ n − 1),(5.13)

d

qn

∑

k

λk at pn.(5.14)

On the other hand, we also can write e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 = a(ξ1)s, a ∈ Q, where s is
an integer.
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Now we analyze the Euler form e(E ′ ′
(g)). From Section 5.5, we compute the local

generating vectors of the obstruction bundle E(g), where E(g) =
⊕e

l=1 El. For each
line bundle El, from (5.6), we have the transition function of El as

h jn(x, c) = (x, x
qtl

/qn

n (x) · c), (i ≤ j ≤ n − 1).

Because the line bundle E ′ ′
l is the reduction of El under the Zdl

-invariant homomor-
phism, the transition function of the line bundle E ′′

l ,

(Un ∩ X ′
(g)) × c ⊃ (Un ∩U j ∩ X ′

(g)) × c → (Un ∩U j ∩ X ′
(g)) × c ⊂ (U j ∩ X ′

(g)) × c,

is given by

h ′′
jn(x, c) =

(
x, (x

qtl
/qn

n )dl (x) · c
)
, (i ≤ j ≤ n − 1).

So we define the action of T on E ′′
(g) =

⊕e
l=1 E ′ ′

l as follows: on the line bundle E ′ ′
l for

t ∈ T and (x, c) ∈ X ′
(g) ×C ,

t(x, c) =

{
(tx, c) = (tx, χ0(t)c) if x ∈ Un,
(

tx, (x
qtl

/qn

n )dl (t)c
)

=
(

tx, (χ
− d

q j
ρr

)
qtl

dl
qn (t)c

)
if x ∈ U j ,

where for i ≤ j ≤ n−1, j = i + r−1. Then the action of T on E ′ ′
l at the fixed points

pn, p j(i ≤ j ≤ n − 1) has weights

(5.15) 0, −
qtl

dl

qn

·
d

q j

λr.

So using the localization formula for the orbifold X ′
(g), see [8, Corollary 9.1.4], we

have the integral

∫ orb

X ′

(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ Π
e
l=1eA ′′

l
(E ′ ′

l )

=

a
(

d
qn

∑n−i
k=1 λk

) s
· 0

an ·
∏n−i

k=1
d
qn

λk

+

n−1∑

j=i

a
[∑

k6=r
d
qn

λk −
d
qn

(∑
k6=r

qk+i−1

q j

)
λr

] s
·
∏e

l=1

(
−

qtl
dl

qn
· d

q j
λr

)

|Gp j
| ·

(
− d

q j
λr

)
·
∏

k6=r
d
qn

(
λk −

qi+k−1

q j
λr

) ,

(5.16)

where j = i + r − 1 and |Gp j
| is the order of the local cyclic group of p j in the

orbifold X ′
(g).
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5.7 Example

In this example we use the methods of the above sections to calculate the 3-point
functions. Let Q = (1, 2, 2, 3, 3, 3) and P(Q) = P5

1,2,2,3,3,3 be the weighted projective
space of type Q; then q0 = 1, q1 = q2 = 2, q3 = q4 = q5 = 3. From Conrads [4], we

compute that the fan Σ is generated by the vectors v1 = e1, v2 = e2, v3 = e3, v4 = e4,
v5 = e5, v0 = −Σ

qi

q0
vi = (−2,−2,−3,−3,−3).

• For σ5 = (v0, v1, v2, v3, v4), we have Gσ5
= N/Nσ5

= Z3. So gσ5
= ( 1

3
, 2

3
, 2

3
, 0, 0, 0)

is the generator of Z3.
• For σ4 = (v0, v1, v2, v3, v5) and σ3 = (v0, v1, v2, v4, v5), we have Gσ4

= Gσ3
= Z3.

The generators gσ4
, gσ3

are the same as above.
• For σ2 = (v0, v1, v3, v4, v5), we have the generator gσ2

= ( 1
2
, 0, 0, 1

2
, 1

2
, 1

2
) of Z2.

• For σ1 = (v0, v2, v3, v4, v5), we have Gσ1
= Z2. The generator gσ1

is the same as

above.
• For σ0 = (v1, v2, v3, v4, v5), Gσ0

= 1, and the action is trivial.

Then we have the twisted sectors X(gσ5 ) = X(g2
σ5

) = P(Qτ ), where Qτ = (0, 0, 0, 3,

3, 3), τ = (v0, v1, v2); X(gσ2
) = P(Qδ), Qδ = (0, 2, 2, 0, 0, 0), δ = (v0, v3, v4, v5). The

degree-shifting numbers are ι(gσ5 ) =
5
3
, ι(g2

σ5
) =

4
3
, ι(gσ2

) = 2. So the Chen–Ruan

cohomology group of P(Q) is

Hd
orb(P(Q); Q) = Hd(P(Q); Q) ⊕ Hd− 10

3 (P(Qτ ); Q)

⊕ Hd− 8
3 (P(Qτ ); Q) ⊕ Hd−4(P(Qδ); Q).

All the 3-multisectors are X(gσ5 ,gσ5 ,gσ5 ) = X(g2
σ5

,g2
σ5

,g2
σ51) = P(Qτ ), X(gσ5 ,g2

σ5
,1) = P(Qτ ),

and X(gσ2
,gσ2

,1) = P(Qδ). In X(gσ5 ,g2
σ5

,1) and X(gσ2
,gσ2

,1), from (2.2), the dimensions of

the obstruction bundles of these two 3-multisectors are all zero, so the integral (2.3)
is the usual integral on orbifolds. The orbifold cup product can be described easily:

For the 3-multisector X(g2
σ5

,g2
σ5

,g2
σ5

), the dimension of the obstruction bundle E(g) is

one. Let X(g) = X(g2
σ5

,g2
σ5

,g2
σ5

), η j ∈ H∗(X(g2
σ5

); Q), ( j = 1, 2, 3). Then

(5.17) 〈η1, η2, η3〉orb =

∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eA(E(g)).

Next we use the localization formula (5.16) to compute the 3-point function (5.17).
Because τ = (v0, v1, v2), we have Oτ = X(g). Suppose Ui = {zi 6= 0}. Then X(g) =

(X(g) ∩U3) ∪ (X(g) ∩U4) ∪ (X(g) ∩U5). Let U3 = V3/Z3, U4 = V4/Z3, U5 = V5/Z3.
From Section 5.5, the coordinates of V3, V4 and V5 are

V5 :
{

x0 =
z0

(z5)1/3
, x1 =

z1

(z5)2/3
, x2 =

z2

(z5)2/3
, x3 =

z3

z5
, x4 =

z4

z5
, x5 = 1

}
,

V4 :
{

y0 =
z0

(z4)1/3
, y1 =

z1

(z4)2/3
, y2 =

z2

(z4)2/3
, y3 =

z3

z4
, y4 = 1, y5 =

z5

z4

}
,

V3 :
{

w0 =
z0

(z3)1/3
, w1 =

z1

(z3)2/3
, w2 =

z2

(z3)2/3
, w3 = 1, w4 =

z4

z3
, w5 =

z5

z3

}
.
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For the chart (V5, Z3, π5), TV5|p5
has framing { ∂

∂x0
, ∂

∂x1
, ∂

∂x2
, ∂

∂x3
, ∂

∂x4
}. As o(g2

σ5
)=3,

the genus of C is one from the Riemann–Hurwitz formula. So TV5|p5
⊗ H1(C, OC )

has framing

{ ∂

∂x0
⊗ ω,

∂

∂x1
⊗ ω,

∂

∂x2
⊗ ω,

∂

∂x3
⊗ ω,

∂

∂x4
⊗ ω

}
,

where ω is the basis of H1(C, OC ). From Theorem 5.5.1, since gσ5
=

(
1
3
, 2

3
, 2

3
, 0, 0, 0

)

and g2
σ5

=
(

2
3
, 1

3
, 1

3
, 0, 0, 0

)
, the generator of (TV5|p5

⊗ H1(C, OC ))K(g) is ξ0 ⊗ ω =

∂
∂x0

⊗ω. Similarly, we find that the generator of (TV4|p4
⊗H1(C, OC ))K(g) is ξ ′

0 ⊗ω =

∂
∂y0

⊗ ω and the generator of (TV3|p3
⊗ H1(C, OC ))K(g) is ξ ′ ′

0 ⊗ ω =
∂

∂w0
⊗ ω.

Now we describe the local uniformizing charts for E(g). If x ∈ X(g), then C(g) =

Gx = K(g) = Z3, and (V
g
x ×C, K(g), π̃) is a uniformizing system for E(g), where K(g)

acts on V
g
x × C by g2

1 (u, v) = (u, e2πi· 2
3 v).

The bundle E(g) is a line bundle and dimC X(g) = 2, so the 3-point function (5.17)
is nonzero only if there is some ηi ∈ H2(X(gσ5 ); Q). Without loss of generality, assume

η1 ∈ H2(X(g2
σ5

); Q), η2 ∈ H0(X(g2
σ5

); Q), and η3 ∈ H0(X(g2
σ5

); Q). In this case

(5.18) 〈η1, η2, η3〉orb = η2η3

∫ orb

X(g)

η1 ∧ eA(E(g)).

From the first part of this section, we see that in this case, the orbifold principal

S1 bundle is P(g). Let E ′
(g) = (P(g)/K(g)) ×S1 C over X(g). πK(g) : P(g) → P(g)/K(g).

Note that πK(g) on each fibre is given by z 7→ z3. The Lie algebra of F = S1 can be
identified with R. Hence the induced map on the Lie algebra (πK(g))∗ : R → R is just
multiplication by 3, so from (5.9)

∫ orb

X(g)

η1 ∧ eA(E(g)) =
1

3

∫ orb

X(g)

η1 ∧ eA ′(E ′
(g)),

where A and A ′ are the connections of E(g) and E ′
(g) such that π∗

K(g)(A ′) = A. Then

E ′
(g) induces an orbifold bundle E ′ ′

(g) over the reduced orbifold X ′
(g), and from (5.10),

∫ orb

X(g)

η1 ∧ eA ′(E ′
(g)) =

1

3

∫ orb

X ′

(g)

η1 ∧ eA ′′(E ′ ′
(g)),

where A ′ ′ is the connection of E ′ ′
(g) induced from E ′

(g). So we obtain

(5.19)

∫ orb

X(g)

η1 ∧ eA(E(g)) =
1

9

∫ orb

X ′

(g)

η1 ∧ eA ′ ′(E ′ ′
(g)).

We now compute the integral
∫ orb

X ′

(g)

η1 ∧ eA ′ ′(E ′ ′
(g)) in (5.19).
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The uniformizing system of E ′ ′
(g) over X ′

(g) can be described as follows. If x ∈ X ′
(g),

then C(g)/K(g) = 1 is the trivial group.

Now we use the localization technique to calculate the integral (5.19). Note that

X ′
(g) = Oτ , τ = (v0, v1, v2), so N(τ ) = N/Nτ , where Nτ is the sublattice generated by

τ , and M(τ ) = τ⊥ ∩M. The 2-torus associated to X ′
(g) is T = spec(C[M(τ )]) = Oτ .

The characters χm correspond to rational functions on X ′
(g) when m ∈ M(τ ). If

{m1, m2, m3, m4, m5} is the standard basis of M, then {ρ1 = m3−m5, ρ2 = m4 − m5}
is a basis for M(τ ). The T-action on X ′

(g) has three fixed points p3, p4, p5. First we
study the action of T on the normal bundle of p3, p4 and p5, i.e., the orbifold tangent

space of p3, p4 and p5.

From (5.11) and (5.12), of course, we can compute using the same method as in
Section 5.6. We see that the T-equivariant Euler class of the normal bundle of p5 is

given by eT(νp5
) = λ1λ2, and we also have eT(νp4

) = (λ1 − λ2)(−λ2), eT(νp3
) =

(−λ1 + λ2)(−λ1). In particular, we have χ−ρ2 = y5 in the neighborhood V4, and
χ−ρ1 = ω5 in the neighborhood V5.

The orbifold line bundle E ′ ′
(g) is trivialized by the generator ∂

∂x0
⊗ ω on U5 ∩ X ′

(g),
∂

∂y0
⊗ ω on U4 ∩ X ′

(g), and ∂
∂w0

⊗ ω on U3 ∩ X ′
(g). So from (5.15), the action of T on

E ′
(g) at the fixed points p5, p4, p3 has weights 0, (−λ2), (−λ1), respectively.

Since η1 ∈ H2(X(g2
1 ); Q), we take η1 as the generator. So let η1 = D = D0D1D2D3 +

D0D1D2D4+D0D1D2D5, from (5.11) and (5.12), the action of T on the corresponding
line bundle of η1 at the fixed points p5, p4 and p3 has weights λ1 + λ2, λ1 − 2λ2 and
−2λ1 + λ2, respectively. So using the localization formula (5.16), we have

∫ orb

X ′

(g)

η1 ∧ eA ′ ′(E ′ ′
(g)) =

(λ1 + λ2) · 0

λ1λ2
+

(λ1 − 2λ2)(−λ2)

(λ1 − λ2)(−λ2)
+

(−2λ1 + λ2)(−λ1)

(−λ1 + λ2)(−λ1)
= 3.

So from (5.19), ∫ orb

X(g)

η1 ∧ eA(E(g)) =
1

3
.

From (5.18),

〈η1, η2, η3〉orb =
1

3
η2η3.

For the 3-multisector X(gσ5 ,gσ5 ,gσ5 ) = P(Qτ ), the dimension of the obstruction bun-

dle E(g) is 2. Let X(g) = X(gσ5 ,gσ5 ,gσ5 ), η j ∈ H∗(X(gσ5 ); Q), ( j = 1, 2, 3). Then

(5.20) 〈η1, η2, η3〉orb =

∫ orb

X(g)

e∗1 η1 ∧ e∗2 η2 ∧ e∗3 η3 ∧ eA(E(g)).

Next we use the localization technique to calculate the 3-point function (5.20).

We know that Oτ = X(g). Assume Ui = {zi 6= 0}. Then X(g) = (X(g) ∩ U3) ∪
(X(g) ∩ U4) ∪ (X(g) ∩ U5). Write U3 = V3/Z3, U4 = V4/Z3, U5 = V5/Z3. Then we
can choose the coordinates of the open set V3, V4 and V5 the same as before. For the
coordinate neighborhood (V5, Z3, π5), TV5|p5

has a framing { ∂
∂x0

, ∂
∂x1

, ∂
∂x2

, ∂
∂x3

, ∂
∂x4

},
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so TV5|p5
⊗ H1(C, OC ) has a framing { ∂

∂x0
⊗ ω, ∂

∂x1
⊗ ω, ∂

∂x2
⊗ ω, ∂

∂x3
⊗ ω, ∂

∂x4
⊗ ω}.

From Theorem 5.5.1 we see that the invariant subspace (TV5|p5
⊗H1(C, OC ))K(g) has

generators ξ1⊗ω =
∂

∂x1
⊗ω and ξ2⊗ω =

∂
∂x2

⊗ω. Similarly, (TV4|p4
⊗H1(C, OC ))K(g)

has generators ξ ′
1⊗ω =

∂
∂y1

⊗ω and ξ ′
2⊗ω =

∂
∂y2

⊗ω, and (TV3|p3
⊗H1(C, OC ))K(g)

has generators ξ ′ ′
1 ⊗ ω =

∂
∂w1

⊗ ω and ξ ′′
2 ⊗ ω =

∂
∂w2

⊗ ω.
We describe the uniformizing system of E(g) as follows: if x ∈ X(g), then C(g) =

Gx = K(g) = Z3, and if (V
g
x × C2, K(g), π̃) is a uniformizing system of the bundle

E(g), then K(g) acts on V
g
x × C2 through g1(u, v1, v2) = (u, e2πi· 2

3 v1, e2πi· 2
3 v2).

The obstruction bundle E(g) is a plane bundle. And dimC X(g) = 2, so the 3-point
function (5.20) is nonzero only if η j ∈ H0(X(g1); Q), j = 1, 2, 3. In this case

(5.21) 〈η1, η2, η3〉orb = η1η2η3

∫ orb

X(g)

eA(E(g)).

From Section 5.5., the obstruction bundle E(g) is the direct sum of two orbifold line
bundles. Let E(g) = E1 ⊕ E2. Then E1 is generated by ξ1 ⊗ ω on the neighborhood

U5 ∩ X(g), and E2 is generated by ξ2 ⊗ ω on U5 ∩ X(g). So from the first part of this
section, consider the orbifold principal S1-bundle Pl of El(l = 1, 2). From Section
5.5, we can see that Zdl

= K(g) = Z3, so let E ′
l = (Pl/K(g)) ×S1 C be the orbifold

bundle over X(g). Then πK(g) : Pl → Pl/K(g) is the projective map. Note that on every

fibre, πK(g) is given by z 7→ z3. The Lie algebra of F = S1 is R. So the induced map on
the Lie algebra is (πK(g))∗ : R → R, a 7→ 3a. From (5.9),

∫ orb

X(g)

eA(E(g)) =
1

9

∫ orb

X(g)

Π
2
l=1eA ′

l
(E ′

l ),

where Al and A ′
l are the connections on bundles El and E ′

l such that π∗
K(g)(A ′

l ) = Al.

In this moment, the group K(g) acts on the bundle E ′
l trivially, so E ′

l induces an
orbifold bundle E ′ ′

l over the reduced orbifold X ′
(g). From (5.10),

∫ orb

X(g)

Π
2
l=1eA ′

l
(E ′

l ) =
1

3

∫ orb

X ′

(g)

Π
2
l=1eA ′′

l
(E ′ ′

l ),

where A ′ ′
l is the connection on the bundle E ′ ′

l induced from the bundle E ′
l . Thus,

(5.22)

∫ orb

X(g)

eA(E(g)) =
1

27

∫ orb

X ′

(g)

Π
2
l=1eA ′ ′

l
(E ′ ′

l ).

We now calculate the integral
∫ orb

X ′

(g)

Π
2
l=1eA ′′

l
(E ′ ′

l ).

The unformizing system of the bundle E ′′
l over the reduced orbifold X ′

(g) can be

described as follows: if x ∈ X ′
(g), then C(g)/K(g) = 1 is the trivial group, and the

action is trivial.
Now we use the localization technique to compute the integral (5.22). We know

that X ′
(g) = Oτ is a toric variety with τ = (v0, v1, v2). The three fixed points by the
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T-action on X ′
(g) are p3, p4, p5. We already found that the T-equivariant Euler class

of the point p5 at the normal bundle eT(νp5
) = λ1λ2. Similarly, the T-equivariant

Euler classes of the points p4 and p3 at the normal bundles are

eT(νp4
) = (λ1 − λ2)(−λ2), eT(νp3

) = (−λ1 + λ2)(−λ1).

The orbifold line bundle E ′ ′
l , (l = 1, 2) is trivialized by ∂

∂xl
⊗ ω, (l = 1, 2) on

U5 ∩ X ′
(g),

∂
∂yl

⊗ ω, (l = 1, 2) on U4 ∩ X ′
(g), and ∂

∂wl
⊗ ω, (l = 1, 2) on U3 ∩ X ′

(g).

So from (5.15), the action of T on E ′ ′
l at the fixed points p5, p4, p3 has weights

0, (−2λ2), (−2λ1), respectively. From (5.16), we have

∫ orb

X ′

(g)

Π
2
t=1eA ′′

t
(E ′ ′

t ) =
0

λ1λ2
+

(−2λ2)2

(λ1 − λ2)(−λ2)
+

(−2λ1)2

(−λ1 + λ2)(−λ1)
= 4.

From (5.22), ∫ orb

X(g)

eA(E(g)) =
4

27
.

And by (5.21),

〈η1, η2, η3〉orb =
4

27
η1η2η3.
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