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Fibrations and Grothendieck

topologies

Howard Lyn Hiller

Given a site T , that is, a category equipped with a fixed

Grothendieck topology, we provide a definition of fibration for

morphisms of the presheaves on T . We verify that the notion is

well-behaved with respect to composition, base change, and

exponentiation, and is trivial on the topos of sheaves. We

compare our definition to that of Kan fibration in the semi-

simplicial setting. Also we show how we can obtain a notion of

fibration on our ground site T and investigate the resulting

notion in certain ring-theoretic situations.

1 . Introducti on

Let 1 be a site; that is, a category equipped with a fixed

Grothendieck topology. We have the adjoint pair

S " * [T°, Se£6]
sh

where sh is the associated sheaf functor and S is the full topos of

sheaves with respect to the topology. We define a notion of fibration for

morphisms of presheaves that is well behaved with respect to composition,

base change and exponentiation, and trivializes on the topos S . We

investigate how our notion compares with that of Kan fibrations, when

T = Old , the category of finite ordered sets equipped with an appropriate

topology. We then observe we can pull our notion of fibration back to the

ground site T and we investigate it in certain ring-theoretic situations.
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2. Basic notions

Let p : E -*• B be a map (that is, natural transformation) of

presheaves. We define

DEFINITION. The map p is a (weak) fibration if the following

diagram in SoX& is (weak) cartesian:

E(U) • B(U)

f o r e v e r y c o v e r i n g {{/.->•£/} i n T .
If

As usual we also define

DEFINITION. X i s a (weak) fibrant object in [_T°, Set6] i f X •* e

is a (weak) fibration. [e is the final object of [T , SeXi] ;

e(U) = {*} for al l U in ob(D .)

We have three immediate t r ivial i t ies .

FACTS. 1 Every isomorphism is a fibration.

2 A morphism of sheaves is a fibration.

3 X is (weak) fibrant iff X is a (weak) sheaf.

Weak sheaf is the "dual" notion to separated presheaf; that i s , i t means

the canonical map of sets

X(U) - k e r f j T * ( ^ ) Z T T X[ut x U.)} = H°(^ - U), X)

is epic for al l coverings {u. -*• U] in T . (We freely use the above

cohomological abbreviation in the following.)

We now check the desired stability properties.

PROPOSITION 1. If p : E + B is a (weak) fibration, and f : B' •+ B

is arbitrary then p' : E x B' •* B' is a (weak) fibration where
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E x B' ? » E
D

B' —s-± B

is a cartesian square in [T , Stti] .

I "V 1
Proof. Let \U. >• U> be a cover ing; we check

(E x D B ' ) ( U ) >• B ' ( U )

I
i

is (weak) cartesian in Szti> .

First observe that pullbacks in \T , Stti] are computed pointwise;

so [E X-B B')(V) = E{V)
 X

B(V) B'(V) , for V in oh(T) and induced maps

are the obvious projections. Let s be in B'{U) and [v., W.) be in

H°[{Ui •* U], E xfl B') where W^ = p' [U^ [v^, W^ = B' [u^is) . Consider

f{U)(s) in B(U) and \v.) in T~[ EU].) . We first observe that

% i %
B{Ui)f(U)(s) =

since /' is a projection onto the first factor at each "point". Since p

is a (weak) fibration, there exists a (unique) t in E(U) such that

(1) p(U)(t) = f(U)(s) , and

(2) E[Ui)(t) = IK .

C o n s i d e r {t, s) i n [E X B ' ) ( y ) , by d i n t o f ( l ) a b o v e . C e r t a i n l y

p'(U)(t, s) = 8 and

' ) ( M i ) ( t , a ) = { E { U i ) ( t ) , B ' i u j } (

by (2) above. This completes the proof.
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PROPOSITION 2. Let q : X •* E , p : E •* B be (weak) fibrations;

then pq : X -*• B is a (weak) fibration.

( u' 1
Proof. Let \U. *• u\ be a covering in T and consider

X(U) P?(t/)- B(U)

iPUUt + U}, X) ^

Let s be in B(U) and {w.} be in H° {{u. -»• U], x) such

Certainly q[lf.)(w.) is in H°[{u. •* U}', x) and is compatible with

s in the obvious sense. So since p : E -*• B is a (weaky fibration, there

exists a (unique) t in E(U) such that

(1) p(£/)(t) = s , and

(2) Eiujit) = ̂ ( W j ^ ) .

Since q : X + E is a (weak) fibration and the second equality gives us

"compatibility", there exists a (unique) s in X(U) such that

X[u.)(z) = U. and q(U)(z) = t . So then
1r If

(pq)(U)(z) = p(t/)<7(£/)(z) = p(U)(t) = s .

This completes the proof.

(Note that Fact 1 and Propositions 1 and 2 verify the (isolated)

properties of a fibration in the sense of QuiMen's model categories [4].)

We recall now the notion of exponentiation in our functor category

[T , Szti] . Categorically one defines (-) as the right adjoint to the

functor (-) x Y . Along with the Yoneda Lemma, this forces the definition

in the category of presheaves

/(U) S nat hoiij,!-, U), /} = nat (hom^-, J/)xJ, x) .

We then have
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PROPOSITION 3. If p : E -+ B is a fibration and K is a presheaf,

K —K Kthen p : ET -*• B is a fibration.

Proof. See Appendix.

COROLLARY. If E is a sheaf and K a presheaf then ^ is a sheaf.

(This is well-known; see [6], p. 258.)

3 . S e m i - s i m p ! i c i a l a p p l i c a t i o n

We now consider a particular situation. Let T = Oft-d , the category

whose objects are finite ordered sets and the morphisms are weakly monotone

maps. It is customary to consider the obvious countable skeletal sub-

category whose objects are denoted n = {0 < 1 < 2 < ... < n} . As usual,

the simplicial sets are the set-valued presheaves on this category. We

describe a Grothendieck topology on Ohd and investigate the resulting

notions of fibration and fibrant object. First we define a modified notion

of topology.

DEFINITION. A weak Grothendieck topology is a category with a notion

of covering which satisfies all but the composition axiom for Grothendieck

topologies.

A sheaf with respect to a weak Grothendieck topology has the obvious

meaning. Certainly it also makes sense to speak of the (weak) Grothendieck

topology generated by a partial collection of "coverings". Hence consider

the set C ;

C = {n -i*- n] u •

IT
q

n '. n+i; 0 5 1 5 ^ 5 . . . 5 t 5 q+l, r 5 q

We thus obtain a (weak) Grothendieck topology generated by C . We call

Ofid with this topology the (weak) combinatorial site.

PROPOSITION 4. X is a Kan fibration iff X is a weak fibration on

the weak combinatorial site.

First we have an easy lemma.

LEMMA. The following square is cartesian in 0>vd if i < j ;
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d.
n-1 — ^ n

d3-.

n —-r-
di

Proof. The diagram commutes by the usual "simplicial" iden t i t i es in

0>id . Suppose we want to f i l l in the dotted arrow in the following

commutative diagram;

Let I be in m = {0 < 1 < 2 < ... < m} . First we claim e(l) t j - 1 .

Otherwise d.[e'[l)) = d.{e{l)) = d.(j-l) = j . But j is never in the
0 "V x>

image of d • . Similarly e'(l) ? £ . Hence there exist x, y < n such
3

that d. 1(x) = e(Z-) and d.(y) = e'(Z-) . We must show x = y . We have

two cases.

Case 1. Suppose e'(l) <i . Then e'(l) < j ; so

d.{e(l)) = d.[e'{l)) = e'U) < i .
i* 3

Hence e(l) = e'(l) < i < j ; thus e{l) < Q - 1 and (in the notation

above) y = e' (I) , x = e{l) ; so x = y .

Case 2. Suppose e'{l) > i . This splits up into two subcases.

(a) Suppose j'5e'(Z) • Then

d.{e(l)) = d.[e'{l)) = e'U) + i > i .

Hence e{l) = (e'(J)+l) - 1 = e'(l) . So y = e'(l) - 1 ,

and x = y .

(b) Suppose e'(Z-) < j . Then

d.(e(l)) = dAe'll)) = e'{l) > i .
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Hence e(l) = e'(I) - 1 . Since e'{l) > i , y = e'(l) - 1 .

Also e{l) = e'(l) - 1 < j - 1 . So x = e(Z) and x = y .

This completes Case 2 and the proof.

Proof of Proposition 4. (ONLY IF) Let s. be in ] f E(n) and
0

jtk

t in B (R+1) such that 8. (s .) = 9 . (s . ) , i < j , i , j t k , and

= P(n) (s •) . We consider the covering

hypothesis gives us

dn+x

n+i and the

n + 1
TT
i

is weak cartesian.

The lemma identifies n x
n+-,

 n and the maps; hence our assumption

implies (sn> •••» SJO.> •••> s +i) is in ker . We thus obtain the desired

(n+l)-simplex in E from the diagram.

(IF) The converse follows from a standard fact about Kan fibrations

(see [3], p. 26) and the fact that C is closed under fibre products;

hence is itself the weak Grothendieck topology. To prove the latter claim

we first recall the unique factorization of morphisms in Ofid as strings

of d.'s and s.'s (see [3], p. h). Since juxtapositions of cartesian
t J

squares are cartesian, it suffices to check closure under fibre products

induced by the d.'s and s.'s individually. This is tedious and left to
•*- 3

the reader.

COROLLARY. X is a Kan complex iff X is a weak sheaf on the weak

combinatorial site.
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4. Fibrations on T : examples

It is also possible to obtain a notion of fibration on our ground site

T . We have the fully faithful Yoneda embedding

along which we can in some sense "pull back". Suppose

Pt : hom_(-, E) -»• hom_(-, B) is a morphism of representable presheaves

induced by p : E -*• B . By definition, p^ is a fibration if the

following square is cartesian:

hom^U, E) • homy(J/, B)

I I
H [{ll. -*• U], hom_,(- , E)) •+~\ f hom{u.', B)

%. ^ %

for every covering {u. -*• I/} in T .

In other words we have the following lifting property;

compatible.

where "compatible" means the diagram

commutes for al l i, and j . Similarly E in ob(r) is fibrant if the

following diagram can always be completed:
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compatible.

V

Numerous sites appear in alget>ro-geometric contexts. To consider a

particularly simple example let T be the category of affine schemes over

spec(i?) ; that is, the opposite of the category of commutative i?-algebras

and declare a covering to be a single faithfully flat morphism

spec(B) -»• spec(i4) . (These "affine" sites appear in Dobbs [J] under the

name i?-based topologies.) What are the fibrant i?-algebras? We have the

following observation.

PROPOSITION 5. E is a fibrant R-algebra iff for any faithfully

flat morphisms S' -*• S 3 and homomorphism f -. E •*• S 3 for every e in

E, fie) ® 1 = 1 0 fie) in S ®s, S .

Proof. By faithfully flat descent the lifting below exists iff the

bottom oblique arrows are equal;

S'

' ^- • S

Nil
S ®s, S .

Also the following is true.

PROPOSITION 6. if E is fibrant then B -»• E is always a fibration.

Proof. Suppose we have the diagram

5 f- E

S' *• B .

Since E is fibrant there exists a map E •* S' making the resulting upper

triangle commute. But since S' + 5 is a monomorphism the lower triangle

also commutes.

For simplicity let us suppose R = Z , so we are considering the
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category of commutative rings. We have three properties of fibrations.

PROPOSITION 7. If p. : B. -»• E. , i = 1, 2 , are fibrations then so

is p1® p2 : Bx® B2 •* E±® E2 .

COROLLARY. Fibrant rings are closed vender tensor product (equals

corpoduat).

PROPOSITION 8. Epimorphisms of rings are fibrations.

COROLLARY. Fibrant rings are closed under homomorphic images.

PROPOSITION 9. If A is a ring, S a rfcultiplicatively closed

subset of A j then the localization map A •* S~ A is a fibration.

COROLLARY. Fibrant rings are closed under taking rings of fractions.

PROPOSITION 10. Fibrant rings are rigid (that is, have no non-

trivial automorphisms).

We now can produce many examples and non-examples of fibrant r ings .

Z i s t r i v i a l l y f ibrant , and a l l subrings of the rat ionals are fibrant by

Corollary 3. The f in i t e cyclic rings are fibrant by Corollary 2. The

rings R x R , for R a rb i t ra ry , and the complex numbers are non-examples

by Proposition h. If R i s noetherian, R[t] i s never fibrant by

considering the fai thful ly f la t morphism R ->• if[[t]] . We provide a

representat ive proof.

Proof of Proposition 9. Suppose we have a commutative square

A — ^ R

i 1*
S'h • R '

9

with i faithfully flat. We must check f{S) is contained in R , the

invertible elements of if . Let s be in S . Consider the if-module

R/f(s)R . We claim that R' ®R (if//(s)i?) = 0 . We compute
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)i?) = o .

Hence by faithful flatness, R = f(s)R ; so 1 = f(s)r for some r in

i? . The desired map S A -*• R can now be constructed.

There exist two other examples where we can identify the fibrations.

EXAMPLE 1. Let T be an arbitrary category with topology defined by

the universally effective epimorphisms; that is, [u. •*• U} is a covering

in T iff for all objects X of T ,

hornet/, X) -Z+ H 0 ^ + U}, homyC-, X))

is an isomorphism. Then since the definition forces every representable

functor to be a sheaf, by Fact 2 above, every morphism is a fibration.

EXAMPLE 2. Let R be a commutative ring. If S is an i?-algebra

and M an S-module, Qui Ilen [5] defines a cohomology theory D*{S/R, M)

based on a Grothendieck topology on the category of 5-algebras where a

covering is a single S-algebra epimorphism with nilpotent kernel. Since

all our notions are dualized, p : B •+ E is a fibration iff for every

commutative square the dotted arrow exists;

A • B

nilpotent s
s

kernel I N
x

A' •* E .

In the terminology of Grothendieck [2] we conclude the fibrations are

precisely the formally unramified morphisms.

Appendix

We provide here a detailed proof of Proposition k ("Exponentiation").

Proof. We must check the following square is cartesian;
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EK(U) • /(£/)

( ui \for an arbitrary covering <.U. • Ut . Letting (-, -) denote

horn (-, -) , this square becomes

H°{{Ui-+u},X-+aa.t[K(-)x(-,X)->E(-))) •* f j (nat (A:(-)x(_,y^->B(-)) .

So consider some h : #(-) x (-, U) •*• B(-) and a compatible collection

{*. : #(-)x(-, U.) •+ £•(-)} of natural transformations such that

We want a natural transformation t : X(-) x (-, f/) •* E(-) such that

(1) pot = h

and

(2) *°(lx(Mi)J = U .

Let X be an object of T and consider (s, / ) in K(X) x (Z, £/) . We
have a cartesian square in T ,

X x £/. —^- y.

e.

X

By the fibre-product axiom for Grothendieck topologies we have
\X x U. -*• X] is a covering of X .

have the following cartesian square;

\X x U. -*• X] is a covering of X . Since p : E •+• B is a fibration we
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E(X) • B(X)

I I
H°[{X x U. ->• X], E) +YT B[X X , , U-) •

^

Consider ^(AT)(s, / ) i n BU) and t . ( j x U.) [lie . ( s ) , g.) i n

E[X x £/.) . We claim

(k) {BeJ [h(X)(s, f)) = p{x xy U{) [t^X xy uj [Ke^s), gj

and

(5) t^X xy y j ( ^ ( a ) , ^ ) is in H°{{X xy ^ + x], E) .

P r o o f o f ( 4 ) . By n a t u r a l i t y o f h and ( * ) ,

x
y ̂ ^ (AT xy uj {Ke^s), gj

Proof of (5). This requires verifying

where we have maps

xxuui

= xxuuixu uj
* U. x U. .v V o

Using the compatibility of the t.'s we know the following diagram

commutes;
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(6) E(Z)

tXZ)
J

K{Z)x[z, V.)
3

By naturality of t . 9
T

By considering K{e -° (lxp ) ( s ) , q) in K{Z) x (z, U.*U.) appearing in

diagram (6) we can continue our computation;

A V- ¥2> > ' °j yr-fQ

, g.)) ,

ty the naturality of t. . This completes the proof of (5K
3

Now by our cartesian square (3)» there exists a unique z in E{X)

such that

(T)

and

(8)

p(X)(z) = h(X)(s, f)

[Eejiz) = ti{xxuUi){Kei{s), gj .

We then define t(X){s, f)=z. F i rs t we claim that

(9) t : K{-) x ( - , U) + £•(-)

i s a natural transformation.

Proof of (9) . Let F : Y •* X be a morphism in T and consider the

diagram
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U» U)

We must show that (£F)(tU)(s, /)) = t(Y) [(KF)(s), fF) .

By our definition of t this requires showing

(10) p(Y){{EF){t(X)(s, f))) = h(Y){KF{s), fF)

and

(11)

where the maps mentioned appear in the following cube:

xxuui

Proof of (10).

p{Y){EF)[t(X){s, /)) = (5F)p(X)(t(Z)(S, /)) by naturality of p

= {BF)[h{X)(s, f)) by definition of t

, /) by naturality on h

, fF) .

Proof of (11) .

E[ei[FxXu)){t(X)(s, f))

by cube. Now using our definition of t and the naturality of t. ,
Is
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)
i

l )
i

This completes the proof of (11) and, hence, (9). We now assert that t

satisfies our original two requirements, (l) and (2).

Proof of (1). This follows immediately from (7).

Proof of (2). This statement translates into

ti(X)(s, f) = t{X)[s, u^f) ,

where s is in K(X) and / is in (x, U^ . By definition of t this

requires showing that

(12) p(X)[ti(.X){s, /)) = h{X)[s, u^of)

and

(13) [Ee.){t.{X)(s, f)) = t.(P){K7 (s), g) .
Ts if Is Is U

Proof of (12). This follows immediately from (*).

Proof of (13). The maps mentioned in (13) come from the following

cartesian square,

-*- U.

u.

By the naturality of t. ,
I

, f)) =

Consider the following dotted arrow h ,
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xrlU

I
u.•z.

u .-3

Ui

>• u.

h
• U

In diagram (6), let i = j , Z = P and consider [Ke.{s), h) in

K(P) x [p, u. x u.) . This gives the equality
% U Q

Together with computation (1^), this completes the proof of (13) and thus,

Proposition h.
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