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Abstract

Let G be a finite group and let H ≤G. We refer to |H||CG(H)| as the Chermak–Delgado measure of H
with respect to G. Originally described by Chermak and Delgado, the collection of all subgroups of G
with maximal Chermak–Delgado measure, denoted CD(G), is a sublattice of the lattice of all subgroups
of G. In this paper we note that if H ∈ CD(G) then H is subnormal in G and prove that if K is a second
finite group then CD(G × K) = CD(G) × CD(K). We additionally describe the CD(G oCp) where G has
a nontrivial centre and p is an odd prime and determine conditions for a wreath product to be a member of
its own Chermak–Delgado lattice. We also examine the behaviour of centrally large subgroups, a subset
of the Chermak–Delgado lattice.
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1. Introduction

Chermak and Delgado [1] defined a family of functions from the set of subgroups of a
finite group into the set of positive integers. They then used these functions to obtain
a variety of results, including a proof that every finite group G has a characteristic
abelian subgroup N such that |G : N| ≤ |G : A|2 for all abelian A ≤G.

In [5], Isaacs focused on one member of this family, which he referred to as the
Chermak–Delgado measure. Isaacs showed for a fixed group G that the subgroups
with maximal measure form a sublattice within the lattice of subgroups of G, which
he referred to as the Chermak–Delgado lattice of G. After observing a paucity of
groups which were members of their own Chermak–Delgado lattice, it seemed natural
to investigate their existence. Thus, in this paper we study the Chermak–Delgado
lattice of direct products and wreath products. We prove that its members are always
subnormal in G and find special conditions in which G o H is in its own Chermak–
Delgado lattice. As a by-product of our efforts, we show that every 2-group can be
embedded as a subnormal subgroup of a group that is a member of its Chermak–
Delgado lattice.
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Moreover, in a recent article Glauberman studied some large subgroups of the
Chermak–Delgado lattice [4]. We show that this collection of subgroups behaves
nicely in direct products and wreath products G oCp, where Cp is the cyclic group
of odd order p.

Throughout the paper we use the following familiar notation. For n a positive
integer we use S n to denote the symmetric group on n points and An to denote the
alternating subgroup of S n. We use Cn, Dn, and Qn to represent the cyclic, dihedral,
and quaternion group of order n (respectively, and for applicable values of n). If D is a
direct product with G as one of its factors then πG will represent the natural projection
map from D onto G. If D is the direct product of multiple copies of G with itself, then
we use Gi to represent the ith factor in D and πi to represent the projection map from
D onto Gi.

2. Preliminaries

Define the Chermak–Delgado measure of a subgroup H with respect to a finite
group G with H ≤G as

mG(H) = |H||CG(H)|.

From the definition, it is clear that the groups discussed in this paper are necessarily
finite. The next two lemmas are straightforward to prove using just the definition of
mG(H) and recollections about centralisers from introductory group theory courses.

L 2.1. If H ≤G then mG(H) ≤ mG(CG(H)), and if the measures are equal then
H = CG(CG(H)).

L 2.2. If H, K ≤G then mG(H)mG(K) ≤ mG(〈H, K〉)mG(H ∩ K). Moreover,
equality occurs if and only if 〈H, K〉 = HK and CG(H ∩ K) = CG(H)CG(K).

The full details of the proofs of these lemmas can be found in [5, Section 1.G]. For
any finite group G, let MG denote the maximal measure over all subgroups in G and
let the set of all subgroups H ≤G with mG(H) =MG be denoted by CD(G). From
Lemmas 2.1 and 2.2 we obtain the following theorem.

T 2.3. For a finite group G the set CD(G) is a sublattice within the lattice
of subgroups of G, and for all H, K in CD(G) we have 〈H, K〉 = HK. Moreover, if
H ∈ CD(G) then CG(H) ∈ CD(G) and H = CG(CG(H)).

The lattice described in Theorem 2.3 will be referred to as the Chermak–Delgado
lattice of G. Clearly CD(G) is a sublattice within the lattice of subgroups of G.
For large or complex groups G, it can be a challenge to determine CD(G) by hand.
However, the calculations for small groups and abelian groups are refreshingly easy.

(1) Let G be abelian. If H ≤G then mG(H) = |H||G|. Therefore the only subgroup of
maximal measure is G, and CD(G) = {G}.

(2) Let G = S 4; then mG(G) = 24 = mG(Z(G)). With a little work, one can show
that the measure of any other subgroup of S 4 is less than 24—for example,
mG(A4) = 16. Hence CD(S 4) = {S 4, 1}.
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(3) Let G = S 3; then mG(G) = mG(Z(G)) = 6. On the other hand, the subgroup A3

is abelian and is also its own centraliser. Thus mG(A3) = 9. The subgroups of
order two in G are also their own centralisers, therefore these subgroups have
measure 4. Hence CD(G) = {A3}.

(4) Consider D8, the dihedral group of order eight. There are five subgroups of D8

with measure 16: D8, Z(D8), and the three subgroups of order four. All other
subgroups have smaller measure. Hence CD(D8) is also the lattice of normal
subgroups of D8.

(5) One can also show that CD(Q8) is isomorphic to the lattice of normal subgroups
of Q8, which happens to be isomorphic to the lattice of normal subgroups of D8.

Observe, since both D8 and S 3 can be represented as subgroups of S 4, that there
is not a straightforward relation between CD(U) and CD(G) when U ≤G. Of course,
one notices that if U ≤G then

MU = mU(V) for some V ≤ U

= |V ||CU(V)|

≤ |V ||CG(V)|

≤ mG(V)

≤ MG.

The next result is due to Wielandt, and can be found as [5, Theorem 2.9]. Isaacs
refers to the result as a ‘Zipper Lemma’ and we continue that reference here.

T 2.4 (Zipper Lemma). Suppose that S ≤G where G is a finite group, and
assume that S / / H for every proper subgroup H of G that contains S . If S is not
subnormal in G then there is a unique maximal subgroup of G that contains S .

The Zipper Lemma makes way for the use of induction with regard to the Chermak–
Delgado lattice. Another important fact regarding U ∈ CD(G) is given in the following
proposition.

P 2.5. Let U ∈ CD(G) for a finite group G. If S <G with both U ≤ S and
UCG(U) ≤ S then U ∈ CD(S ).

Proposition 2.5 is easy to see—when UCG(U) ≤ S then CG(U) = CS (U). In fact,
not only is U ∈ CD(S ) but also CG(U) and UCG(U) are in CD(S ). This useful
proposition, together with the Zipper Lemma, is enough to prove the following result.

T 2.6. Let G be a group. If U ∈ CD(G) then U / / G.

P. Assume that, for every proper subgroup U of G, if X ∈ CD(U) then X / / U.
Now let U ∈ CD(G). We show that V = UCG(U) / / G, which is sufficient for the
theorem since U E V .

If V = G our conclusion holds, so assume that V <G. For every S <G with
V ≤ S , we know that U ≤ S and therefore V ∈ CD(S ) by Proposition 2.5. By
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induction V / / S . If V is not subnormal in G then we may apply the Zipper Lemma,
resulting in the existence of a unique maximal subgroup M of G that contains V .
Notice, by the previous few sentences, that V / / M.

Let x ∈G; since V x ∈ CD(G), we have VV x ∈ CD(G) as well. If VV x = G then there
exist v, v0 ∈ V such that vvx

0 = x, and careful multiplication shows that x = v0v ∈ V .
Thus if VV x = G then V = G. We assumed V <G, though, so VV x <G. There exists a
proper maximal subgroup N of G that contains VV x; however, since V < N and M is
the unique maximal subgroup containing V , we know that N = M.

One can repeat the use of the Zipper Lemma on V x and determine that Mx is the
unique maximal subgroup of G containing V x. Yet M contains V x, so M = Mx for all
x ∈G. Hence M EG. Since subnormality is transitive, V / / G as desired. �

A trivial consequence of Theorem 2.6 is that the Chermak–Delgado lattice of any
simple group S is {Z(S ), S } (of course Z(S ) = S when S is abelian). Another easy
consequence of Theorem 2.6 is the expansion of (2) and (3) (following Theorem 2.3):
given a symmetric group S n, for n ≥ 5, we know that the only possible subgroups in
CD(S n) are 1, An and S n. Since the measure of An will be less than that of S n, we
know that CD(S n) = {1, S n}; therefore the Chermak–Delgado lattice of any symmetric
group is completely determined.

One might question whether Theorem 2.6 can be strengthened, that is, whether all
subgroups in CD(G) are actually normal in G. The answer, demonstrated by the next
example, is negative.

E 2.7. Let G be as follows:

G = 〈a, b, c, d | a4 = b2 = c2 = d2 = [a, b] = [b, c] = [b, d]

= [c, d] = [a, c]b = [a, d]c = 1〉.

This presentation is convenient for computations, though G actually is a 2-generator
group. A few calculations (done by hand or with GAP [3]) show that X = 〈a, b〉 is
a member of CD(G). One can show that d does not normalise X, therefore X / / G
with defect greater than 1. There are a few other subgroups in CD(G) that are not
normal, such as 〈b, da〉 and 〈b, da3〉, though showing by hand that these subgroups are
not normal is tedious.

Having shown that the members of CD(G) are subnormal, one continues by asking
about the Chermak–Delgado lattice of a direct product. Before proceeding, though,
we introduce a subset of the Chermak–Delgado lattice.

In [4] Glauberman defines the notion of a centrally large subgroup and shows,
among other things, that a subgroup U is centrally large exactly when U ∈ CD(G)
and Z(U) = CG(U). We denote the set of centrally large subgroups of G by CL(G).
Note that CL(G) is closed under joins and contains the largest element in CD(G).

In addition to describing CD(G × H) for finite groups G and H, we also
describe CL(G × H). We utilise the following basic fact about centralisers in direct
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products, the proof of which follows directly from the mechanics of conjugation in a
direct product.

L 2.8. Let G and H be groups. If U ≤G × H then CG×H(U) = CG(πG(U)) ×
CH(πH(U)).

T 2.9. For any finite groups G and H, the lattices CD(G × H) and CD(G) ×
CD(H) are equal and CL(G × H) = CL(G) × CL(H).

P. Let U ≤G × H. We have the following inequality, with the second step due to
Lemma 2.8:

mG×H(U) = |U ||CG×H(U)|

= |U ||CG(πG(U)) ×CG(πH(U))|

≤ |πG(U) × πH(U)||CG(πG(U)) ×CG(πH(U))|

≤ |πG(U)||CG(πG(U))||πH(U)||CH(πH(U))|

≤ mG(πG(U))mH(πH(U)).

Equality occurs exactly when U = πG(U) × πH(U). Therefore, the subgroups of G × H
with maximal measure are exactly those direct products X × Y where X ∈ CD(G) and
Y ∈ CD(H). This gives CD(G × H) = CD(G) × CD(H).

Now suppose that U ∈ CL(G × H); then U ∈ CD(G × H). For X ∈ {G, H} we have
πX(U) ∈ CD(X). Let g ∈CG(πG(U)). The element (g, 1) centralises U, so its projection
g is in CG(πG(U)). Therefore CG(πG(U)) ≤ πG(U); we can similarly prove the same
with respect to H. Hence πX(U) ∈ CL(X) for X = G, H.

Alternatively, assume that πX(U) ∈ CL(X) for X ∈ {G, H}. Then πX(U) ∈ CD(X)
and hence U ∈ CD(G × H). Moreover, Z(U ∩ X) = CX(πX(U)) for both values of X,
so Z(U) = CG×H(U) after using Lemma 2.8. Therefore U ∈ CL(G × H). Hence
CL(G × H) = CL(G) × CL(H), as desired. �

3. Wreath products

This section discusses our attempts to describe the Chermak–Delgado lattice of a
wreath product. As a byproduct of our efforts we show that every finite 2-group G can
be embedded in a finite 2-group E such that E ∈ CD(E), while noting that there are
2-groups E such that E < CD(E).

Let G and H be finite groups with H a permutation group of degree n acting on a
set Ω. The wreath product of G by H, denoted G o H, is the semidirect product B o H
where B = GΩ is the group of all functions f : Ω→G under pointwise multiplication.
The subgroup B is referred to as the base of W. If h ∈ H and f ∈ B then

f h(ω) = f (ωh−1)

for ω ∈Ω.
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We focus on wreath products G o H where H �Cn for some positive integer n,
so Ω = {1, 2, . . . , n}. As in the case with direct products, we start by examining
centralisers.

P 3.1. Let G be a nontrivial group and set W = G oCn where Cn = 〈σ〉 is the
cyclic group of order n. Let B be the base group of W. If, for some f ∈ B, the element
fσ ∈W − B commutes with an element b ∈ B then

b(i) = b(1) f (1) f (2)··· f (i−1) for 1 < i ≤ n.

Thus all b(i) are in some orbit of 〈 f (1), f (2), . . . , f (n)〉. Furthermore, b(1) ∈
CG( f (1) f (2) · · · f (n)) and hence π1(CB( fσ)) �CG( f (1) f (2) · · · f (n)).

P. Suppose that f ∈ B, and further suppose that there exists b ∈ B such that
fσ ∈W − B commutes with b. Notice that

fσb = b fσ ⇐⇒ bσ
−1

= b f .

In particular, for 1 < i ≤ n,

bσ
−1

(i) = b(iσ) = b f (i) = b(i) f (i).

Plugging in a few values for i, we see that b(2) = b(1) f (1) and

b(3) = b(2) f (2) = (b(1) f (1)) f (2) = b(1) f (1) f (2).

Continuing in this way, we conclude that b(i) = b(1) f (1) f (2)··· f (i−1) for all i with 1 < i ≤ n.
In fact, since nσ = 1 we also see that

b(1) = b(nσ) = b(n) f (n) = b(1) f (1) f (2)··· f (n),

hence b(1) commutes with f (1) f (2) · · · f (n) in G and π1(CB(bσ)) �CG( f (1) f (2) · · ·
f (n)) as described in the statement of the proposition. �

This proposition can generalise straightforwardly to more general H, but since the
notation quickly becomes cumbersome and we do not apply such a generalisation here,
we refer the reader to [7]. Proposition 3.1 is enough to establish some facts about
CW(B) and Z(W), allowing us to better calculate mW(B) and mW(W).

P 3.2. Let W = G oCn with G a nontrivial group and base group B. The
centraliser in W of B is Z(B); consequently mW(B) = mB(B) = |G|n|Z(G)|n.

P. Set Cn = 〈σ〉. Suppose that an element z ∈W centralises B. If there exists
f ∈ B such that z = fσ < B then Proposition 3.1 redefines the structure of B, namely
telling us that B �CG( f (1) f (2) · · · f (n)). Yet by its definition B cannot be isomorphic
to a subgroup of G. Hence z must be an element of B, yielding CW(B) ≤ B. Thus
CW(B) = Z(B). Therefore mW(B) = |B||Z(B)| = |G|n|Z(G)|n as claimed. �

Combining Proposition 3.2 with [5, Exercise 3A.9], which states that elements
commuting with the generator of Cn must be diagonal, we have the following
description of Z(W).
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P 3.3. Let G be a nontrivial group, set W = G oCn, and let B represent
the base of W. The centre of W is equal to the diagonal of Z(B), and consequently
mW(W) = n|G|n|Z(G)|.

The next proposition is a straightforward consequence of our calculations in
Propositions 3.2 and 3.3. The result implies that even when G ∈ CD(G) and H ∈
CD(H), the wreath product W = G o H need not be a member of CD(W).

P 3.4. Let G be a group and let W = G oCn for an integer n ≥ 2. If |Z(G)| ≥ 2
or n > 2 then W < CD(W).

P. Let z = |Z(G)|. We first calculate the measures of W and B using
Propositions 3.3 and 3.2:

mW(W) = n|G|n|Z(G)| = n|G|n · z

and
mW(B) = |G|n|Z(G)|n = |G|n · zn.

Thus mW(W) < mW(B) if and only if z > n1/n−1. One easily confirms that this
latter expression is strictly decreasing for integers n ≥ 2. When n = z = 2 or when
|Z(G)| = 1, we have mW(W) ≥ mW(B). Otherwise, though, mW(W) < mW(B) and thus
W < CD(W). �

Observe from the proof of Proposition 3.4 that when |Z(G)| = n = 2 then mW(W) =

mW(B). We saw an example of this situation, D8, where W ∈ CD(W). Therefore, in
light of CD(D8) and Proposition 3.4, we are interested in two questions.

(1) If |Z(G)| = 2, will W = G oC2 be a member of CD(W)?
(2) If W = G oCn with |Z(G)| > 2 or n > 2, will CD(W) = CD(B)?

In the remainder of this section we address both of these questions. Let us first note
that if G is not in its own Chermak–Delgado lattice then W need not be in CD(W). The
first nonabelian group G with Z(G) �C2 and G < CD(G) is D12, the dihedral group of
order 12.

E 3.5. Let G = D12. First we show that G < CD(G). Let r be an element of
order six; then 〈r〉 = CG(〈r〉). Hence mG(〈r〉) = 62 = 36. Yet mG(G) = 12 · 2 = 24, so
G < CD(G).

Let W = G oC2; then mW(W) = 62 · 24. Let U be the subgroup of the base of W
isomorphic to 〈r〉 × 〈r〉. Observe that U ≤CW(U) and therefore mW(U) ≥ |U |2 = 64.
Since mW(U) > mW(W), we know that W < CD(W).

Thus, with regard to question (1), we show that if |Z(G)| = 2 and G ∈ CD(G) then
W = G oC2 is in CD(W) and CD(B) ≤ CD(W) as lattices. To attain this answer and
to address question (2), we examine CD(W) by considering mW(U) for U ∈ CD(W).
There are four cases, depending upon whether or not U ≤ B or CW(U) ≤ B. The next
lemma describes a reduction in calculating the order of U; it is a direct consequence
of the Isomorphism Theorems [2, Theorem 3.18].
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L 3.6. Let G be a nontrivial group, W = G oCp for some prime p, and B be the
base of W. If U ≤W then

|U : B ∩ U | =

1 if U ≤ B,

p if U � B.

We use Lemma 3.6 in the proof of the following result, the key observation for
calculating the Chermak–Delgado measure of a subgroup in a wreath product.

P 3.7. Let G be a nontrivial group and let W = G oCp for a prime p.
Suppose that B is the base of W and let U ≤W.

(1) If U ≤ B and CW(U) � B then |U | = |π1(U)| and |CW(U)| = p|CG(π1(U))|p.
(2) If U � B and CW(U) � B then |U | = p|π1(U ∩ B)| and |CW(U)| = p|π1(CB(U))|.

P. Let U ≤ B and suppose that CW(U) � B. After applying Lemma 3.6 to CW(U),
we see that |CW(U)| = p|CB(U)|; moreover, CW(U)/CB(U) � W/B � 〈σ〉 and there
must exist f ∈ B such that CW(U) = CB(U)〈 fσ〉.

Proposition 3.1 then applies to U ≤ B and fσ ∈CW(U), so that if u ∈ U there exists
a g ∈CG( f (1) f (2) · · · f (p − 1)) with

u(i) = g f (1) f (2)··· f (i−1) for each i ∈Ω.

Thus πi(U) = (π1(U)) f (1) f (2)··· f (i−1) for 2 ≤ i ≤ p. Therefore U is a ‘diagonal-type’
subgroup and |U | = |π1(U)|, as claimed. Moreover, the description of U from
Proposition 3.1 implies that |U | = |π1(U)| ≤ |CG( f (1) f (2) · · · f (p − 1))|.

Lemma 2.8 states that CB(U) =
∏p

i=1 CG(πi(U)). Given the structure of U, we
can establish that π1(U) � π2(U) f (1) and, similarly, πi(U) = (π1(U)) f (1) f (2)··· f (i−1) for
all i with 3 ≤ i ≤ p. Therefore CG(π1(U)) �CG(πi(U)) for all i with 2 ≤ i ≤ p, and
|CB(U)| = |CG(π1(U))|p.

Now suppose that neither U nor CW(U) is a subgroup of B. Then Lemma 3.6
tells us that |U | = p|U ∩ B| and |CW(U)| = p|CB(U)|. Yet U ∩ B ≤ B and CW(U ∩ B)
contains CW(U), and hence CW(U ∩ B) � B. Applying part (1) to U ∩ B we have
|U ∩ B| = |π1(U ∩ B)|. Thus

|U | = p|π1(U ∩ B)|,

as desired.
Let X = CW(U). Note that X � B and we established |X| = p|X ∩ B|. Since U ≤

CW(X) we know that CW(X) � B. Apply the argument of the last paragraph to X; thus
|X| = p|π1(X ∩ B)|. Since X ∩ B = CB(U), we therefore have shown that |CW(U)| =
p|π1(CB(U))|. �

T 3.8. Let G ∈ CD(G) and suppose that |Z(G)| = 2. Let W = G oC2. The group
W is a member of CD(W) and CD(B) ≤ CD(W), as lattices.

P. First we calculate the measures of W and B, using Propositions 3.3 and 3.2.
This gives

mW(W) = 22|G|2 = mW(B) = mB(B).
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We will show for all U ∈ CD(W) that mW(U) ≤ 22|G|2, thus determining that W has
maximal measure and implying W ∈ CD(W). To do this we will first consider U ≤ B
and then turn our attention to U � B.

If CW(U) ≤ B then CW(U) = CB(U). Thus mW(U) = mB(U). Since G ∈ CD(G), we
know by Theorem 2.9 that B ∈ CD(B). Therefore

mW(U) = mB(U) ≤ mB(B) = mW(W).

If, on the other hand, when U ≤ B we also have CW(U) � B then Proposition 3.7 yields
that |U | = |π1(U)|. This, together with the information about the centraliser of U from
Proposition 3.7, yields

mW(U) = |U ||CW(U)|

≤ |π1(U)| · 2 · |CG(π1(U))|2

≤ 2 · mG(π1(U)) · |CG(π1(U))|.

Yet G ∈ CD(G); thus mG(π1(U)) is less than 2|G|. Also, the centraliser of π1(U) clearly
has order no more than |G|. This allows mW(U) ≤ 22|G|2. Therefore if U ≤ B then
mW(U) ≤ mW(W).

Now suppose that U � B. If CW(U) ≤ B then we know already that mW(CW(U)) ≤
mW(W), by the preceding paragraphs. Yet U ∈ CD(W), so mW(U) = mW(CW(U)).
Hence we need only examine the case where CW(U) � B.

In this case, Proposition 3.7 tells us that |U | = 2|π1(U ∩ B)| and |CW(U)| ≤
2|π1(CB(U))|. Notice that CB(U) ≤CB(U ∩ B), and therefore

π1(CB(U)) ≤ π1(CB(U ∩ B)).

It is a straightforward argument to show that

π1(CB(U ∩ B)) ≤CG(π1(U ∩ B)).

Therefore

mW(U) = |U ||CW(U)|

≤ 2 · |π1(U ∩ B)| · 2 · |π1(CG(U ∩ B))|

≤ 22 · |π1(U ∩ B)||CG(π1(U ∩ B))|

≤ 22mG(π1(U ∩ B)).

Yet G ∈ CD(G), so we can conclude that

mW(U) ≤ 23|G|.

Since |G| ≥ 2, this yields the desired result for U � B.
To finish the proof, let U ∈ CD(B). Then mB(U) = mB(B), yet we have established

that this latter quantity equalsMW . Hence U ∈ CD(W), as well. �
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The proof of Theorem 3.8 establishes that when W is as described then CD(W)
contains at least CD(B) and new maximal and minimal elements (W and Z(W),
respectively). There may even be other elements of CD(W) that are not in CD(B).
And, as a corollary of Theorem 3.8, we have the result mentioned at the start of the
section.

C 3.9. If G is a 2-group then there exists a 2-group E with E ∈ CD(E) such
that G can be embedded as a subgroup of E.

P. The group G can be embedded as a subgroup of S n for some n. Let E be the
Sylow 2-subgroup of S n that contains G. Recall that E is a direct product whose factors
are iterated wreath products of C2. Each of the iterated wreath products is contained in
its Chermak–Delgado lattice, by Theorem 3.8. Thus E ∈ CD(E) by Theorem 2.9. �

Corollary 3.9 is not trivial, in the sense that there are 2-groups which are not in their
own Chermak–Delgado lattice. In fact, there are 2-groups G with Z(G) = 2 such that
G < CD(G). We provide one example here.

E 3.10. Let G be the Sylow 2-subgroup of the general linear group of n × n
matrices with entries in the field of order two. It is known that G is isomorphic to the
group of upper triangular matrices over the field of order two and that |Z(G)| = 2.

Let A be an abelian subgroup of maximal rank in G. In [6] it is shown that
|A| = 2xy where x is the greatest integer less than or equal to n/2 and y is the
smallest integer greater than or equal to n/2; thus mG(A) ≥ 22xy. On the other hand,
mG(G) = 2n(n−1)/2 · 2. When n = 5, we have x = 2 and y = 3 so it is easy to see that
mG(A) > mG(G).

Recall question (2): If W = G oCn where |Z(G)| > 2 or n > 2, will CD(W) = CD(B)?
We address this question only in the case where n is a prime number. The techniques
to give an affirmative answer for this restricted question are along the same lines as
what we have done so far in this section. We begin with a lemma.

L 3.11. Let p be a prime number, G be a group with Z(G) > 1, and W = G oCp

with base B. If W 6� D8 then for every U ∈ CD(W) either U ≤ B or CW(U) ≤ B.

P. We prove the contrapositive of the lemma, supposing that there exists U ∈
CD(W) with U � B and CW(U) � B. Then Proposition 3.7 yields:

MW = |U ||CW(U)|

≤ p2|π1(U ∩ B)||π1(CB(U))|

≤ p2|π1(U ∩ B)||π1(CB(U ∩ B))|

≤ MG · p
2.

At the same time, though, we know thatMB = (MG)p ≤MW . Thus

(MG)p ≤MG · p
2.
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The usual algebra tactics allow us to rearrange the inequality: MG ≤ (p2)1/(p−1). Yet
this last expression is the square of a function that is strictly decreasing on integers
n ≥ 2; hence its maximum value is when p = 2. Additionally, mG(G) ≤MG and
therefore

|G||Z(G)| ≤ (p2)1/(p−1) ≤ 4.

Since |Z(G)| ≥ 2, the above can only occur when |Z(G)| = |G| = p = 2. In this case,
though, W � D8. �

T 3.12. Let p be a prime, G be a group with Z(G) > 1, and W = G oCp with
base B. If |Z(G)| > 2 or p > 2 then for every U ∈ CD(W) both U ≤ B and CW(U) ≤ B.
Thus in this case CD(W) = CD(B) and similarly, CL(W) = CL(B).

P. We prove the contrapositive of the theorem. Assume that there exists U ∈
CD(W) and at least one of U or CW(U) is not a subgroup of B. If both U and CW(U) are
not subgroups of B then Lemma 3.11 tells us that W � D8. In this case |Z(G)| = p = 2,
so the theorem holds.

Suppose that exactly one of U or CW(U) is not a subgroup of B. As U ∈ CD(W),
we know that U = CW(CW(U)). Therefore we may assume, without loss of generality,
that U ≤ B and CW(U) � B.

Proposition 3.7 implies that

MW = |U ||CW(U)|

= |π1(U)||CG(π1(U))|p · p

= MG · |CG(π1(U))|p−1 · p.

Again we know that MB = (MG)p ≤MW and additionally |CG(π1(U))| ≤G. Hence
(MG)p ≤MG · |G|

p−1 · p and thereforeMG ≤ |G| · p1/(p−1). Then |G||Z(G)| ≤MG ≤ |G| ·
p1/(p−1) and therefore |Z(G)| ≤ p1/(p−1). This familiar expression is strictly decreasing
on integers n ≥ 2, as before. Therefore |Z(G)| ≤ 2 and, given the hypotheses of the
theorem, |Z(G)| = p = 2.

Therefore if |Z(G)| > 2 or p > 2 then for every U ∈ CD(W) we know that U ≤ B
and CW(U) = CB(U). Thus mW(U) = mB(U). It is always true that MB ≤MW , so in
this case U ∈ CD(B) and CD(W) ≤ CD(B). That then implies that MW =MB, since
CW(U) ≤CB(U) for any U ≤ B. Hence if U ∈ CD(B) then U ∈ CD(W), too. Thus
CD(W) = CD(U).

Let U ∈ CL(W). Then U ∈ CD(W) and CW(U) = Z(U). By the arguments earlier,
U ∈ CD(B). Additionally CB(U) ≤CW(U), so we conclude that U ∈ CLB, giving
CL(W) ⊆ CL(B). Suppose that U ∈ CL(B); hence U ∈ CD(B) and CB(U) = Z(U).
Then we can conclude that U ∈ CD(W), but then the preceding paragraph gives
CW(U) ≤CB(U). Therefore U ∈ CL(W) and CL(B) = CL(W). �
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