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ABSTRACT

In the present paper the author gives net premium formulae for a generalized
largest claims reinsurance cover. If the claim sizes are mutually independent and
identically 3-parametric Pareto distributed and the number of claims has a
Poisson, binomial or negative binomial distribution, formulae are given from
which numerical values can easily be obtained. The results are based on identities
for compounded order statistics.
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1. INTRODUCTION

An expression for the pure premium for the largest claim reinsurance cover was
already introduced by AMMETER (1964a) and for the/7 largest claims reinsurance
cover by AMMETER (1964b). Simple formulae were presented under the
assumptions that the claim sizes obeyed a one parametric Pareto distribution
and the number of claims was Poisson distributed. For the same claim size
distribution KUPPER (1971) gave a formula for the largest claim reinsurance when
the number of claims was geometrically distributed and CIMINELLI (1976)
considered a negative binomial distribution. BERLINGER (1972) extended the
results by AMMETER and deduced the variance for the/? largest claims reinsurance
cover. Net premium for a general claim size and claim number distribution was
given by KREMER (1985) and for some generalized claim number distributions
and a general claim size distribution by KREMER (1988a). The results in the latter
were, however, not so practical for a specific claim size distribution. The author of
this paper gives net premium formulae for a generalized largest claims reinsurance
cover, assuming that the claim sizes are mutually independent and identically
3-parametric Pareto distributed and when the number of claims has a Poisson,
binomial or negative binomial distribution. The formulae presented in this paper
are simple and easily calculated.
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2. PRELIMINARIES

From now on, let Xj, X2, ..., XN denote non-negative, mutually independent and
identically distributed claim sizes, which are independent of the number of claims
N that occur in a given time period. Denote by

XN : J ^ XN -2 ^ - • • ^ Xjy • ^

the claims ordered in a decreasing size. The /-th largest claim is called the /-th
ordered claim or more generally the /-th compounded order statistic. Let

/,• : [0, oo) - [0, oo)

(/ > 7) be measurable functions, that satisfy

fi{0) =

for all 0 < yn < ... < y2 <yi- This representation was first made by KREMER

(1982) and the following main definition by KREMER (1984):

Definition. The reinsurance treaty denned by

N

/ ^

N

which determins the reinsurers share of the total loss 2_, Xh ' s called a reinsurance
treaty based on ordered claims. <=/

We are especially interested in the case

fi(x) =atx,

where a,-, / > 1, are real constants. This reinsurance treaty is defined as the
generalized largest claims cover (KREMER 1988b). We get for

a; = «2 = • • • = ap = 1, cij = 0 V / > p

the so called LCR(/?) treaty covering the p largest claims and for

a/ = a2 = ... = ap-i = l,ap = 1 - p,cij = 0\/ i > p

the so called ECOMOR(/?) treaty covering all claims in excess of the p-th largest
claim.

We will subsequently use some special functions. The incomplete gamma
function is defined as

X

T ( a ; x ) = [ e ~ u u ^ ' d u , a > 0 , x > 0
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and the complete gamma function as lim T(a;x) = T(a). The incomplete beta
function is denned as x~"x

B ( a ; b ; x ) = I u a ~ ' ' ( 1 - u)h~'' du = f i f ~ l { l + u ) - [ a + h ) du , a , b > 0 , 0 < x < 1

0 0

and the complete beta function as \m\B(a\b\x) = B(a;b). The complete beta

function and the complete gamma function are related by

3. FORMULAE FOR THE NET PREMIUM

The two most common risk loaded premium principles, the variance principle and
the standard deviation principle, are based on the expectation and the variance of
a certain risk. For a generalized largest claims reinsurance cover the expectation is
given by

and the variance by

OG OO /— I

Var[RN\ = J2
/=/ j=2 i=l \i=l }

The following theorem is due to CIMINELLI (1976) and KREMER (1985), where

n=0

denotes the probability generating function of N, which is assumed to have
derivatives <//''on (0,1) of each order i > 1.

Theorem 1. If the claim sizes Xi, X2, ..., XN have a continuous distribution
function F the density function of the i-th ordered claim is given by

and the joint density function of the z'-th and y'-th ordered claims (0 < i < j) is
given by

P(XN:i = xh XN,j = xj) = r ( j ) r ^ 7 ) I1 ~ Hxdt'iHxi) - Hxj)f~'<l>(jHHxMxi)f{xj).
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Theorem 2. If the claim sizes X;, X2, ..., XN have a continuous distribution
function F the /c-th moment around the origin of the i'-th ordered claim is given by

/

E[X*N.A = f^j / F-'{uf[l - ur'^Hu)du

and the expectation of the cross product of the i-th and 7-th ordered claims
(0 < i < j) is given by

Proof: The first part of the statement follows from theorem 1 after the
substitution u = F(x). For the second part we have for 0<i<j and
0 <XN:j <XN..j that

E[XN:iXN-j] =
00 00

C J J xiXj[l - F(*,-)rV(*/) - F{xj)r-'<P{j\F{xi))f{xi)f{xj) dxidxj,
0 x,

where

After substituting u = 'jlful anc^ v ~ ^{xi) w e obtain

E[XN.jXN:j] =
i 1

C

W ) f F-'{1 ~ u(l - v)y~'[l - u}h>-'dudv.

0 0

1

C
"o

D

From now on we will focus on the case where the claim sizes are distributed
according to the 3-parametric Pareto distribution

F{X) = 1~
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where the parameters a, (3 and d satisfy a > 0 and b > —d. The distribution (3.1)
is the most used claim size distribution, especially if there is a possibility of large
claims. In the literature the 3-parametric Pareto distribution is sometimes also
called the "shifted" Pareto distribution (RYTGAARD 1990) or the complete Pareto
distribution (DAYKIN et al. 1994). Since

- x)»

the expectations of theorem 2 becomes after binomial expansion and simplifica-
tions

and for a > 4

E[XN..iXN;j] =Yyj

I {I - v)h"~'4i]{v)dv- A2 I {1 - v)h"''4>iJ)(v)dv + A3 f(1 - vy~'^\v)dv

where

= f3(d+/3)

The restriction on the parameter a is needed to get a finite expression. Assuming
further that the number of claims N is Poisson distributed

n)=^je-x \>0,n>0, (3.2)

negative binomially distributed
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or binomially distributed

(l-q)m-n 0<q<l,n = 0,l,...,m, (3.4)

where m is a non-negative integer, we have the following corollaries.

Corollary 3. Assume that the claim sizes Xj,X2, ..., X^ are Pareto distributed
(3.1) and that the claim number N is Poisson distributed (3.2). Then the k-ih
moment around the origin of the z'-th ordered claim is, for a > 4 given by

and the expectation of the cross product of the /-th and y'-th ordered claims
(0 < i <j) is, for a > max{4,|}, given by

Proof: Since the y-th derivative of the probability generating function 4> for a
Poisson distributed random variable (3.2) is given by

we have, for 7 > 0, that

/ 1

[(1 - uV-'^Uhdu = Xj [(] - uy~'ex{u'1]du.
J J
0 0

After the substitution t = A(7 - u) we obtain

/ A

f(l - u)J~'(t)U){u)du = A7"7 I p-'e-'dt
0 0

which gives the result.
D

Corollary 4. Assume that the claim sizes X/, X2 •••, XN are Pareto distributed (3.1)
and that the claim number iV is negative binomially distributed (3.3). Then the
&-th moment around the origin of the /-th ordered claim is, for a > ~, given by
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and the expectation of the cross product of the z'-th and y'-th ordered claims
(0 < i < j) is, for a > max { 4, -. }, given by

Proof: Since the y'-th derivative of the probability generating function <f> for a
negative binomially distributed random variable (3.3) is given by

we have, for 7 > 0, that

0 0

After the substitution t = X(l - u) we obtain

/ A

J f-'(i + ty{r+j)dt

T(r)

from which the result follows after simplification.

•
Corollary 5. Assume that the claim sizes Xj, X2 ..., XN are Pareto distributed (3.1)
and that the claim number TV is binomially distributed (3.4). Then the k-th
moment around the origin of the /-th ordered claim is, for a>K, given by

l\q)
h=0 V"/

and the expectation of the cross product of the ;'-th and y'-th ordered claims
(0 < i < j) is, for a > max{4,!}, given by

E[XN..iXN:j]= ( . V [A,q«B(j-^;m-j+l;q)-A2qiB(j--L;m-j+l;q)
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Proof: Since the y'-th derivative of the probability generating function <j> for a
binomially distributed random variable (3.4) is given by

we have, for 7 > 0, that

1 1

0 0

After the substitution t = q(l - u) we obtain

fa - «r'^(u)du=r(^")^7) <r* f

from which the result follows after simplification.

•
If 0 < a < 1, which indicates a very heavy tailed distribution, we have according
to the results above that the first moment around origin of a certain number of
the largest ordered claims does not exist. We could therefore consider the number
of ordered claims, for which the first moment around the origin does not exist, as
a measure for how dangerous a Pareto distribution is. Since many computer
programs have built-in routines for computing the complete gamma, incomplete
gamma and the incomplete beta function, the expectations in results above can be
calculated easily.

If the claim sizes obey an exponential distribution

F{x) = 1 - e-
p{x-a) /3>0, x>a,

we cannot get useful expressions for the moments around the origin and the cross
product by applying theorem 2. Using well known results from order statistics for
a deterministic number of claims (DAVID 1970) and then the iterativity of the
expectation operator, expression for the pure premium can be constructed.
Exponentially distributed claim sizes have been studied by KUPPER (1971) and
KREMER (1985 and 1986).

4. A NUMERICAL EXAMPLE

Let the distribution for the claim sizes be Pareto distributed (3.1) with d = 0. For
the insurance line under consideration the method of moments gives the following
parameter estimates: a = 2.3401 and /3 = 13692. Since the most import claim
number distributions are the Poisson and the negative binomial, we will restrict
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the example to them. Using the same estimation method we have the following
parameter estimates: Poisson A = 79.667, negative binomial A = 1.0865 and
r = 73.326. We have the following numerical results:

Expectation of LCR(p) and ECOMOR(/>) treaties

p
1

2

3

4

5

LCR(p)-

Poisson

124 597

190 099

238 679

278 390

312 395

treaty

negative binomial

124 368

189 738

238 215

277 837

311 763

P
1

2

3

4

5

ECOMOR

Poisson

0

59 095

92 937

119 548

142 369

(p)-treaty

negative binomial

0

58 997

92 783

119 350

142 133

Standard deviation of LCR(p) and ECOMOR(p) treaties

p
1

2

3

4

5

Poisson

178 069

191 632

198 847

203 797

207 581

LCR(p)-treaty

negative binomial

178 129

191 860

199 254

204 389

208 363

P
1

2

3

4

5

ECOMOR

Poisson

0

134 587

182 222

188 799

193 255

(p)-treaty

negative binomial

0

134 549

182 206

188 815

193 405

The difference between the numerical values for Poisson and the negative
binomial cases is quite small. If we assume that in the incomplete beta function b
is large and a is bounded we have the following asymptotic representation
(ABRAMOWITZ and STEGUN 1972)

B(a;b;x)
B{a;b) T{a)

This explains the similarity in the numerical results above. This suggests, that the
Poisson distribution might be the right claim number model if the parameter
value r is large and A is small in the negative binomial distribution.
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