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Abstract. We show that every Hilbert C∗-module E is a JB∗-triple in a canonical
way, establish an explicit expression for the holomorphic automorphisms of the unit
ball of E, discuss the existence of fixed points for these automorphisms and give
sufficient conditions for E to have the density property.
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1.1. Introduction. Hilbert C∗-modules first appeared in 1953 in a paper of
Kaplansky [7] who worked only with modules over commutative unital C∗-algebras. In
1973 Paschke [14] proved that most of the properties of Hilbert C∗-modules were valid
for modules over an arbitrary C∗-algebra. About the same time Rieffel independently
developed much of the same theory and used it to study representations of C∗-algebras.
Since then the subject has grown and spread rapidly and now there is an extensive
literature on the topic; (see [12] or [13] for a systematic introduction). Many interesting
developments have been made by Kasparov, who used Hilbert C∗-modules as the
framework for K-theory. More recently Hilbert C∗-modules have been a useful tool in
the C∗-algebraic approach to quantum groups. The geometry of Hilbert C∗-modules
has been investigated by Solel in [15], where the isometries of these Banach spaces have
been characterized.

On the other hand Kaup, searching for a metric-algebraic setting in which he could
make the study of bounded symmetric domains in complex Banach spaces, introduced
a class of complex Banach spaces called JB∗-triples. In 1983 he proved that, except for
a biholomorphic bijection, every such domain is the open unit ball of a JB∗-triple [8].
In 1981 he made the complete analytic classification of bounded symmetric domains
in reflexive Banach spaces [9]. Since then the study of JB∗-triples has grown and spread
considerably.

These two theories have developed independently from one another. Here we show
that every Hilbert C∗-module E is in a canonical way a JB∗-triple, a bridge between the
two theories that may be useful in the study of the geometry of Hilbert C∗-modules.
In particular the open unit ball BE of E is a bounded symmetric domain (see [8]). We
establish an explicit expression of the holomorphic automorphisms of the unit ball BE

of a Hilbert C∗-module E and a sufficient condition for a Hilbert module E to have
the density property (see [2]). Especial interest has been paid to the case of selfdual
standard Hilbert modules E = �2(S, A). For this type of module we prove: (i) that E
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always has the density property [2], (ii) that every holomorphic automorphism of BE

has at least one fixed point in BE , which extends some results in [4].

1.2. Hilbert C∗-modules. We now introduce formally the objects we shall be
studying. Let A be a C∗-algebra (not necessarily unital or commutative), where the
product is denoted by juxtaposition xy, the norm is ‖·‖A and the mapping x �→ x∗ is
conjugation. An inner product A-module is a complex linear space E with two laws
of composition E × A → E (denoted by (x, a) �→ x · a) and E × E → A (denoted by
(x, y) �→ 〈x, y〉) such that the following properties hold.

1. Withrespecttotheoperation(x, a) �→ x · a,E isarightA-modulewithacompatible
scalar multiplication; that is, λ(x · a) = (λx) · a = x · (λa), for all x ∈ E, a ∈ A and λ ∈ �.

2. The inner product (x, y) �→ 〈x, y〉 satisfies

〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉, (1)

〈x, y · a〉 = 〈x, y〉a, (2)

〈y, x〉 = 〈x, y〉∗, (3)

〈x, x〉 ≥ 0 and if 〈x, x〉 = 0, then x = 0. (4)

Here x, y, z ∈ E, α, β ∈ � and a ∈ A.
Note that, in particular, the inner product is complex linear in the second variable

while it is conjugate linear in the first. This convention is in line with the recent research
literature. Let E be an inner product A-module; then the Cauchy-Schwarz inequality

〈y, x〉 〈x, y〉 ≤ ‖〈x, x〉‖ 〈y, y〉
holds. Hence ‖x‖2

E := ‖〈x, x〉‖A is a norm in E with respect to which the inner product
and the module product are continuous; that is

‖〈x, y〉‖A ≤ ‖x‖E ‖y‖E, ‖x · a‖ ≤ ‖x‖E ‖a‖A.

To simplify notation we shall use the same symbol ‖·‖ to denote the norms on A and
E. As usual we set |x| :=〈x, x〉 1

2 , for x ∈ E. Then

|〈x, y〉| ≤ ‖x‖ |y|, |〈x, y〉| ≤ |x| ‖y‖,

and the module product satisfies

‖x · a‖ ≤ ‖x‖ |a|.

An inner product A-module E, which is a Banach space with respect to ‖·‖, is
called a Hilbert C∗-module over A.

EXAMPLE 1.1. Let S and A be a non empty set and a C∗-algebra, respectively,
and denote by �2(S, A) the set of all indexed A-valued families x = (xs)s∈S such that∑

s∈S x∗
s xs converges in A. With the pointwise operations and the inner product

〈y, x〉 :=
∑
s∈S

y∗
s xs, y, x ∈ �2(S, A),

M := �2(S, A) becomes a Hilbert A-module. We refer to it as the standard Hilbert
module over A; see [13, Ex.1.3.5]. If S is a countably infinite set we write
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�2(A) := �2(�, A). When S consists of a single point we get M = A with the natural
module operation x · a := xa and the inner product 〈a, b〉 := a∗ b, for x, a, b ∈ A.

LEMMA 1.2. Let M = �2(A) be the standard Hilbert module over the C∗-algebra A.
Then for every fixed y = (yn) ∈ M the series 〈y, x〉 = ∑

n y∗
nxn converges uniformly over

the bounded subsets of M.

Proof. It is known [13, Ex.1.3.5] that the above series converges in A for every fixed
pair y, x in M. Let S ⊂ M be a bounded set and put K := supx∈S ‖〈x, x〉‖ < ∞. Let
ε > 0 be given. Since |y|2 = 〈y, y〉 = ∑∞

1 y∗
nyn is convergent, there is an index N such

that ∥∥∥∥∥
∞∑

N+1

y∗
nyn

∥∥∥∥∥ ≤ ε

K
,

and therefore by the Cauchy-Schwarz inequality∥∥∥∥∥〈y, x〉 −
N∑
1

y∗
kxk

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
N+1

y∗
kxk

∥∥∥∥∥ ≤
∥∥∥∥∥

∞∑
N+1

y∗
kyk

∥∥∥∥∥
∥∥∥∥∥

∞∑
N+1

x∗
kxk

∥∥∥∥∥
≤ ‖〈x, x〉‖

∥∥∥∥∥
∞∑

N+1

y∗
kyk

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∞∑

N+1

y∗
kyk

∥∥∥∥∥ ≤ ε,

which completes the proof. �
A linear map f : E → E is called an A-map if f (x · a) = f (x) · a holds, for all x ∈ E

and a ∈ A, and we say that f is adjointable if there exists an A-map f ∗: E → E such
that

〈f (x), y〉 = 〈x, f ∗(y)〉, x, y ∈ E.

In such a case f is continuous (though the converse is not true!), f ∗ is adjointable
and (f ∗)∗ = f . We let L(E) denote the Banach algebra of all bounded complex linear
operators on E and A(E) ⊂ L(E) is the vector space of all adjointable A-module maps
on E. In fact A(E) is a C∗-algebra in the operator norm since ‖f ∗f ‖ = ‖f ‖2 holds, for
all f ∈ A(E). For x, y ∈ E we define θx,y (also denoted x ⊗ y∗) by

θx,y(z) := x · 〈y, z〉 (z ∈ E).

Then θx,y is adjointable and θ∗
x,y = θy,x (see [12, p. 9]). For later reference we state the

following result.

LEMMA 1.3. Let E be a Hilbert C∗-module and let f : E → E be a bounded A-module
map. Then f is a positive element in the C∗-algebra A(E) if and only if 〈x, f (x)〉 ≥ 0, for
all x ∈ E.

We refer to [12] or [13] for background on Hilbert C∗-modules and for the proofs
of the results above.

1.3. JB∗-triples. A complex Banach space Z with a continuous mapping
(a, b, c) �→ {a, b, c} from Z × Z × Z to Z is called a JB*-triple if the following
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conditions are satisfied for all a, b, c, d ∈ Z, where the operator a � b ∈ L(Z) is defined
by z �→ {abz} and [ , ] is the commutator product.

1. {abc} is symmetric complex linear in a, c and conjugate linear in b.
2. [a � b, c � d] = {a, b, c} � d − c � {d, a, b} (called the Jordan identity).
3. a � a is hermitian and has non-negative spectrum.
4. ‖{a, a, a}‖ = ‖a‖3.
If a complex vector space Z admits a JB*-triple structure, then the norm and the

triple product determine each other. An automorphism is a linear bijection φ ∈ L(Z)
such that φ{z, z, z} = {(φz), (φz), (φz)} for z ∈ Z, which occurs if and only if φ is a
surjective linear isometry of Z. For z ∈ Z, the conjugate linear operator Q(z): Z → Z is
defined by Q(z)x := {z, x, z} where x ∈ Z. For x, y in Z, the operator x � y is sometimes
denoted by D(x, y) and the Bergmann operator B(x, y) ∈ L(Z) is defined by

B(x, y)z := z − 2(x � y)z + Q(x)Q(y)z (z ∈ Z).

An element e ∈ Z is called a tripotent if {eee} = e. In this case the set of eigenvalues
of e � e ∈ L(Z) is contained in {0, 1

2 , 1} and we have the topological direct sum
decomposition, called the Peirce decomposition of Z, given by

Z = Z1(e) ⊕ Z1/2(e) ⊕ Z0(e).

Here Zk(e), the Peirce subspaces of e, are the k-eigenspaces of e � e and the Peirce
projections are given by

P1(e) = Q2(e), P1/2(e) = 2(e � e − Q2(e)), P0(e) = Id − 2e � e + Q2(e).

A closed subspace J ⊂ Z is called a subtriple of Z if {J, J, J} ⊂ J and an ideal if
{Z, J, Z} ⊂ J, {J, Z, Z} ⊂ J. The Peirce subspaces of a tripotent e are subtriples and
P1(e)�P0(e) = {0}.

Recall that every C*-algebra Z is a JB*-triple with respect to the triple product
2{abc} := (ab∗c + cb∗a). In this case, every projection in Z is a tripotent and more
generally the tripotents are precisely the partial isometries in Z. C∗-algebra derivations
and C∗-automorphisms are derivations and automorphisms of Z as a JB∗-triple
although the converse is not true.

We refer to [8], [16] and the references therein for the background of JB∗-triples
theory.

1.4. Hilbert C∗-modules are JB∗-triples. Let E be a Hilbert module over the C∗-
algebra A. For a ∈ A fixed, we denote by Ra ∈ L(E) the operator x �→ x · a of right
multiplication by a.

THEOREM 1.4. Every Hilbert C∗-module E is a JB∗-triple in a canonical way.

Proof. Let E be a Hilbert C∗-module over the C∗-algebra A. Define a triple product
in E by

2 {x, y, z} := x · 〈y, z〉 + z · 〈y, x〉 (x, y, z ∈ E). (5)

It is clear that {·, ·, ·} is symmetric complex linear in the external variables, and complex
conjugate linear in the middle variable. It is a matter of routine calculation to check
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that the triple product satisfies the Jordan identity. On the other hand, for fixed x ∈ E
we have

2 (x � x) z = x · 〈x, z〉 + z · 〈x, x〉 (z ∈ E),

which can be written in the form x � x = 1
2 (θx,x + R|x|2 ). We show that the summands

in the right hand side of the latter are hermitian elements in the algebra L(E). Since
A(E) is a closed complex subalgebra of L(E) and contains the unit element, it suffices
to consider the numerical ranges of θx,x and R|x|2 , viewed as elements in the C∗-algebra
A(E). We have seen before that θx,x is selfadjoint. Clearly(

exp itR|x|2
)

(w) = w · (exp it|x|2) (w ∈ E),

and, as exp it|x|2 is a unitary element in A, the operator exp itR|x|2 is an isometry of
E, for all t ∈ �, which shows that R|x|2 is hermitian. For y ∈ E we have

〈y, θx,x(y)〉 = 〈y, x · 〈x, y〉〉 = 〈y, x〉〈x, y〉 ≥ 0,

which by (1.3) proves that θx,x ≥ 0 in A(E) and hence also in L(E). Clearly |x|2 ≥ 0 in
A, and so its spectrum satisfies σA(|x|2) ⊂ [0,∞). Therefore

σL(A)
(
R|x|2

) ⊂ σA(|x|2) ⊂ [0,∞).

Since the numerical range is the convex hull of the spectrum, R|x|2 ≥ 0 as we wanted
to check.

Let us set y := 〈x, x〉 ∈ A for every x ∈ E. The definition of the norm in E and the
properties of the norm in the C∗-algebra A yield

‖{x, x, x}‖2 = ‖x · 〈x, x〉‖2 = ‖〈x · 〈x, x〉, x · 〈x, x〉〉‖ = ‖〈x, x〉〈x, x〉〈x, x〉‖
= ‖{y, y, y}‖ = ‖y‖3 = ‖〈x, x〉‖3 = ‖x‖6,

which establishes property (4) in the definition of a JB∗-triple. Finally, this is the unique
JB∗-triple structure on E, since the triple product is determined by the norm of E. �

1.5. Submodules and subtriples. Let E be a Hilbert module over the C∗-algebra
A. For subsets F ⊂ E and B ⊂ A, we set

F• := {a ∈ A: F · a = 0}, •B := {x ∈ E: x · B = 0}.
PROPOSITION 1.5. Let E be a Hilbert module over a C∗-algebra A, and assume that

E• = {0}. Then for every c ∈ E the following conditions are equivalent.
(i) R|c|2 is a module map.

(ii) D(c, c) is a module map.
(iii) |c|2 is a central element of A.

If these conditions hold, then Q(c)2 and B(c, c) are module maps.

Proof. (i) ⇐⇒ (iii). We have

R|c|2 (x · a) = (x · a) · |c|2, (
R|c|2 (x)

) · a = (x · |c|2) · a.

Thus R|c|2 is a module map if and only if x · (a|c|2 − |c|2a) = 0, for all x ∈ E and a ∈ A.
Hence the result follows from E• = 0.
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(iii) ⇐⇒ (ii). We have 2D(c, c) = c ⊗ c∗ + R|c|2 . Since c ⊗ c∗ is a module map,
D(c, c) is a module map if and only if R|c|2 is too, which occurs if and only if |c|2 is a
central element of A. The conclusion follows from the expressions Q(c)2 = c ⊗ c∗ ◦ R|c|2
and B(c, c) = Id − 2D(c, c) + Q(c)2. �

Let e ∈ E be a tripotent. By the above, in general neither the Peirce projectors of
e are module maps nor are the Peirce spaces of e submodules of E.

Recall that the odd powers of an element x in a JB∗-triple Z are defined inductively
by x1 := x and x2k+1 := D(x, x)kx for k ≥ 1, and that the closed JB∗-subtriple generated
by x is the closed linear span of the set {x2k+1: k ∈ �}.

For x ∈ E, we denote by EM
x and EJ

x the closed submodule and the closed subtriple
generated by x in E.

LEMMA 1.6. We have EJ
x ⊂ EM

x = x · A.

Proof. Since EM
x is a module that contains x, it is a triple that contains x and so EJ

x ⊂
EM

x . Clearly EM
x must contain x · A and, as the latter is a closed module that contains

x, the result follows. Note that the inclusion EJ
x ⊂ EM

x in general is strict. Indeed,
{x, x, x} = x · 〈x, x〉 = x · |x|2 and an induction argument gives x2k+1 = x · |x|2k, for
all k ∈ �. Since EJ

x is the closed �-linear span of the set of odd powers of x, we have
EJ

x ⊂ x · B, where B is the C∗-algebra generated by |x|2 in A, which obviously may be
strictly smaller than A. �

The following characterizes those Hilbert C∗-modules that can be identified with
a C∗-algebra in the sense that they are associated to a C∗-algebra via Example 1.1.

PROPOSITION 1.7. Let E be a Hilbert module over a unital C∗-algebra A. Then E is
the module associated to A if and only if there exists an element x ∈ E such that |x|2 = 1
and x · A = E.

Proof. The element x := 1 clearly satisfies the conditions above, and so the forward
implication holds. Suppose now that x ∈ E satisfies |x|2 = 1 and x · A = E; let EM

x =
x · A be the closed submodule generated by x in E. The map 	: A → x · A given by
a �→ 	(a) := x · a is a JB∗-triple homomorphism since

	(a)3 = {x · a, x · a, x · a} = (x · a) · 〈x · a, x · a〉= x · aa∗〈x, x〉a = x · aa∗a = 	(a3).

It is injective since 	(a) = 0 gives x · a = 0. Taking the scalar product with x we get
0 = 〈x, x · a〉 = 〈x, x〉a = |x|2a = a so that a = 0. By assumption 	(A) = x · A = E.
Thus 	: A → E is a surjective linear isometry which is also a module map, since

	(wa) = x · (wa) = (x · w) · a = 	(w) · a, w ∈ A, a ∈ A.

This shows that 	 is a Hilbert C∗-module isomorphism. �

1.6. Holomorphic automorphisms of the unit ball. Motivated by the deep formal
analogy between Hilbert C∗-modules E and Hilbert spaces H, we shall establish
an explicit formula for the holomorphic automorphisms of the unit ball of E. Set
Qc := Q(c) and recall [8] that

B(c, c)(x) := x − 2(c � c)(x) + Q2
c(x) (x ∈ E).
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In our case

2(c � c)(x) = 2{c, c, x} = c · 〈c, x〉 + x · |c|2 = c ⊗ c∗(x) + x · |c|2,
Q2

c(x) = {c, Qc(x), c} = {c, c · 〈x, c〉, c}
= c · 〈c · 〈x, c〉, c〉= c · 〈c, x〉|c|2 = (c ⊗ c∗)(x · |c|2).

Therefore

B(c, c)(x) = x · (1 − |c|2) − (c ⊗ c∗)(x · (1 − |c|2))

= (1 − c ⊗ c∗)(x · (1 − |c|2)).

Clearly 1 − c ⊗ c∗ and 1 − |c|2 are selfadjoint elements in the C∗-algebras A(E) and
A, respectively, and for c in the open unit ball of E they are positive. Hence they have
well defined square roots. We show that the operator Bc defined by

Bc(x) := (1 − c ⊗ c∗)
1
2
(
x · (1 − |c|2)

1
2
)

(x ∈ E),

satisfies B2
c = B(c, c). Indeed, since 1 − c ⊗ c∗ is an A-linear map, so is its square root

and we have

Bc(Bc(x)) = (1 − c ⊗ c∗)
1
2

(
Bc(x) · (1 − |c|2)

1
2
)

= (
(1 − c ⊗ c∗)

1
2 Bc(x)

) · (
1 − |c|2)

1
2
)

= (
(1 − c ⊗ c∗)

1
2
[

(1 − c ⊗ c∗)
1
2 x · (1 − |c|2)

1
2
]) · (1 − |c|2)

1
2

= (1 − c ⊗ c∗)x(1 − |c|2) = B(c, c)(x),

as we wanted to check.
For c and x in the open unit ball of E, 1 + 〈c, x〉 is an invertible element in A,

since ‖〈c, x〉‖ ≤ ‖c‖ ‖x‖ < 1. In particular, x · (1 + 〈c, x〉)−1 = (1 + x � c)−1x is well
defined in A. Recall [8] that for c in the open unit ball of E, the transvection gc is the
holomorphic automorphism of the open ball of E given by

gc(x) := c + Bc((1 + x � c)−1x) (‖x‖ < 1).

Replacing the expressions of Bc and (1 + x � c)−1x we get

gc(x) = c + (1 − c ⊗ c∗)
1
2
[
x · (1 + 〈c, x〉)−1(1 − |c|2)

1
2
]
.

In case E is a Hilbert space, the above can be stated in terms of projections and
coincides with the formula for the transvections of the ball given in [3, p. 21]. By [8],
every holomorphic automorphism h of the unit ball of E can be represented in the
form h = L ◦ gc, for some surjective linear isometry of E and some c ∈ E with ‖c‖ < 1.

For a complex Banach space E, the set Extr BE of extreme points in the unit ball
BE of E plays an important role in the study of the geometry of E. Obviously, we
can replace a Hilbert C∗-module E with its associated JB∗-triple in order to study the
extreme points of the ball BE . By [10, Proposition 3.5] we have

Extr BE = {c ∈ E: B(c, c) = 0}.
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Thus, for c ∈ E the condition c ∈ Extr BE is equivalent to

(1 − c ⊗ c∗)(x · (1 − |c|2)) = 0 ∀x ∈ E.

Therefore we have two obvious families of extreme points given by

E · (1 − |c|2) = {0} =⇒ c ∈ Extr BE,

(Id − c ⊗ c∗) E = {0} =⇒ c ∈ Extr BE.

These two families may coincide (as it occurs when E is Hilbert space) but in
general they are different. We do not know whether every extreme point lies in one of
the above families. Every extreme point is a tripotent; that is, it satisfies c = {c, c, c} =
c · 〈c, c〉 = c · |c|2.

It might be interesting to characterize Hilbert C∗-modules within the category of
JB∗-triples.

1.7. The density property for Hilbert C∗-modules. Suppose that Z is a Hilbert C∗-
module over the C∗-algebra A. Then B(x, y) can be written in the form

B(x, y)z = z − (z · 〈y, x〉 + x · 〈y, z〉) + x · 〈y, z〉〈y, x〉
= z · (1 − 〈y, x〉) + x · 〈y, z〉(〈y, x〉 − 1 ) = (Id − x ⊗ y∗)z · (1 − 〈y, x〉).

Thus, in particular,

B(x, y) = (Id − x ⊗ y∗) ◦ R1 −〈y,x〉. (6)

We recall that a pair (x, y) of elements in a JB∗-triple is said to be quasi-invertible if
B(x, y) is invertible in L(Z). In this case the quasi-inverse of x relative to y is defined
by

xy := B(x, y)−1(x − Q(x)y).

A JB∗-triple Z has the density property if the set of all quasi-invertible pairs in Z is
dense in Z × Z, see [2].

THEOREM 1.8. Let Z be a Hilbert module over the C∗-algebra A and let (x, y) be any
pair in Z × Z.

(i) If (x, y) is quasi-invertible, then R1−〈y,x〉 is invertible in L(Z).
(ii) If A is unital and 1 − 〈x, y〉 is invertible in A, then (x, y) is quasi-invertible in Z

and

xy = x · (1 − 〈y, x〉)−1.

Proof. (i) is obvious. Assume that 1 − 〈y, x〉 is invertible in A. Set a = (1 −〈y, x〉)−1.
Then R1 −〈y,x〉 is invertible in L(Z) and R−1

a = Ra−1 . Hence by (6) we have to show that
Id − x ⊗ y∗ is invertible in L(Z) and so it suffices to prove the existence of a linear
operator which is the inverse of Id − x ⊗ y∗, since then such an inverse is automatically
continuous. That is, we have to show that, for every w ∈ Z, the equation

z − x · 〈y, z〉 = w (7)
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has a unique solution z = z(w) ∈ Z. Suppose that it has a solution. Taking the inner
product with y we get

〈y, z〉 − 〈y, x〉〈y, z〉 = 〈y, w〉;

that is (1 − 〈y, x〉)〈y, z〉 = 〈y, w〉. Since 1 − 〈y, x〉 is invertible, this gives 〈y, z〉 =
a〈y, w〉 which replaced in (7) yields

z = w + x · a〈y, w〉 (8)

as the only possible solution. We check now that (8) actually is a solution of (7). We
must verify that

w + x · a〈y, w〉 − x · 〈y, w + x · a〈y, w〉〉 = w

holds in Z. After obvious cancellations, the above becomes, by the properties of the
inner product,

x · a〈y, w〉 = x · 〈y, w〉 + x · 〈y, x〉a〈y, w〉,

and it suffices to check that

a〈y, w〉 = 〈y, w〉 + 〈y, x〉a〈y, w〉

holds in A. Multiplying on the left by a−1 and using the fact that 〈y, x〉 commutes with
a = (1 − 〈y, x〉)−1, the latter becomes

〈y, w〉 = (1 − 〈y, x〉)〈y, w〉 + 〈y, x〉〈y, w〉,

which is true. Thus

(Id − x ⊗ y∗)−1w = w + x · (1 − 〈y, x〉)−1〈y, w〉 (w ∈ Z). (9)

Finally, since x − Q(x)y = x · (1 − 〈y, x〉) and (Id − x ⊗ y∗)−1 is a module map,

xy = B(x, y)−1(x − Q(x)y) = B(x, y)−1x · (1 − 〈y, x〉)
= (

R1 −〈y,x〉
)−1

[(Id − x ⊗ y∗)−1x · (1 − 〈y, x〉)]
= [(Id − x ⊗ y∗)−1x · (1 − 〈y, x〉)] · (1 − 〈y, x〉)−1

= (Id − x ⊗ y∗)−1x,

and, by (9), for w = x we have

(Id − x ⊗ y∗)−1x = x + x · a〈y, x〉 = x · [1 + (1 − 〈y, x〉)−1〈y, x〉]
= x · (1 − 〈y, x〉)−1[(1 − 〈y, x〉) + 〈y, x〉] = x · (1 − 〈y, x〉)−1,

as we wanted to prove. �
COROLLARY 1.9. Let Z be a Hilbert module over a C∗-algebra A. Assume that the

set S(Z) :={(x, y) ∈ Z × Z: 1 − 〈y, x〉 is invertible in A} is dense in Z × Z. Then Z has
the density property.
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For a Hilbert C∗-module E we set

〈E, E〉 := {〈x, y〉 : x, y ∈ E}.
Then E is said to be strongly full if 〈E, E〉 = A. Note that 〈E, E〉 is usually defined as
the complex linear span in A of the above set of inner products. The Hilbert module
associated to a unital C∗-algebra A and the standard Hilbert module �2(A) are strongly
full since 1 = 1 ∗1 = 〈1 , 1 〉; hence a = 〈1 , 1 · a〉 ∈ 〈E, E〉, for all a ∈ A. We also recall
that whenever A is unital, the set Inv (A) of invertible elements is a non void open set.

THEOREM 1.10. Let E be a strongly full Hilbert C∗-module over a C∗-algebra A such
that Inv (A) is a dense subset. Let (a, b) ∈ E × E be given. Then for every ε > 0 there are
elements (a′, b′) ∈ E × E such that

‖a′ − a‖ < ε, ‖b′ − b‖ < ε, 1 − 〈a′, b′〉 ∈ Inv (A).

Proof. The inner product p: (x, y) �→ 〈y, x〉 is clearly a continuous homogeneous
real polynomial p := E × E → A of degree one on each variable. Clearly

A = 〈E, E〉 = p(E × E) = p

[ ∞⋃
n=1

(n Bε(a) × n Bε(b))

]

=
∞⋃

n=1

n2p(Bε(a) × Bε(b)) ⊂
∞⋃

n=1

n2p(Bε(a) × Bε(b)) ⊂ A,

and therefore

A =
∞⋃

n=1

n2 p(Bε(a) × Bε(b)).

For S ⊂ A we let int S denote its interior. Since A is a complete metric space, by Baire’s
category theorem the above ensures that int p(Bε(a) × Bε(b)) �= ∅, whence applying a
translation we get 1 − int p(Bε(a) × Bε(b)) �= ∅. Since Inv (A) ⊂ A is a dense set, it must
intersect every non void open subset in A and in particular

[1 − p(Bε(a) × Bε(b))] ∩ Inv (A) �= ∅.

Hence there are a non void open set 
 ⊂ Inv A and a point x0 ∈ 
 such that

x0 ∈ 
 ⊂ 1 − p(Bε(a) × Bε(b)) = 1 − p(Bε(a) × Bε(b))

which in turn, by the definition of closure, yields


 ∩ (1 − p(Bε(a) × Bε(b)) �= ∅.

Thus we can find a point y0 ∈ 
 ⊂ Inv (A) with y0 ∈ 1 − p(Bε(a) × Bε(b) ), or in other
words there are a′ ∈ Bε(a) and b′ ∈ Bε(b) such that y0 = 1 − 〈a′, b′〉 is invertible. �

COROLLARY 1.11. If E is a strongly full Hilbert module over a C∗-algebra A such
that Inv (A) is a dense subset of A, then E has the density property.

COROLLARY 1.12. Assume that E := �2(A) is a selfdual Hilbert module over the
C∗-algebra A. Then E has the density property.

https://doi.org/10.1017/S0017089503001216 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001216


HILBERT C∗-MODULES 259

Proof. The selfduality of E entails dim A < ∞. Hence A is unital and Inv (A) is a
dense set in A. �

1.8. Fixed points in the unit ball. Despite the formal analogy between the defini-
tions of Hilbert C∗-modules and Hilbert spaces, there are deep differences in the
analytic behaviour of these two structures. It is well known [19] that every holomorphic
automorphism h of the open unit ball BZ of a JB∗-triple Z extends uniquely by
continuity to the closure BZ. If Z is a Hilbert space, then h has at least one fixed point
in BZ [4], a result that is no longer true for a general Hilbert C∗-module, as proved by
the following counterexample due to Stachó [17].

COUNTEREXAMPLE 1.13. Let 
 be the closed unit disk of the complex plane � and
denote by A := C(
) the Banach space of all continuous complex valued functions on

, with the supremum norm. Then A is a unital abelian C∗-algebra with the usual
operations; hence it is a Hilbert A-module in the inner product 〈f, g〉 := f g, f, g ∈ A.
The transformation F : BA → BA of the unit ball of A defined by

F : f �→ F(f ), F(f )(z) = f (z) + 1
2 z

1 + 1
2 zf (z)

(z ∈ 
),

is a holomorphic automorphism of BA that has no fixed point in BA since F(f0) = f0

implies that f0(z)2 = z/z, for z ∈ 
\{0}, which contradicts the continuity of f0 at the
origin.

THEOREM 1.14. Let M := �2(A) be the standard Hilbert module over a W ∗-algebra
A. Assume that M is selfdual. Then every holomorphic automorphism of the unit ball BM

has at least one fixed point in BZ.

Proof. By [13, Proposition 3.3.3] M is a dual Banach space so that M is a JBW∗-
triple and has a unique predual M∗. Thus the weak*-topology (or the σ (M, M∗)
topology) is well defined in M. As proved in [13, p. 181], this topology is generated by
the family of seminorms

pφ,u(x) :=φ(〈u, x〉) (x ∈ M),

where φ ranges over the set of states in the W ∗-algebra A and u ranges over M.
Let h = λ ◦ gc be a holomorphic automorphism of BM , where λ is a surjective linear
isometry of M and gc is a transvection of the ball BM . It is well known that surjective
linear isometries of a JBW∗-triple are w∗ − w∗-continuous and we shall prove below
that gc is also w∗ − w∗-continuous on the ball. Since BM is a convex w∗-compact set,
we can apply the Schauder- Tychonoff fixed point theorem to get the conclusion. We
need some preliminary results.

PROPOSITION 1.15. Let M := �2(A) be the standard Hilbert module over the W∗-
algebra A. For every fixed c ∈ M the map M → A defined by x �→ 〈c, x〉 is w∗-w∗

continuous on bounded subsets of M.

Proof. Let S ⊂ M be a bounded set and let (xα) (where α ∈ I) and x be respectively
a net and a point in S such that limα xα = x in the w∗ topology of M. We have to show
that aα := 〈c, xα〉 converges to a := 〈c, x〉 in the w∗ topology of A.
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Recall that the family of sets

W (φ, ε) := {b ∈ A : |φ(b − a)| < ε},
where φ is a state of A and ε > 0, is a basis of neighbourhoods of a in the w∗ topology
of A. Let one of these neighbourhoods be given, and let c = (cn) and xα = (xα,n) be
the expressions of c and xα as elements in �2(A). Since S is bounded, by (1.2) the series
〈c, x〉 = ∑∞

1 c∗
nxn is uniformly convergent for x ∈ S and so there is an index N (not

depending on α ∈ I) such that

∥∥∥∥∥
∞∑

N+1

c∗
nxα,n

∥∥∥∥∥ <
ε

3‖φ‖ ,

∥∥∥∥∥
∞∑

N+1

c∗
nxn

∥∥∥∥∥ <
ε

3‖φ‖ .

By assumption the net (xα) converges to x in the w∗ topology of M, so that in particular
limα φ(〈cn, xα,n)〉 = φ(〈cn, xn), for every n ∈ �. Therefore we can find an index α0 ∈ I
such that

|φ(〈cn, xn − xα,n〉) ≤ ε

3N
,

for all α ≥ α0 and all n with 1 ≤ n ≤ N. Hence

|φ(〈c, xα − x〉)| ≤
∣∣∣∣∣φ

(
N∑
1

〈cn, xα,n − xn〉
)∣∣∣∣∣+

∣∣∣∣∣φ
( ∞∑

N+1

〈cn, xα,n − xn〉
)∣∣∣∣∣

+
∣∣∣∣∣φ

( ∞∑
N+1

〈cn, xn〉
)∣∣∣∣∣ ≤

N∑
1

|φ(〈cn, xα,n − xn〉)| + ‖φ‖
∥∥∥∥∥

∞∑
N+1

c∗
nxα,n

∥∥∥∥∥
+ ‖φ‖

∥∥∥∥∥
∞∑

N+1

c∗
nxn

∥∥∥∥∥ ≤ N
ε

3N
+ 2ε

3
= ε

for all α ≥ α0, which shows that aα = 〈c, xα〉 lies in the given neighbourhood W (φ, ε)
of a = 〈c, x〉 and completes the proof. �

REMARK 1.16. The module action M × A → M, (x, a) �→ x · a is not jointly w∗–
w∗ continuous at the origin and as a consequence the map M → M, x �→ {x, c, x} =
x · 〈c, x〉 is not jointly w∗–w∗ continuous at x = 0. This forces us to introduce some
restriction on A in order to have good w∗–w∗ continuity properties of the triple product.

PROPOSITION 1.17. Let M := �2(A) be the standard Hilbert module over a W ∗-algebra
A. Assume that M is selfdual. Then for every fixed c ∈ M, the map x �→ x · 〈c, x〉 is
w∗–w∗ continuous on bounded sets of M.

Proof. For the standard Hilbert module �2(A) the condition of being selfdual is
equivalent to the property dim A < ∞; see [18, Theorem 1.1.6]. Let S ⊂ M be bounded.
Let (xα) and x be respectively a net and a point in S such that w∗ limα xα = x. Choose
a basis (a1, . . . , an) in A. The inner product 〈c, xα〉 and 〈c, x〉 are elements in A. Hence
they can be expressed in terms of the basis in the form

〈c, xα〉 =
n∑
1

ξα,kak, 〈c, x〉 =
n∑
1

ξkak,
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for some nets (ξα,k)α∈I and some ξk (1 ≤ k ≤ n) in �. By (1.15) the map x �→ 〈c, x〉 is
w∗–w∗ continuous on bounded sets of M which amounts to saying that limα ξα,k = ξk

for 1 ≤ k ≤ n. But then from

{xα, c, xα} = xα · 〈c, xα〉 =
∑

i,j

ξα,iξα,jaiaj,

{x, c, x} = x · 〈c, x〉 =
∑

i,j

ξiξjaiaj

it clearly follows that w∗ limα{xα, c, xα} = {x, c, x}. �
We can now proceed to prove the main theorem. By polarization in the last result

we get the joint w∗–w∗-continuity on bounded sets of the map M × M → M defined
by (x, y) �→ {x, c, y} and an induction argument shows that

w∗ lim
α

(xα � c)n xα = (x � c)nx (10)

holds for every exponent n ∈ �. The expression of the Bergmann operator

Bc(z) = (1 − c ⊗ c∗)
1
2
(
z · (1 − |c|) 1

2
)

(z ∈ M)

shows that it is the composition of the operator of multiplication on the right by a
fixed element in A (hence w∗–w∗-continuous) with the operator (1 − c ⊗ c∗)

1
2 . But

z �→ c ⊗ c∗(z) = c · 〈c, z〉 is also w∗–w∗-continuous; hence so is Bc. Thus in order to
show that the transvection gc(x) = c + Bc((Id + x�c)−1x) is w∗–w∗-continuous we
only need to show the w∗–w∗-continuity of the mapping x �→ fc(x) := (Id + x � c)−1x
on the closed ball BM . From the usual power series development we get for ‖x‖ ≤ 1
and ‖c‖ ≤ r < 1,

‖(Id + x � c)−1‖ =
∥∥∥∥∥

∞∑
1

(−1)n(x � c)n

∥∥∥∥∥ ≤
∞∑
1

‖x‖n‖c‖n ≤
∑

rn < ∞.

Let ε > 0 be given and fix any N such that
∑∞

N+1 rn < ε/2. We simplify by writing

yα :=
∞∑

N+1

(xα � c)nxα, y :=
∞∑

N+1

(x � c)nx.

Then for φ ∈ A∗ and v ∈ M we have

|φ(〈v, yα〉) − φ(〈v, y〉)| = |φ(〈v, yα − y〉)| ≤ ‖φ‖ ‖v‖ ‖yα − y‖ ≤ ε ‖φ‖ ‖v‖ (α ∈ I).

As proved before, for every k with 0 ≤ k ≤ N we have w∗ limα(xα � c)kxα = (x�c)nx,
so that there is an index α0 such that for α ≥ α0 we have

|φ(〈v, (xα � c)kxα〉) − φ(〈v, (x�c)kx〉)| = |φ(〈v, (xα � c)kxα − (x � c)kx)| ≤ ε

2N
,

which combined with the above yields w∗ limα fc(xα) = fc(x) and completes the
proof. �

With minor changes in the proof given above one can prove the next result.
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THEOREM 1.18. Let A and M respectively be a W∗-algebra and a Hilbert A-module
which is a dual Banach space, and let c ∈ M be such that the mapping x �→ x · 〈c, x〉 is
w∗ − w∗-continuous on BM.

(i) For every surjective linear isometry λ of M, the automorphism h = λgc is w∗ −
w∗-continuous on BM. In particular, h has at least one fixed point in BM.

(ii) The set N of those c ∈ M for which x �→ x · 〈c, x〉 is w∗ − w∗-continuous on
BM is a norm closed submodule of M. If M = �2(A) and dim A < ∞, then N = M.

Proof. The arguments in [5] and [6] show that N is a closed triple ideal in M and
the proof of the main theorem actually shows that N is a submodule in M. �
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