CORRECTION NOTE TO PREDICTION OF OUTSTANDING LIABILITIES IN NON-LIFE INSURANCE, *AB* 23, 95-115

RAGNAR NORBERG

1. In (4.17) a factor W is missing in the numerator of the expression in the middle.

2. The predictor of X^{orns} proposed in Paragraph 5B is not unbiased in general as a simple counterexample will show. The proposed reserve on an individual *orns* claim with past history $T, U, V > v' = \tau - T - U, \{Y'(v''); 0 \le v'' \le v'\}$, is

$$R = E[Y|T, U, Y > Y'(v')] - Y'(v').$$

Suppose that Y = V and $Y'(v'') = Q(v''/V)V, 0 \le v'' \le V$, where Q is a non-decreasing, deterministic function on [0,1] such that Q(0) = 0 and Q(1) = 1. In this case R = E[V|T, U, V > Y'(v')] - Y'(v'). If Q(s) > s for all $s \in (0, 1)$, then Y'(v') = Q(v'/V)V > v', hence

$$R \ge E[V|T, Y, V > \upsilon'] - Y'(\upsilon').$$

Now, the expression on the right here is an unbiased predictor, confer relation (4.3) and the related text in the follow-up paper Norberg (1999). Thus the proposed reserve is systematically too high. Similarly, if Q(s) < s for all $s \in (0, 1)$, then the proposed reserve is systematically too low.

My thanks are due to Svend Haastrup, who pointed out this problem. For a discussion by him, see Haastrup (1997).

Additional references

HAASTRUP, S. (1997). Some fully Bayesian micro models for claims reserving. Ph.D. thesis, Laboratory of Actuarial Mathematics, University of Copenhagen.

NORBERG, R. (1999). Prediction of outstanding claims II: Model variations and extensions. ASTIN Bull. 29, No. 1, 5-25.

ASTIN BULLETIN, Vol. 29, No. 1, 1999, p. 27