HOW TO PROGRAM AN INFINITE ABACUS
Joachim Lambek
(received June 15, 1961)

This is an expository note to show how an "infinite abacus'"
(to be defined presently) can be programmed to compute any
computable (recursive) function. Our method is probably not
new, at any rate, it was suggested by the ingenious technique of
Melzak [2] and may be regarded as a modification of the latter.

By an infinite abacus we shall understand a countably in-
finite set of locations (holes, wires etc.) together with an un-
limited supply of counters (pebbles, beads etc.). The locations
are distinguishable, the counters are not. .The confirmed finitist
need not worry about these two infinitudes: To compute any given
computable function only a finite number of locations will be
used, and this number does not depend on the argument (or
arguments) of the function. Moreover, to evaluate such a function
at a given argument only a finite number of counters are re-
quired.-

So far our abacus does not differ from Melzak' s machine.
However, while he admits one ternary operation, we require
two unary operations X+ and X-. X+ means: Place one counter
into location X. X- means: Remove one counter from location
X if this is possible, that is, if X is not empty.

By a program we shall understand a finite set of instruct-
ions to perform these two elementary operations together with
indications to show the following:

1. Which instruction is to be carried out first?

2. Which instruction comes after X+7?

3. Which two instructions come after X- in the two
cases: (a) X is not empty, (b) X is empty?

4. When do we stop?

The idea of using a sometimes impossible instruction to deter-
mine two different steps to follow it is taken from Melzak's paper.

Canad. Math. Bull. vol. 4, no. 3, September 1961

295

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

For a rigorous mathematical definition of "program', see
Appendix II. In the meantime we illustrate this concept by two
simple examples. As in [2], we use "flow charts' to represent
programs. An incoming arrow indicates start and an outgoing
arrow indicates stop.

EXAMPLE 1. 1

GAS
This program tells us to remove one counter from location X

and to repeat this operation until X is empty. We may there-
fore translate this program to read: Empty X.

1
G

This program tells us to transfer one counter from X to Y
and to keep on doing this until X is empty. We may translate
this to read: Transfer the content of X to Y.

EXAMPLE 2.

By a configuration of the abacus we understand an assign-
ment of counters to locations. Thus the program of example 1
transforms the configuration
X
(X has content x)

into the configuration

;((X has content zero).
Similarly the program of example 2 transforms the configuration
X Y
x vy
into the configuration
X Y
0 xty.

The contents of all locations not shown are understood to remain
constant. A small Roman letter when first introduced will usually
denote the current content of the location denoted by the corres-.
ponding capital.

We are concerned with functions in n variables (n> 1),

296

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

whose arguments and values are non-negative integers. To
compute such functions on our abacus, it will be convenient to
divide the set of locations into two disjoint infinite subsets. One
subset of locations will be used for showing the arguments and
values of these functions, the other for temporary storage of
intermediate results in the calculations. When computing a
particular function, only a finite number of the temporary stor-
age locations will be used, and these will be reserved once and
for all for this function.

We shall say that a program computes the function z =
d(x, y), if it transforms the configuration

X Y z T e T
i m
x y 0 0 c. 0
into the configuration
X Y Z T R T
1 m ,
x y &(x,y) O 0
where T1, R Tm are the reserved temporary storage

locations. A similar definition is used for functions of n
variables, n> 1.

EXAMPLE 3.
Compute the function y = x. Let T be a temporary storage
location. We assume that Y and T are empty.

empty X into T
T-
v
]
X+

The phrase "empty X into T'" should of course be replaced by
the program of example 2 (with T instead of Y). It is easy
to see that the first instruction transforms the configuration

X Y T
x 0 0
into the configuration
X Y T
0 0 X .
297

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

Then going once round the loop we obtain
X Y T
1 1 x-1 .
After traversing the loop x times we get
X Y T
x x 0
Now going along arrow b we come to a stop, with the required
output configuration. '

From now on we shall use the same temporary storage
location T whenever we compute the identitylfunction, be it
called y = x as above or z = u, for that matter, as long as
neither variable is t.

According to Kleene [1], the set of recursive functions
is the smallest set containing the functions described in I to
III below and closed under the schemes IV to VI

I &(x) = x+1.
II. ¢(x1, RN xn) = k.
III. é(x,, ..., x)=x, 1<i<n.
1 n i ==
Iv. ¢(x1, e xn) = LIJ(‘X,i(xi, e, xn), RN Xm(xi, ces xn)).
V. ¢(0, X, ,..,xn)=¢(x2, ...,xn) ,
d(y+1, xz, e, xn) = Xy, oy, xz, e, xn), xz, e, xn) .
VI. ¢(x1, cee, xn) = the smallest y such that
'X(x,...,x,y):o,
1 n

Here k>0, n>1, m>1 and the function X in VI is assumed
to satisfy the condition

\'/xn 3y (X(x1, e, xn, y) =0).

To say that the set of recursive functions is closed under rule IV,
for example, means that the tunction ¢ detined by IV is in
the set whenever ¢ and X are given functions in the set.

THEOREM. Every recursive function can be computed
by a (finite) program on an infinite abacus.

We could prove this theorem by showing that our abacus
is equivalent to Melzak' s machine and by quoting Melzak' s re-

298

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

sult that every Turing machine can be simulated on his machine
as well as the well-known result that every recursive function
"can be computed on a Turing machine. However, it will be more
instructive to sketch a direct proof of our theorem.

I. The function y = ¢(x) = x + 1 is computed by the
following program. ' ‘
compute y =X

Y+

l

Here the phrase "compute y = x'" must of course be replaced
by the program of example 3.

II. For the sake of concreteness, let us take k = 2. The
function z = ¢(x, y) = 2 is computed by the following program.

Z+

!

Zf

ITI. For concreteness take n =2, i = 2. The function
z = ¢(x, y) =y is computed as in example 3.

IV. For concreteness, take m = 2, n = 2. By inductional
assumption we know that 7(,1, 7(2 and ¢ are computable on an

abacus, using only a finite number of temporary storage locations.
The function z = ¢(x, y) = Lp(xi(x,), XZ(X’ v)) is then computed

by the following program:

compute u X’i(x’ y)

compute v = Xz(x, y)

o(u, v)

compute z
empty U

empty V

299

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

Here U and V are temporary storage locations not

used in the computations of Xi, 'X_2 and .

V. For concreteness take n = 2. The function z = ¢y, x)

which is defined recursively by the equations

$(0, x) = ¥(x) ,
bly+t, x) = Xy, ély, x), x) ,

is computed thus:
compute z = Y(x)

transfer content of Y to U

transfer content of Z to V
compute z = Xy, v, x)

empty \'A

Here U and V are two temporary storage locations not used
in computing the identity function as well as the functions ¢

and X.

VI. For concreteness take n = 1. We are given that

Vx Jt (x(x, t) = 0).

The function y = ¢(x) = smallest z such that X(x, z) = 0 is

computed thus:
compute u = X(x, y)

Here U is a temporary storage location not used in computing X .

It becomes clear from the proof sketched above that the

program for computing a given computable function is of the
same order of complexity as its derivation from rules I to VI.

300

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

That is to say, the program for computing a function is no more
complicated than the proof that it is recursive.

APPENDIX 1.

The theory of the infinite abacus may be developed further
along lines that are familiar from Turing machines [1, XIII].
We shall give a brief outline of such a development.

A partial function is a function which is defined only for
a subset of its argument set, here the set of non-negative integers.
The set of partial recursive functions is defined like the set of
recursive functions, except that the above condition on rule VI
is now dropped. The partial recursive functions can also be
programme=d on an infinite abacus, the point being that the com-
putation of &¢(c) will never come to an end if ¢(x) is not defined
for x = c. It is possible to correlate the set of all programs in
an effective way with the non-negative integers. Let TTO,]Ti,

be such an enumeration of all programs. For certain n> 0,
TT will compute a function y = ¢(x), and we write ¢ = ¢ .
n n

Consider the partial function y = &(z, %) = ¢ (x) if TTZ does
z

compute a recursive function, otherwise we leave &§(z, x) un-

defined. It can be shown that & is partial recursive, and so

there is a universal program T| which (partially) computes
— m

$§. It also follows that every function of one variable which can
be computed by a program on an infinite abacus is a recursive
function, and this result may easily be extended to any number
of variables. A Cantor type argument shows that the problem

of deciding for arbitrary n> 0 whether T!'n computes a function

v = ¢(x) cannot be programmed on the abacus.

APPENDIX II.

We wish to give a formal definition of "program!'. We
recall that an infinite abacus is essentially a countable set L
of locations. A program is described by a finite set N of
nodes, together with two distinguished elements no (start)

and n_ (stop) of N and three functions

301

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

a: N - {nw} - N - {no}' s
b: | N - {nw} - N - {no} ,
c: N - {no, noo} - L ,

subject to the condition that a(no) = b(no).

With any node we associate an instruction as follows:
Case 1: n =n . Go to node a(no).
o

Case 2: n # no, n_; a{n) = b(n). Add 1 to content of

location c{n) and proceed to node a(n).
Case 3: n# n , n_; a(n) # b(n). Take 41 from content
o

of location c(n), if this is possible, then go to node a(n).
Otherwise go to node b(n).
Case 4: n = n_. Stop.

We illustrate this definition by exhibit'u{g the three functions
belonging to the program of example 2.

n a(n) b(n) ¢(n)
1 2 2
2 3 4 X
3 2 2 Y
4
Here N={1, 2, 3,4}, n =1, n = 4.
o ©
REFERENCES

1. S.C. Kleene, Introduction to metamathematics, (New York,
1952).

2. Z.A. Melzak, An informal arithmetical approach to com-
putability and computation, Canad. Math. Bull. 4 (1961).
279-293.

McGill University

302

https://doi.org/10.4153/CMB-1961-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1961-032-6

