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Abstract
We construct coloured lattice models whose partition functions represent symplectic and odd orthogonal Demazure
characters and atoms. We show that our lattice models are not solvable, but we are able to show the existence
of sufficiently many solutions of the Yang–Baxter equation that allow us to compute functional equations for the
corresponding partition functions. From these functional equations, we determine that the partition function of
our models are the Demazure atoms and characters for the symplectic and odd orthogonal Lie groups. We coin
our lattice models as quasi-solvable. We use the natural bijection of admissible states in our models with Proctor
patterns to give a right key algorithm for reverse King tableaux and Sundaram tableaux.
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1. Introduction

The Yang–Baxter equation, also known as the star–triangle equation from its description in electrical
networks [42], was first applied to two-dimensional statistical mechanical models by McGuire [62]
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to reduce the interaction of multiple particles down to pairwise scattering. This was subsequently
generalized to multiple species of particles by Yang [77]. Independently, Baxter also used the Yang–
Baxter equation to show that transfer matrices commute and solve the eight-vertex model [6, 7] in what
is now known as the train argument. For additional history, we refer the reader to [61, Ch. 13]. The Yang–
Baxter equation has since appeared in many diverse mathematical contexts beyond its origin in statistical
mechanics. For example, solutions to the Yang–Baxter equation (which correspond to the Reidemeister
III move) lead to knot invariants such as the Jones polynomial; see [39, 74] for a lattice model approach
to the Jones polynomial. A more recent application that has received significant attention is in the study
of probabilistic models where solutions to the Yang–Baxter equation control the dynamics, such as in
[1, 10, 12, 14, 47, 48, 49, 50, 63, 64, 65].

A lattice (or vertex) model is a finite grid where the edges are labeled and satisfy some local
conditions around vertices, usually with some additional boundary conditions. These local conditions
are also assigned weights called Boltzmann weights, and the collection of these local conditions with
their Boltzmann weights is called an L-matrix. We extend the notation of a Boltzmann weight to any valid
labeling of the grid, called a state of the model, by taking the product of all the Boltzmann weights of
the vertices. We call a lattice model integrable or solvable if there exists an additional crossing called an
R-matrix that can move past a pair of vertices, which is the 𝑅𝐿𝐿 form of the Yang–Baxter equation. The
Yang–Baxter equation then implies certain functional equations that are subsequently usually solved to
determine the partition function of the lattice model, the generating function of the states of the model.

A now-classical approach has been to construct a solvable lattice model based on the R-matrix
isomorphism for𝑈𝑞 (𝔤𝔩2)-modules such that the partition function is a certain special function, such as
a (symmetric) Grothendieck polynomial, a (spin) Hall–Littlewood polynomial or a spherical Whittaker
function (see, for example, [12, 17, 25, 75, 76]). Indeed, the quantum groups structure ensures that the R-
matrix for the model satisfies the Yang–Baxter equation. This approach has many fruitful consequences,
yielding often simple proofs of certain combinatorial identities that are otherwise hard to prove directly –
for example, Kuperberg’s proof [51] counting the number of alternating sign matrices [78].

A more recent approach has been to instead use 𝑈𝑞 (𝔤𝔩𝑛)-representations to build solvable lattice
models, which has the effect of introducing colours to the lattice model. Moreover, the Yang–Baxter
equation in terms of the solvable lattice model can be restated as a purely algebro-combinatorial statement
without reference to a quantum group representation. Both of these ideas have been quite fruitful by
allowing authors to develop coloured lattice models associated to certain special functions to break them
into more atomic pieces and study their properties. The first example (as far as the authors are aware)
is by Cantini, de Gier and Wheeler [23] for (permuted basement) Macdonald polynomials. Another
example is by Borodin and Wheeler [12] with nonsymmetric spin Hall–Littlewood polynomials, which
are the atoms of spin Hall–Littlewood polynomials [10, 11]. They also obtained the analogous result
for Macdonald polynomials 𝑃𝜆 in [13], along with Garbali and Wheeler [33] for modified Macdonald
polynomials 𝐻𝜆. The first author and coauthors expanded on this by directly colourizing the classic five-
vertex model for Schur functions in [16] to give GL𝑟 Demazure atoms and keys. The K-theory analogue
of this was done by the authors and Weber in [20] using the model by Motegi and Sakai for Grothendieck
polynomials [63, 64] to give the first proof of a combinatorial interpretation of Lascoux atoms [20].

The goal of this paper is to do the analogous colourization of the model from [35, 37] specialized for
Sp2𝑛 characters and a similar model for SO2𝑛+1 characters. This model is based on two different types of
rows with Boltzmann weights called Γ-weights and Δ-weights in [17] with an additional U-turn ‘vertex’
between pairs of successive rows called a K-matrix. Such models are solvable if there is an R-matrix for
any pair of rows (so, four R-matrices in total: ΓΓ, ΓΔ ,ΔΓ, andΔΔ) satisfying the Yang–Baxter equation.
This has been used to produce vertex models for Hall–Littlewood polynomials for the 𝐵𝐶𝑛 root system
[75]. However, our models are not solvable: for any natural coloured version of the models in [35, 37];
we can only construct at most three R-matrices that satisfy the Yang–Baxter equation. Therefore, there
does not exist a natural solvable coloured analogue of the models [35, 37]. Despite this setback, we are
able to use the three solutions of the Yang–Baxter equation to compute the partition function of our
models explicitly and show that it is equal to a Demazure atom for Sp2𝑛 and SO2𝑛+1. Because of this,
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we call our model quasi-solvable. Subsequently, our proofs required novel techniques to address this
deficiency, which will likely be useful in generalizing this to other coloured U-turn lattice models, such
as for Iwahori Whittaker functions and Hall–Littlewood polynomials for the symplectic group.

Before describing our methodology, let us discuss Demazure atoms and characters for the simple
Lie groups 𝐺 = Sp2𝑛, SO2𝑛+1. The characters of irreducible finite-dimensional highest-weight repre-
sentations of G with highest-weight 𝜆 are certain polynomials in Z[z±1], where z = (𝑧1, . . . , 𝑧𝑛), that
are invariant under the corresponding Weyl group W of signed permutations (also known as the hy-
peroctohedral group). By a classic formula of Demazure [2, 27, 28, 52] (see also [40, 58]), these can
be described by applications of (isobaric) divided difference operators corresponding to any reduced
word of the longest element 𝑤0 ∈ 𝑊 . Since the divided difference operators satisfy the corresponding
braid group relations, Matsumoto’s theorem [60] implies that we can define a partial character for any
𝑤 ∈ 𝑊 . These partial characters are called Demazure characters 𝐷𝑤 (𝜆) and are characters for certain
representations of the (standard) Borel subgroup 𝐵 ⊆ 𝐺. The divided difference operators 𝜋𝑖 corre-
sponding to the ith simple reflection are also projections, so we can define new operators 𝜋𝑖 = 𝜋𝑖 −1 that
also satisfy the braid relations. These give rise to smaller polynomials called Demazure atoms 𝐴𝑤 (𝜆)
[53, 54, 55, 59] that encode the change as the length of the Weyl group element increases. More pre-
cisely, a Demazure character is a sum of the atoms

𝐷𝑤 (𝜆) =
∑
𝑣≤𝑤

𝐴𝑣 (𝜆), (1.1)

where ≤ is the (strong) Bruhat order.
Now we turn to our proofs. A standard technique to produce the functional equations for the partition

function of solvable (coloured) lattice models is the train argument. The train argument consists of
adding an R-matrix to a pair of rows and then passing it through to the other side by repeated use of the
Yang–Baxter equation. This is what was used to show that the functional equations satisfied the divided
difference operator relations in [16, 18, 19, 20] and the 𝑧𝑖 ↔ 𝑧 𝑗 symmetry in [31, 35, 37]. To produce
functional equations for U-turn lattice models as for the uncoloured model, two additional types of
relations are needed. The first is the reflection equation with a pair of R-matrices and K-matrices in a
type BC braid relation 𝐾𝑅𝐾𝑅 = 𝑅𝐾𝑅𝐾 , which underlies the computations for the 𝑧𝑖 ↔ 𝑧𝑖+1 (or type A)
symmetry in [35, 37]. The other relation is the fish equation involving a single R-matrix and K-matrix,
which was used in [35, 37, 75] to show that the partition function satisfied the 𝑧𝑖 ↔ 𝑧−1

𝑖 (or type BC)
symmetry.

However, since we are unable to freely pass through one of our R-matrices, a novel approach is
required. To show the type A divided difference operator relations, our initial step is to follow [35, 37]
by applying a block R-matrix consisting of our four types of R-matrices on the left side of the model.
We use the train argument for the three types of R-matrices that satisfy the Yang–Baxter equation to
pass them to the right side of our model. Then we use the reflection equation to bring two R-matrices
together, which we can remove by applying the unitary relation 𝑅2 = 𝛽 · 1 for some constant 𝛽. Finally,
we pass the remaining R-matrix back to the left side and apply the corresponding unitary relation. The
result is the desired functional equation.

To obtain the type BC divided difference operator relation, we additionally have to get around the
obstruction that the fish equation does not hold in the coloured model. We achieve this by first following
[37] and using a straightforward bijection of states to change the bottom row of our model from Δ-
weights to Γ-weights. We then apply the train argument to bring the ΓΓ 𝑅-matrix to the right, where we
perform a direct analysis of the possible cases to obtain our functional equation.

Because our atom model is based on the atom coloured models of [16, 20], we apply the same small
tweak to the coloured model in [20] to obtain a model for Demazure characters of𝐺 = Sp2𝑛, SO2𝑛+1. For
this tweaked model, the proof is entirely analogous to the case for the Demazure atoms. Furthermore,
the same combinatorial proof of [20, Thm. 3.6] of changing how the paths interact recovers equation
(1.1) (which can be turned around to compute the partition function combinatorially). Consequently,
we also obtain a new uncoloured model for characters of irreducible SO2𝑛+1-representations.
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One application of our model is the computation of a (right) key for tableaux used in combinatorial
descriptions of characters of irreducible G-representations. More specifically, it is known [35, 37] that
the states of the uncoloured model are in natural bijection with Proctor patterns [66], which are naturally
in bijection with certain tableaux. However, the weight in our model has been twisted by 𝑖 ↔ 𝑛 + 1 − 𝑖
with the natural one from the Proctor patterns. Thus our model naturally gives a key algorithm on reverse
King tableaux [43, 44] for 𝐺 = Sp2𝑛 and Sundaram tableaux [73] for 𝐺 = SO2𝑛+1. This is in parallel to
the models in [16, 20] with Gelfand–Tsetlin patterns and reverse semistandard tableaux because we can
only use one particular ordering of the spectral parameters. We conjecture that our key map agrees with
the representation-theoretic description coming from the Kashiwara crystal structure [22, 40] described
in [38], the key map on Kashiwara–Nakashima (KN) tableaux [41] given in [71], and with the crystal
structure defined recently on King tableaux by Lee [56]. A salient ingredient is a weight-preserving
bijection from reverse King (respectively, Sundaram) tableaux to regular King (respectively, Sundaram)
tableaux. To relate the KN tableaux with the King/Sundaram tableaux, we expect that a combination of
the Sheats bijection [72] and repeated tableau-switching algorithm iterations [9] would yield the desired
crystal isomorphism.

Our solutions to the Yang–Baxter equation have a partial interpretation in terms of R-matrices of
the quantum supergroup𝑈𝑞

(
𝔤𝔩(2𝑛|1)

)
[8]; see also [45] corresponding to the evaluation representation

and its dual in the limit 𝑞 → 0 (see Section 3.4). This interpretation gives evidence for the quantum
generalization of our results to models representing Iwahori Whittaker functions and nonsymmetric
Hall–Littlewood polynomials for the symplectic and odd orthogonal groups. In type A, a similar
interpretation for lattice model R-matrices leads to a relation between quantum group R-matrices and
p-adic intertwining integrals. We are able to show that two of our solutions to the Yang–Baxter equation
come from 𝑞 → 0 limits of 𝑈𝑞

(
𝔤𝔩(2𝑛|1)

)
𝑅-matrices. We also explain why we are unable to give a

complete quantum supergroup interpretation of our R-matrices.
Generally speaking, K-matrices in U-turn lattice models should correspond to solutions of the

reflection equation coming from quantum symmetric pairs [46, 57]. Quantum symmetric pairs are
certain coideal subalgebras of quantum groups that have recently been connected to many other areas
of representations theory such as canonical basis, Schur–Weyl dualities, categorification and geometry
[3, 4, 5, 30, 32]. Unfortunately, not much is known about K-matrices and quantum symmetric pairs
corresponding to quantum supergroups like 𝑈𝑞

(
𝔤𝔩(2𝑛|1)

)
. It would be interesting to relate our lattice

models, especially their possible quantum generalizations, to such quantum symmetric pairs. This could
lead to novel relations between the representation theories of symplectic and odd orthogonal p-adic
groups and quantum symmetric pairs.

This paper is organized as follows. In Section 2, we give the necessary background on Demazure
characters and atoms. In Section 3, we construct our lattice model for Demazure atoms and prove
its quasi-solvability to give functional equations to prove our first main theorem. We give a partial
quantum group interpretation of our Boltzmann weights. In Section 4, we give a slightly modified quasi-
solvable lattice model for Demazure characters and our second main theorem. In Section 5, we relate
the admissible states in our lattice models to Proctor patterns and use this to give an algorithm for a
(right) key for for reverse King tableaux and Sundaram tableaux.

Shortly after this paper appeared on the arXiv, independent work by Zhong [81] on stochastic type C
vertex models was also posted in which the coloured model is a different quantization than the R-matrix
for𝑈𝑞

(
𝔤𝔩(2𝑛|1)

)
that we utilize and which is possibly a gauge transformation of our atom model when

taking 𝑞 = 0.

2. Background

We will start with a review of the theory of Demazure operators. Let Φ be the root system and Λ be
the weight lattice of a complex reductive Lie group G with maximal torus T. Let n be the rank of Φ.
We identify Λ with the group 𝑋∗(𝑇) of rational characters of T. For z ∈ 𝑇 and 𝜆 ∈ Λ, we denote by
z𝜆 the application of 𝜆 to z. Let O(𝑇) be the set of polynomial functions on T: that is, finite linear

https://doi.org/10.1017/fms.2022.49 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.49


Forum of Mathematics, Sigma 5

combinations of the functions z𝜆 for 𝜆 ∈ Λ. Let Φ+ (respectively, Φ−) be the set of positive (respectively,
negative) roots, and let 𝛼𝑖 (𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑛}) be the simple positive roots. Let 𝛼∨𝑖 ∈ 𝑋∗(𝑇) denote the
corresponding simple coroots and 𝑠𝑖 the corresponding simple reflections generating the Weyl group W.
The Weyl group acts on the weight lattice and therefore on the space O(𝑇). We shall denote this action
by 𝑤 · 𝑓 (z) := 𝑓 (𝑤z). For 𝑤 ∈ 𝑊 , let ℓ(𝑤) denote the length of w, the smallest number of simple
reflections, such that 𝑤 = 𝑠𝑖1 · · · 𝑠𝑖ℓ , which is called a reduced word for w. Let 𝑤0 be the long element
of the Weyl group and ≤ denote the (strong) Bruhat order on W. For more information about properties
of the Weyl group, we the refer the reader to [36].

2.1. Demazure characters and atoms

Given 𝑠𝑖 , a simple reflection, we can define the associated isobaric Demazure operator acting on
𝑓 ∈ O(𝑇) as

𝜋𝑖 𝑓 (z) =
𝑓 (z) − z−𝛼𝑖 𝑓 (𝑠𝑖z)

1 − z−𝛼𝑖 . (2.1)

The numerator is divisible by the denominator, so the resulting function is again in O(𝑇).
One can check that 𝜋2

𝑖 = 𝜋𝑖 = 𝑠𝑖𝜋𝑖 . Given any 𝜇 ∈ Λ, set 𝑘 = 〈𝜇, 𝛼∨𝑖 〉 so 𝑠𝑖 (𝜇) = 𝜇 − 𝑘𝛼𝑖 . Then the
action on the monomial z𝜇 is given explicitly by

𝜋𝑖z𝜇 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z𝜇 + z𝜇−𝛼𝑖 + · · · + z𝑠𝑖 (𝜇) if 𝑘 � 0,
0 if 𝑘 = −1,
−(z𝜇+𝛼𝑖 + z𝜇+2𝛼𝑖 + · · · + z𝑠𝑖 (𝜇+𝛼𝑖) ) if 𝑘 < −1.

(2.2)

Define 𝜋𝑖 := 𝜋𝑖 − 1. Explicitly, we have

𝜋𝑖 𝑓 (z) :=
𝑓 (z) − 𝑓 (𝑠𝑖z)

z𝛼𝑖 − 1
. (2.3)

Both 𝜋𝑖 and 𝜋𝑖 satisfy the braid relations. Thus, for any 𝑤 ∈ 𝑊 , we can choose any reduced word
𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑘 to define 𝜋𝑤 = 𝜋𝑖1 · · · 𝜋𝑖𝑘 and 𝜋𝑤 = 𝜋𝑖1 · · · 𝜋𝑖𝑘 by Matsumoto’s theorem [60]. For 𝑤 = 1,
we set 𝜋1 = 𝜋1 = 1.

For 𝜆, a dominant weight, let 𝜒𝜆 denote the character of the irreducible representation 𝑉𝜆 with
highest-weight 𝜆. The Demazure character formula is the identity, for z ∈ 𝑇 ,

𝜒𝜆 (z) = 𝜋𝑤0 z𝜆.

For a proof, see [21, Thm. 25.3]. More generally, for any Weyl group element w, we may consider 𝜋𝑤z𝜆
and 𝜋𝑤z𝜆. These polynomials are called Demazure characters and Demazure atoms, respectively. The
following relation between the two is well-known.

Theorem 2.1 [55]; see also [67, Lemma 2.5]. Let 𝑓 ∈ O(𝑇). Then

𝜋𝑤 𝑓 (z) =
∑
𝑦�𝑤

𝜋𝑦 𝑓 (z). (2.4)

As a corollary, we obtain the following decomposition of characters in terms of Demazure atoms.

Corollary 2.2. We have

ch𝑉𝜆 = 𝜋𝑤0 z𝜆 =
∑
𝑦

𝜋𝑦z𝜆.
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2.2. Signed permutations and the Weyl group action

For the remainder of the paper, we will only consider Cartan types 𝐵𝐶. We identify the maximal torus
T with the space (C∗)𝑛, where n is the rank of the group. The Weyl group W of type 𝐵𝑛 is isomorphic
to the Weyl of type 𝐶𝑛, and it is known as the hyperoctohedral group. It is generated by the simple
reflections 𝑠𝑖 for 𝑖 ∈ {1, . . . , 𝑛} subject to the relations

𝑠𝑛𝑠𝑛−1𝑠𝑛𝑠𝑛−1 = 𝑠𝑛−1𝑠𝑛𝑠𝑛−1𝑠𝑛,

𝑠𝑖𝑠𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑠𝑖𝑠𝑖+1, if 𝑖 < 𝑛 − 1
𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖 , if |𝑖 − 𝑗 | ≥ 2
𝑠2
𝑖 = 1.

(2.5)

The Weyl group acts on elements z ∈ (C∗)𝑛 as follows:

𝑠𝑖 (. . . , 𝑧𝑖 , 𝑧𝑖+1, . . .) = (. . . , 𝑧𝑖+1, 𝑧𝑖 , . . .), if 𝑖 < 𝑛, (2.6a)

𝑠𝑛 (. . . , 𝑧𝑛−1, 𝑧𝑛) = (. . . , 𝑧𝑛−1, 𝑧
−1
𝑛 ), if 𝑖 = 𝑛. (2.6b)

The elements of W can be explicitly described using signed permutations of n, which are permutations
of

1 < 2 < · · · < 𝑛 < 𝑛 < · · · < 1

such that𝑤(𝑖) = 𝑤(𝚤). Here we use the convention that 𝚤 = 𝑖. Thus we can determine a signed permutation
by the image of 1 ≤ 𝑖 ≤ 𝑛. The simple transposition for 𝑖 < 𝑛 is given by 𝑠𝑖 = (𝑖 𝑖 + 1), and 𝑠𝑛 sends
𝑛↔ 𝑛. An inversion is a pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that 𝑤(𝑖) > 𝑤( 𝑗). The longest element 𝑤0 is given by
the signed permutation [1, 2, . . . , 𝑛].

The subgroup of W generated by 𝑠𝑖 for 𝑖 < 𝑛 is a subgroup isomorphic to the Weyl group of type A.
We shall denote the subgroup by 𝑊 𝐴.

2.3. Functional equations

We now discuss the explicit functional equations for the Demazure characters and atoms that will be
used to prove the main theorems in this paper.

We first consider Demazure characters. equation (2.1) can be written explicitly as

𝜋𝑖 𝑓 (z) :=
𝑓 (z) − 𝑧−1

𝑖 𝑧𝑖+1 𝑓 (𝑠𝑖z)
1 − 𝑧−1

𝑖 𝑧𝑖+1
, if 𝑖 < 𝑛, (2.7a)

𝜋𝑛 𝑓 (z) :=
𝑓 (z) − 𝑧−1

𝑛 𝑓 (𝑠𝑛z)
1 − 𝑧−1

𝑛

, in type B, (2.7b)

𝜋𝑛 𝑓 (z) :=
𝑓 (z) − 𝑧−2

𝑛 𝑓 (𝑠𝑛z)
1 − 𝑧−2

𝑛

, in type C. (2.7c)

Let us denote 𝐷𝑤 (z, 𝜆) := 𝜋𝑤 𝑧
𝜆. Let 𝑠𝑖 be a simple reflection and 𝑤 ∈ 𝑊 such that ℓ(𝑠𝑖𝑤) > ℓ(𝑤).

From equation (2.7), we deduce the following:

(𝑧𝑖 − 𝑧𝑖+1)𝐷𝑠𝑖𝑤 (z, 𝜆) = 𝑧𝑖𝐷𝑤 (z, 𝜆) − 𝑧𝑖+1𝐷𝑤 (𝑠𝑖z, 𝜆), if 𝑖 < 𝑛, (2.8a)
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(𝑧𝑛 − 1)𝐷𝑠𝑛𝑤 (z, 𝜆) = 𝑧𝑛𝐷𝑤 (z, 𝜆) − 𝐷𝑤 (𝑠𝑛z, 𝜆), in type B, (2.8b)

(𝑧2
𝑛 − 1)𝐷𝑠𝑛𝑤 (z, 𝜆) = 𝑧2

𝑛𝐷𝑤 (z, 𝜆) − 𝐷𝑤 (𝑠𝑛z, 𝜆), in type C. (2.8c)

Next, we consider the Demazure atoms. In this case, equation (2.3) can be rewritten as

𝜋𝑖 𝑓 (z) :=
𝑓 (z) − 𝑓 (𝑠𝑖z)
𝑧𝑖𝑧
−1
𝑖+1 − 1

, if 𝑖 < 𝑛, (2.9a)

𝜋𝑛 𝑓 (z) :=
𝑓 (z) − 𝑓 (𝑠𝑛z)

𝑧𝑛 − 1
, in type B, (2.9b)

𝜋𝑛 𝑓 (z) :=
𝑓 (z) − 𝑓 (𝑠𝑛z)

𝑧2
𝑛 − 1

, in type C. (2.9c)

Let us denote 𝐴𝑤 (z, 𝜆) := 𝜋𝑤 𝑧
𝜆. Let 𝑠𝑖 be a simple reflection and 𝑤 ∈ 𝑊 such that ℓ(𝑠𝑖𝑤) > ℓ(𝑤).

We rewrite the equation above as

(𝑧𝑖 − 𝑧𝑖+1)𝐴𝑠𝑖𝑤 (z, 𝜆) = 𝑧𝑖+1
(
𝐴𝑤 (z, 𝜆) − 𝐴𝑤 (𝑠𝑖z, 𝜆)

)
, if 𝑖 < 𝑛, (2.10a)

(𝑧𝑛 − 1)𝐴𝑠𝑛𝑤 (z, 𝜆) = 𝐴𝑤 (z, 𝜆) − 𝐴𝑤 (𝑠𝑛z, 𝜆), in type B, (2.10b)

(𝑧2
𝑛 − 1)𝐴𝑠𝑛𝑤 (z, 𝜆) = 𝐴𝑤 (z, 𝜆) − 𝐴𝑤 (𝑠𝑛z, 𝜆), in type C. (2.10c)

3. Coloured lattice models and Demazure atoms

We will construct coloured lattice models that represent Demazure atoms in Cartan type B and C. These
models generalize the work in [16], where type A Demazure atoms have been represented as partition
functions of lattice models. The current paper and [16] produce coloured models that are a refinement
of the 𝑞 = 0 uncoloured models in [17] (representing Schur polynomials) and [37] (representing
symplectic Schur polynomials), respectively. Our odd orthogonal model does not refine any pre-existing
model.

Remark 3.1. Our model is in fact a refinement of a semidual version of the model in [37] obtained by
interchanging 0↔ 1 on each of the horizontal components. This choice allows us to have a more natural
description of our coloured lattice model and helps with visualizing admissible states in the model by
using coloured paths.

We work with fixed set c = {𝑐1 < 𝑐2 < · · · < 𝑐𝑛 < 𝑐𝑛 < · · · < 𝑐1} of ordered colours. We use the con-
ventions 𝑐𝑖 := 𝑐𝑖 and 𝑐𝚤 := 𝑐𝑖 . For 𝑤 ∈ 𝑊 , we define 𝑤c = (𝑐𝑤 (1) , 𝑐𝑤 (2) , . . . , 𝑐𝑤 (𝑛) , 𝑐𝑤 (𝑛) , . . . , 𝑐𝑤 (1) )
to be the set of colours permuted by w. Explicitly, 𝑠𝑖 permutes the colours 𝑐𝑖 ↔ 𝑐𝑖+1 and 𝑐𝑖 ↔ 𝑐𝑖+1 and
𝑠𝑛 permutes the colours 𝑐𝑛 ↔ 𝑐𝑛. The set {𝑤c | 𝑤 ∈ 𝑊} will index the left boundary conditions of our
model.

Let us now explain the model. Consider a rectangular grid with 2𝑛 horizontal lines that we number
from top to bottom and m vertical lines numbered from right to left as in Figure 4. We call the odd
numbered lines Γ and the even numbered ones Δ . The intersection of a vertical and horizontal line is
called a vertex. On the right, we connect the Γ line 2𝑖 − 1 to the Δ line 2𝑖 by a U-turn.
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Figure 1. The coloured Boltzmann Γ-weights with 𝑐 > 𝑐′ and 𝑑 being any colour.

Figure 2. The coloured Boltzmann Δ-weights with 𝑐 > 𝑐′ and 𝑑 being any colour.

Figure 3. On the left (respectively, right) we have the coloured Γ
Δ (respectively, ΔΓ ) K-matrix weights for

type C (respectively, B) with 𝑢 > 𝑢.

Each Γ line 2𝑖 − 1 is assigned the parameter 𝑧𝑖 ∈ C∗, and Δ line 2𝑖 is assigned the parame-
ter 𝑧−1

𝑖 ∈ C∗. We also assign the U-turn from line 2𝑖 − 1 to 2𝑖 the parameter 𝑧𝑖 . One can think
of z := (𝑧1, 𝑧

−1
1 , . . . , 𝑧𝑛, 𝑧

−1
𝑛 ) as living in the torus of Sp2𝑛 (C) or SO2𝑛+1 (C). An interior edge con-

nects two vertices in the model, while an outer edge (or a boundary edge) is attached to one vertex
alone.

To each edge, we may assign a spin that is an element 𝑐 ∈ c 
 {0}. The Boltzmann weight of a
vertex (respectively, U-turn) is a function that assigns a complex number to each assignment of spins
to the edges of a vertex (respectively, U-turn) that depends on the assigned parameter. The collection
of vertices (respectively, U-turns) and their Boltzmann weights is called an L-matrix (respectively,
K-matrix). The Boltzmann weights for Γ, Δ and U-turn vertices are given in Figures 1, 2 and 3,
respectively. Each weight that is not portrayed in the figures mentioned in this paragraph is considered
to be 0. Both the B-model and the C-model use the same Γ and Δ weights, while the U-turn weights are
different.
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Figure 4. The unique admissible state in𝔖𝜆,𝑤 for 𝜆 = (3, 1) and 𝑤 = 1. We use the convention 𝑧 = 𝑧−1.
The top boundary condition will consist of colours on columns (4, 1) = 𝜆 + 𝜌.

Our system has fixed spins on the boundary that depend on 𝑤 ∈ 𝑊 and dominant 𝜆 ∈ Λ. The bottom
edges are labeled with 0, and the left Γ edges are labeled with 0. The left Δ edges are labeled with the
first n colours of 𝑤𝑤0c (the others are completely determined from these) from top to bottom, and the
top edges are labeled with 𝑐𝑛, . . . , 𝑐1 (from right to left) in places 𝜆 + 𝜌, where 𝜌 = (𝑛−1, 𝑛−2, . . . , 0).
The rest of the boundary edges are assigned spin 0. See Figure 4 for an example where 𝑤 = 1, 𝜆 = (3, 1)
and 𝜆 + 𝜌 = (4, 1). We denote such a model by 𝔖

𝑋

𝜆,𝑤 , for 𝑋 ∈ {𝐵,𝐶}.
An assignment of spins to the inner edges is called a state of the system. The weight of a state is

the product over all vertices of the weights of each vertex. A state is called admissible if its weight is
nonzero. We will often simply write 𝔖𝜆,𝑤 = 𝔖

𝑋

𝜆,𝑤 since the states of the two models are the same and
the Boltzmann weights only differ in k1 (see Figure 3). The partition function 𝑍 (𝔖

𝑋

𝜆,𝑤 ; z) is the sum of
the weights of the states over all states of the system with boundary conditions determined by w, 𝜆 and
the parameters z.

Remark 3.2. The 𝑧+1 ratio between the k1 𝐾-matrix entry in types B and C is exactly the ratio between
the type 𝐶𝑛 and 𝐵𝑛 characters in rank 𝑛 = 1.

A lattice model is called solvable or integrable if it there exists a full set of solutions of the Yang–
Baxter equation and its generalizations that enable one to derive functional equations for the partition
function that can be used to characterize it. For example, the model in [37] is integrable because of
the existence of four R-matrices, called 𝑅Γ

Γ , 𝑅Δ
Γ , 𝑅Γ

Δ and 𝑅Δ
Δ , that satisfy the appropriate Yang–Baxter

equations and reflection equations.
Our model is not integrable in this sense, but it is close. We produce three R-matrices 𝑅Γ

Γ , 𝑅Δ
Δ and 𝑅Δ

Γ
that are given in Figures 5, 6 and 7, respectively. These R-matrices satisfy the Yang–Baxter equation with
the corresponding L-matrices as explained in Proposition 3.3. However, it can be shown computationally
that there is no solution for the Yang–Baxter equation corresponding to Γ

Δ . The problem, compared to
the uncoloured setting discussed in [37], where such a solution exists, is that certain coloured loops can
be formed inside one side of equation (3.1). This ends up multiplying that side’s partition function by
the total number of colours, which is 2𝑛, whereas the other side does not depend on n. Hence, the two
partition functions cannot be equal.
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Figure 5. The coloured 𝑅Γ
Γ-matrix with 𝑐 > 𝑐′ and 𝑑 being any colour.

Figure 6. The coloured 𝑅Δ
Δ -matrix with 𝑐 > 𝑐′ and 𝑑 being any colour.

We do, however, produce a fourth R-matrix called 𝑅Γ
Δ in Figure 8 that is partly determined. This

means the weights marked with (∗) in Figure 8 are free, so they can be changed, and this does not
affect our results. But we do stress that no matter how you change them, the corresponding Yang–Baxter
equation will still not be satisfied, including changing the allowed colourings (such that the colours are
preserved). Given these four R-matrices satisfying a total of three Yang–Baxter equations, we prove in
Section 3.1 a functional equation for the partition function for each of the simple reflections 𝑠𝑖 , for 𝑖 < 𝑛.
The method of proof is by a modified version of the train argument applied to U-turn lattice model; the
modification is technical and needed as the fourth Yang–Baxter equation does not have a solution. In
Section 3.2, we then prove certain modified fish equations that are used to show a functional equation for
the last remaining simple reflection. Our model therefore lacks a solution for the Yang–Baxter equations
but can still be studied via modified versions of the original tools used to study solvable lattice models.
We shall call such a model quasi-solvable.

Proposition 3.3. The 𝑅Γ
Γ-matrix, 𝑅Δ

Δ -matrix or 𝑅Δ
Γ -matrix satisfies the corresponding Yang–

Baxter equation: The partition functions of the following two models are equal for any boundary
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Figure 7. The coloured 𝑅Δ
Γ -matrix with 𝑐 > 𝑐′ and 𝑑 being any colour.

Figure 8. The coloured 𝑅Γ
Δ -matrix with 𝑐 > 𝑐′ and 𝑑 being any colour.

conditions 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ c 
 {0}:

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑧𝑖

𝑧 𝑗

𝑧𝑖 , 𝑧 𝑗

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑧 𝑗

𝑧𝑖

𝑧𝑖 , 𝑧 𝑗 (3.1)

where the 𝑧𝑖 , 𝑧 𝑗 weights are 𝑅Φ
Θ -weights, the 𝑧𝑖-weights are Φ-weights and the 𝑧 𝑗 -weights are Θ-weights

for ΦΘ ∈ {ΓΓ,ΔΓ,ΔΓ}.

Proof. Since the R-matrix and L-matrices preserves the spins and no (colored) loops can be formed,
we only have to check this statement for at most 4 different colours. Hence this is a finite computation
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that can be done by, for example, SageMath [70]. The SageMath used to perform this computation is
given in the Appendix of this paper. �

This model also generally satisfies the reflection equation.

Proposition 3.4. For any fixed boundary condition 𝑎, 𝑏, 𝑐, 𝑑 ∈ c 
 {0}, the partition function of the
model on the left

Γ

Γ

Δ

Δ

𝑎

𝑏

𝑎

𝑏

𝑎

𝑐

𝑑 ∗

∗

∗

∗

∗

𝑧 𝑗

𝑧𝑖

𝑧−1
𝑖 , 𝑧 𝑗

𝑧−1
𝑖 , 𝑧

−1
𝑗

Γ

Γ

Δ

Δ

𝑎

𝑏

𝑑

𝑐

𝑑

𝑐

𝑑

∗

∗

∗

∗

∗

𝑧𝑖

𝑧 𝑗𝑧 𝑗 , 𝑧𝑖

𝑧−1
𝑗 , 𝑧𝑖

equals the partition function on the right times 𝛼 = 𝑧−2
𝑖 .

Proof. Since the R-matrices preserve the colours, we can restrict to the case when

𝑎, 𝑏, 𝑐, 𝑑 ∈ {0} 
 {𝑢 > 𝑢′ > 𝑢′ > 𝑢}.

Therefore, this is also a finite computation (take 𝑢′ = 1 and 𝑢 = 2) that can be done by, for example,
SageMath. We can also verify this by hand as follows. By considering the nonzero R-matrix and K-
matrix entries, we can reduce it to the following cases for (𝑎, 𝑏, 𝑐, 𝑑) that result in nonzero partition
functions:

(0, 0, 0, 0) (𝑡, 0, 𝑢, 0), (𝑡, 0, 0, 𝑢), (0, 𝑡, 𝑢, 0), (0, 𝑡, 0, 𝑢),
(𝑡, 𝑡, 𝑢, 𝑢), (𝑢, 𝑢, 𝑢, 𝑢), (𝑡 ′, 𝑢, 𝑢′, 𝑢), (𝑢, 𝑢′, 𝑢, 𝑢′), (𝑢, 𝑢′, 𝑢, 𝑢′),

where 𝑡 = 𝑢, 𝑢 and 𝑡 ′ = 𝑢′, 𝑢′. In each of these cases, there is precisely one state for each model, so the
claim follows by direct computation. �

We will use the so-called unitary equation to describe what happens when we uncross two strands.
More precisely, we show that the partition function of the model on the left

𝑏

𝑎 ∗

∗

𝑎

𝑏

𝑧𝑖 , 𝑧 𝑗 𝑧 𝑗 , 𝑧𝑖

𝑏

𝑎 𝑎

𝑏

(3.2)

is simply a fixed scalar value 𝛽 independent of the boundary condition 𝑎, 𝑏 ∈ {0, 𝑐1, . . . , 𝑐𝑘 } times the
partition function on the right, which we set to be 1 by definition.

Proposition 3.5. The partition function of the model on the left in equation (3.2) with both of the R-
matrices being either 𝑅Γ

Γ or 𝑅Δ
Δ is equal to 𝛽 = 𝑧𝑖𝑧 𝑗 .

Proof. Note that we can restrict this to 𝑎, 𝑏 ∈ {0 < 𝑐 < 𝑐′} since colours are preserved by the R-
matrices. Thus the claim is a straightforward and follows from a computation over all possible boundary
conditions. �
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Proposition 3.6. For a state in 𝔖𝜆,𝑤 , the vertices a†2 and k2 correspond to inversions in 𝑤0𝑤, the
number of which equals ℓ(𝑤0𝑤).

Proof. This can be shown by a straightforward induction on ℓ(𝑤) using the boundary conditions and
vertices of the lattice model. �

For examples of Proposition 3.6; see Example 3.11 below.

3.1. Billiards

Our first goal is to prove the following ‘type A’ functional equation for the partition function.

Lemma 3.7. Choose 𝑖 < 𝑛, 𝑗 = 𝑖 + 1 and 𝑤 ∈ 𝑊 such that ℓ(𝑠𝑖𝑤) = ℓ(𝑤) + 1. Then we have

(𝑧𝑖 − 𝑧 𝑗 )𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; z) = 𝑧 𝑗
(
𝑍 (𝔖𝜆,𝑤 ; z) − 𝑧𝑖𝑧−1

𝑗 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑖z)
)
. (3.3)

Proof. We prove the functional equation by following the sequence of steps pictured in Figure 9). In
each step, we exhibit a model, and models in two consecutive steps will have the same partition function,
possibly up to some factor. Finally, by comparing the partition functions of the first and last models, we
prove the result.

1. In the first step of Figure 9, we add the ‘double R-matrix’ to the left of the model 𝔖𝜆,𝑠𝑖𝑤 . With the
imposed left boundary condition, the double R-matrix must be in one of the following two admissible
configurations:

𝑐 𝑐

𝑐

𝑐𝑐′

𝑐′

𝑐′ 𝑐′

0

0

0

0

0

0

0

0

𝑧𝑖 , 𝑧
−1
𝑗

𝑧𝑖 , 𝑧 𝑗

𝑧−1
𝑖 , 𝑧

−1
𝑗

𝑧−1
𝑖 , 𝑧 𝑗

𝑐 𝑐 𝑐 𝑐

𝑐′

𝑐′ 𝑐′

𝑐′

0

0

0

0

0

0

0

0

𝑧𝑖 , 𝑧
−1
𝑗

𝑧𝑖 , 𝑧 𝑗

𝑧−1
𝑖 , 𝑧

−1
𝑗

𝑧−1
𝑖 , 𝑧 𝑗

Here the colours satisfy 𝑐 > 𝑐′ because ℓ(𝑠𝑖𝑤) = ℓ(𝑤) + 1. We conclude that the partition function
of the model in the first step is

𝑧𝑖 (𝑧
−1
𝑖 − 𝑧

−1
𝑗 )𝑧 𝑗 𝑧 𝑗𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; z) + 𝑧𝑖𝑧−1

𝑖 𝑧 𝑗 𝑧 𝑗𝑍 (𝔖𝜆,𝑤 ; z).

2. To obtain the second model, we pass the three R-matrices to the right by using the Yang–Baxter
equation in Proposition 3.3, leaving behind the 𝑅Γ

Δ -matrix on the left.
3. We apply the reflection equation (Proposition 3.4) to the 𝑅Δ

Δ -matrix and 𝑅Δ
Γ -matrix. This contributes

a factor of 𝛼 = 𝑧−2
𝑖 .

4. We apply the unitary equation for the square of the 𝑅Γ
Γ-matrix. This contributes a factor of 𝛽 = 𝑧𝑖𝑧 𝑗

to the partition function (Proposition 3.5).
5. We use the Yang–Baxter equation to pass back the remaining 𝑅Δ

Γ -matrix.
6. We use a weak version of the unitary equation (in the sense that we only do it for certain fixed

boundary values) for the 𝑅Δ
Γ -matrix and 𝑅Γ

Δ -matrix with a boundary condition 𝑐′ on the top left and
top right and 0 on the bottom left and bottom right. In terms of equation (3.2), we consider 𝑎 = 𝑐′
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Figure 9. Pictorial description of the sequence of steps to compute the action of the ith atom operator.
Note that all the Γ rows are coloured in blue and all the Δ rows are coloured in red. The R-matrices
are determined by the colour of the row. For example, the leftmost R-matrix in the first step is the
𝑅Γ
Δ 𝑅-matrix.

and 𝑏 = 0. We only need to consider this boundary equation here because of the boundary conditions
for 𝔖𝜆,𝑠𝑖𝑤 . This contributes a factor of 𝛾 = 𝑧2

𝑖 times the partition function of 𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; 𝑠𝑖z).

Comparing the initial and final models up to the contributions highlighted above, we obtain the equations

𝑧𝑖 (𝑧
−1
𝑖 − 𝑧

−1
𝑗 )𝑧 𝑗 𝑧 𝑗𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; z) + 𝑧𝑖𝑧−1

𝑖 𝑧 𝑗 𝑧 𝑗𝑍 (𝔖𝜆,𝑤 ; z) = 𝛼𝛽𝛾𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; 𝑠𝑖z).

Using the fact that 𝛼 = 𝑧−2
𝑖 , 𝛽 = 𝑧𝑖𝑧 𝑗 , and 𝛾 = 𝑧2

𝑖 and some basic algebra we can manipulate the equation
above to obtain the desired result in equation (3.3). �

3.2. Ichthyology

We now study a version of the fish equation that we use to show a functional equation corresponding to
the last simple reflection 𝑠𝑛. We do not actually prove the usual fish equation but instead dissect it to its
component pieces to obtain the desired functional equation.

Lemma 3.8. Choose 𝑤 ∈ 𝑊 such that ℓ(𝑠𝑛𝑤) = ℓ(𝑤) + 1. Then we have

(𝑧2
𝑛 − 1)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; z) = 𝑍 (𝔖𝜆,𝑤 ; z) − 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z) (type C),

(𝑧𝑛 − 1)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; z) = 𝑍 (𝔖𝜆,𝑤 ; z) − 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z) (type B).
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Figure 10. The coloured 𝐾Γ
Γ -matrix weights with 𝑢 being any unbarred colour.

Proof. The proof is the same for both cases outside of one computation where the K-matrix appears
(recall that the L-matrix weights are the same for type B and type C). We proceed with one proof and
are precise where the difference between types occur. Subsequently, we denote the Boltzmann weight
of k1 by K.

In this proof, we work with models consisting of two rows connected by a U-turn on the right. These
can be thought of as the last two rows in our previous model; therefore, we can use the fact that at most
one unbarred and one barred colour will appear in this model (and if both do, they will be a pair: i.e.,
the barred colour will be the bar of the unbarred colour). We first follow the idea in [37] to modify the
model from a Γ

Δ model to a Γ
Γ model. To do this, for each admissible state in the row, we interchange

the colour and noncolour in the last row 𝑑 ↔ 0. Thus we are now using the Γ-weights in Figure 1 for
the last row. We will now show that the partition function does not change under this process.

Note that the weight of every entry of the Δ 𝐿-matrix where the bottom value is 0 equals the weight
of the corresponding Γ 𝐿-matrix with the interchanging 𝑑 ↔ 0. From the boundary conditions, this
induces a bijection on the states of the model and preserves the Boltzmann weight contributions from
the L-matrices. Therefore, the bottom two rows of the model are interchanged as follows:

𝑧𝑛

𝑑

0 · · ·

· · ·

0 0

0

0

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

0

0 · · ·

· · ·

0 0

0

𝑑

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

𝑢

0 · · ·

· · ·

0 0

𝑐

𝑢

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

0

0 · · ·

· · ·

0 0

𝑐

0

𝑧𝑛

𝑧−1
𝑛

𝑧𝑛

𝑧−1
𝑛

where we have drawn the Γ
Δ model on the left and Γ

Γ model on the right, with u being an unbarred colour
such that 𝑐 ∈ {𝑢, 𝑢}.

The K-matrix on the right will be called the 𝐾Γ
Γ -matrix, and its Boltzmann weights are presented in

Figure 10. For our purposes, we only require 𝐻1, 𝐻1, 𝐻2 and 𝐻2 to be any nonzero complex numbers;
otherwise there will be no restrictions.
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Figure 11. Left: The model 𝔖̃h2 with an R-matrix attached on the left. Right: The model after using the
Yang–Baxter equation and the standard train argument.

Let 𝔖̃v denote the states of the Γ
Γ model for w with a fixed entry v from the 𝐾Γ

Γ -matrix. Then we
have

𝑍 (𝔖𝜆,𝑤 ; z) = 𝐾𝐻−1
1 𝑍 (𝔖̃h1

; z) + 𝐻−1
2 𝑍 (𝔖̃h2 ; z) + 𝐻−1

2 𝑍 (𝔖̃h2
; z).

Next attach on the left a 𝑅Γ
Γ-matrix, and then apply the standard train argument to pass the 𝑅Γ

Γ-matrix to
the right side, as in Figure 11. Let 𝔖̃𝑑𝑑′ denote the Γ

Γ model with the K-matrix removed; the bottom two
right boundary conditions are d above and 𝑑 ′ below (either of which could be 0). Therefore, from the
𝑅Γ
Γ-matrix and the Yang–Baxter equation, we have

𝑧−1
𝑛 𝐻

−1
1 𝑍 (𝔖̃h1

; z) = 𝑧𝑛𝑍 (𝔖̃
0
𝑢; 𝑠𝑛z),

𝑧−1
𝑛 𝐻

−1
2 𝑍 (𝔖̃h2 ; z) = (𝑧𝑛 − 𝑧−1

𝑛 )𝑍 (𝔖̃
0
𝑢; 𝑠𝑛z) + 𝑧−1

𝑛 𝑍 (𝔖̃
𝑢
0 ; 𝑠𝑛z),

𝑧−1
𝑛 𝐻

−1
2 𝑍 (𝔖̃h2

; z) = (𝑧𝑛 − 𝑧−1
𝑛 )𝑍 (𝔖̃

0
𝑢; 𝑠𝑛z) + 𝑧−1

𝑛 𝑍 (𝔖̃
𝑢
0 ; 𝑠𝑛z),

where u is an unbarred colour. In particular, to obtain the right-hand sides, we have the following
possible fish, local configurations of an 𝑅Γ

Γ-matrix and 𝐾Γ
Γ -matrix:

𝑧𝑛𝑧𝑛 , 𝑧
−1
𝑛

𝑢

0

𝑢

0
𝑧𝑛𝑧𝑛 , 𝑧

−1
𝑛

0

𝑢

𝑢

0
𝑧𝑛𝑧𝑛 , 𝑧

−1
𝑛

0

𝑢

0

𝑢

𝑧𝑛𝑧𝑛 , 𝑧
−1
𝑛

0

𝑢

𝑢

0
𝑧𝑛𝑧𝑛 , 𝑧

−1
𝑛

0

𝑢

0

𝑢

Therefore, we have

𝑍 (𝔖𝜆,𝑤 ; z) = 𝐾𝑧2
𝑛𝑍 (𝔖̃

0
𝑢; 𝑠𝑛z) + 𝑧𝑛

(
(𝑧𝑛 − 𝑧

−1
𝑛 )𝑍 (𝔖̃

0
𝑢; 𝑠𝑛z) + 𝑧−1

𝑛 𝑍 (𝔖̃
𝑢
0 ; 𝑠𝑛z)

)
+ 𝑧𝑛

(
(𝑧𝑛 − 𝑧

−1
𝑛 )𝑍 (𝔖̃

0
𝑢; 𝑠𝑛z) + 𝑧−1

𝑛 𝑍 (𝔖̃
𝑢
0 ; 𝑠𝑛z)

)
= (𝐾𝑧2

𝑛 + 𝑧
2
𝑛 − 1)𝐾−1

𝑍 (𝔖
0
0(𝑤); 𝑠𝑛z) + 𝑍 (𝔖𝑢𝑢 (𝑤); 𝑠𝑛z) + 𝑍 (𝔖𝑢𝑢 (𝑤); 𝑠𝑛z)

+ (𝑧2
𝑛 − 1)𝐾−1

𝑍 (𝔖
0
0 (𝑠𝑛𝑤); 𝑠𝑛z),

where𝔖
𝑑

𝑑′ (𝑤) denotes the model𝔖𝜆,𝑤 with a fixed K-matrix 𝑑𝑑′ on the bottom two rows, and 𝐾 denotes
the parameter K but with 𝑧𝑛 ↦→ 𝑧−1

𝑛 .
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Note that 𝑍 (𝔖
0
0(𝑠𝑛𝑤); 𝑠𝑛z) = 𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; 𝑠𝑛z). To obtain our desired functional equations, we need

to group the first three terms together into 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z). Hence, we require

(𝐾𝑧2
𝑛 + 𝑧

2
𝑛 − 1)𝐾−1

= 1. (3.4)

The K-matrix for type C, where 𝐾 = 𝑧−2
𝑛 , satisfies equation (3.4). Therefore, we have

𝑍 (𝔖
𝐶

𝜆,𝑤 ; z) = 𝑍 (𝔖
𝐶

𝜆,𝑤 ; 𝑠𝑛z) + (1 − 𝑧−2
𝑛 )𝑍 (𝔖

𝐶

𝜆,𝑠𝑛𝑤 ; 𝑠𝑛z),

(𝑧2
𝑛 − 1)𝑍 (𝔖

𝐶

𝜆,𝑠𝑛𝑤 ; z) = 𝑍 (𝔖
𝐶

𝜆,𝑤 ; z) − 𝑍 (𝔖
𝐶

𝜆,𝑤 ; 𝑠𝑛z).

We can also take 𝐾 = 𝑧−2
𝑛 · (𝑧𝑛 + 1) = 𝑧−1

𝑛 + 𝑧
−2
𝑛 using the type 𝐵 𝐾-matrix, which also is a solution to

equation (3.4). In this case, we obtain

(𝑧𝑛 − 1)𝑍 (𝔖
𝐵

𝜆,𝑠𝑛𝑤 ; z) = 𝑍 (𝔖
𝐵

𝜆,𝑤 ; z) − 𝑍 (𝔖
𝐵

𝜆,𝑤 ; 𝑠𝑛z).

This is the functional equation for type B as desired. �

Remark 3.9. We can construct another quasi-solvable lattice model𝔖
𝑅

𝜆,𝑤 by using the solution 𝐾 = −1
to equation (3.4). In this case, our functional equation becomes

(𝑧2
𝑛 − 1)𝑍 (𝔖

𝑅

𝜆,𝑠𝑛𝑤 ; 𝑠𝑛z) = 𝑍 (𝔖
𝑅

𝜆,𝑤 ; 𝑠𝑛z) − 𝑍 (𝔖
𝑅

𝜆,𝑤 ; z),

which is a flipped version of the type C functional equation.

3.3. The first main theorem

Using the functional equations we have shown, we can now prove our first main result.

Theorem 3.10. For Cartan type 𝑋 ∈ {𝐵,𝐶}, we have

𝑍 (𝔖
𝑋

𝜆,𝑤 ; z) = z𝜌𝐴𝑤 (z, 𝜆).

Proof. The case 𝑤 = 1 is clear as z𝜌𝐴𝑤 (z, 𝜆) = z𝜆+𝜌 by definition and there is a unique admissible
state in 𝔖

𝑋

𝜆,1 whose weight can be easily seen to be z𝜆+𝜌 in both types B and C. The remainder of the
proof proceeds by induction on the length of w and uses the functional equations proved in the previous
sections.

Let 𝑖 < 𝑛 with 𝑗 = 𝑖 + 1, and let w be such that ℓ(𝑠𝑖𝑤) = ℓ(𝑤) + 1. From our induction assumption,
we have that 𝑍 (𝔖𝜆,𝑤 ; z) = z𝜌𝐴𝑤 (z, 𝜆) and that

𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑖z) = 𝑧−1
𝑖 𝑧 𝑗 · z𝜌𝑠𝑖𝐴𝑤 (z, 𝜆) = 𝑧−1

𝑖 𝑧 𝑗 · z𝜌𝐴𝑤 (𝑠𝑖z, 𝜆).

Using the functional equation in Lemma 3.7, we obtain

(𝑧𝑖 − 𝑧 𝑗 )𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; z) = 𝑧 𝑗 · z𝜌
(
𝐴𝑤 (z, 𝜆) − 𝐴𝑤 (𝑠𝑖z, 𝜆)

)
,

which combined with equation (2.10a) produces 𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; z) = z𝜌𝐴𝑠𝑖𝑤 (z, 𝜆) as desired.
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For 𝑖 = 𝑛, we note that 𝑠𝑛z𝜌 = z𝜌. It is then easy to see that by using the induction assumption
together with Lemma 3.8 and equation (2.10b) in type B or equation (2.10c) in type C, we obtain that
𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; z) = z𝜌𝐴𝑠𝑛𝑤 (z, 𝜆). �

Example 3.11. Let 𝑛 = 2 and 𝜆 = (2, 1). Then we have the following states in 𝔖𝑤 :

1 : 𝑠1 : 𝑠2 :

𝑠1𝑠2 :

𝑠2𝑠1 :

𝑠1𝑠2𝑠1 :

𝑠2𝑠1𝑠2 :

𝑤0 :
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Next, we compute the partition functions for each model in type C for 𝑍𝑤 := 𝑍 (𝔖
𝐶

𝜆,𝑤 ; z):

𝑍1 = 𝑧3
1𝑧2, 𝑍 𝑠1 = 𝑧2

1𝑧
2
2, 𝑍𝑠2 = 𝑧3

1𝑧
−1
2 ,

𝑍𝑠1𝑠2 = 𝑧2
1 + 𝑧

2
2 + 𝑧1𝑧2, 𝑍𝑠2𝑠1 = 𝑧2

1 + 𝑧
2
1𝑧
−2
2 ,

𝑍𝑠1𝑠2𝑠1 = 1 + 𝑧1𝑧2 + 𝑧1𝑧
−1
2 + 𝑧

−1
1 𝑧2, 𝑍𝑠2𝑠1𝑠2 = 1 + 𝑧−2

2 + 𝑧1𝑧
−1
2 ,

𝑍𝑤0 = 𝑧−1
1 𝑧−1

2 .

We can see that these differ by z𝜌 = 𝑧1 from the atoms 𝐴𝑤 := 𝐴𝑤 (z, 𝜆):

𝐴1 = 𝑧2
1𝑧2, 𝐴𝑠1 = 𝑧1𝑧

2
2, 𝐴𝑠2 = 𝑧2

1𝑧
−1
2 ,

𝐴𝑠1𝑠2 = 𝑧1 + 𝑧
−1
1 𝑧2

2 + 𝑧2, 𝐴𝑠2𝑠1 = 𝑧1 + 𝑧1𝑧
−2
2 ,

𝐴𝑠1𝑠2𝑠1 = 𝑧−1
1 + 𝑧2 + 𝑧

−1
2 + 𝑧

−2
1 𝑧2, 𝐴𝑠2𝑠1𝑠2 = 𝑧−1

1 + 𝑧
−1
1 𝑧−2

2 + 𝑧
−1
2 ,

𝐴𝑤0 = 𝑧−2
1 𝑧−1

2 .

3.4. Lattice models and quantum supergroups

Quantum (super)groups and solvable lattice models are naturally related by identifying the L-matrix
or R-matrix of Boltzmann weights with R-matrices coming from representations of affine quantum
(super)groups. In Proposition 3.12, we give a partial quantum supergroup interpretation of the solutions
to the Yang–Baxter equation for 𝑅Γ

Γ and 𝑅Δ
Δ in terms of a 𝑞 → 0 limit of certain R-matrices related to

representations of the quantum supergroup 𝑈𝑞
(
𝔤𝔩(2𝑛|1)

)
. However, after Proposition 3.12, we discuss

why a complete quantum group interpretation is impossible in our setting. This is not surprising due to
the lack of uniqueness of the R-matrix in Figure 8. Matching lattice model R-matrices to quantum group
R-matrices has possible implications for future work relating lattice models with Iwahori Whittaker
functions or Hall–Littlewood polynomials for symplectic or odd orthogonal groups. For example, in
Cartan type A, a quantum group interpretation of the lattice model R-matrix can be used to relate quantum
R-matrices with p-adic intertwining integrals [15]. The 𝑞 = 0 results in this section (Proposition 3.12)
are a first step towards developing a similar theory in Cartan type B and C.

Let 𝑅𝑞 := 𝑅𝑞 (𝑧 𝑗/𝑧𝑖) be the 𝑈𝑞
(
𝔤𝔩(2𝑛|1)

)
𝑅-matrix defined in [45, Def. 2.1] acting on a tensor

product of evaluation representations𝑉𝑧 𝑗 ⊗𝑉𝑧𝑖 , where𝑉𝑧 is a 2𝑛+1 dimensional super vector space. We
identify the basis of 𝑉𝑧 with the spins in our lattice model by the 2𝑛 colours corresponding to the even
subspace and the 0 for the odd subspace. We may write Boltzmann weights corresponding to the 𝑅𝑞 (𝑧)
matrix as in Figure 12. Denote by 𝑅∗∗𝑞 the 𝑈𝑞

(
𝔤𝔩(2𝑛|1)

)
𝑅-matrix acting on the dual of the evaluation

representations 𝑉∗
𝑞2𝑧 𝑗
⊗ 𝑉∗

𝑞2𝑧𝑖
.

Proposition 3.12. Under a certain Drinfeld twist of 𝑈𝑞
(
𝔤𝔩(2𝑛|1)

)
, the R-matrix 𝑅Γ

Γ is the 𝑞 → 0 limit
of the 𝑅𝑞 and 𝑅Δ

Δ is the 𝑞 → 0 limit of 𝑅∗∗𝑞 .

Proof. To obtain 𝑅Γ
Γ in Figure 5 as the 𝑞 → 0 limit of 𝑅𝑞 in Figure 12, perform the following

manipulations on 𝑅𝑞 , where 𝑧 = 𝑧 𝑗/𝑧𝑖:

1. Multiply all fully coloured states by −1 (this corresponds to passing from a graded solution of the
Yang–Baxter equation to an ungraded solution of the Yang–Baxter equation).

2. Multiply weights c1 and c′1 by 𝑧−1 and weights c2 and c′2 by z (this corresponds to a change of basis
in 𝑉𝑧 and does not affect the quantum group structure).

3. Multiply weight b1 by q and weight b2 by 𝑞−1; multiply weight b′1 by −𝑞 and weight b′2 by −𝑞−1 (this
corresponds to a Drinfeld twist that affects the quantum group structure, namely its comultiplication,
and universal R-matrix [29, 68]).

4. Take the limit 𝑞 → 0.
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Figure 12. The 𝑅𝑞-matrix in [45] with 𝑧 = 𝑧 𝑗/𝑧𝑖 , 𝑐 > 𝑐′ and 𝑑 being any colour.

To compute the 𝑞 → 0 limit of 𝑅∗∗𝑞 , we use two standard facts from the theory of quantum groups. The
first fact is that given a quantum group (more precisely, a quasitriangular Hopf algebra) representation
V with 𝑣 ∈ 𝑉 and its dual 𝑉∗ with 𝑣∗ ∈ 𝑉∗, then for any element h of the quantum group, we have that
ℎ · 𝑣∗(𝑣) = 𝑣∗(𝑆(ℎ) · 𝑣), where S is the antipode. The second fact we will need is the property that the
universal R-matrix R satisfies the relation

(𝑆 ⊗ 𝑆)R = R,

which is proved, for example, in [24, Prop. 4.2.7]. These immediately imply that if 𝑅Γ
Γ is the 𝑞 → 0

limit of the 𝑅𝑞 , then (𝑅Γ
Γ)
𝑡 is the 𝑞 → 0 limit of the R-matrix 𝑅∗∗𝑞 .

Note that the R-matrix corresponding to 𝑉𝑧 𝑗 ⊗ 𝑉𝑧𝑖 only depends on 𝑧 𝑗/𝑧𝑖 , therefore the R-matrices
corresponding to 𝑉∗𝑧 𝑗 ⊗ 𝑉

∗
𝑧𝑖 and 𝑉∗

𝑞2𝑧 𝑗
⊗ 𝑉∗

𝑞2𝑧𝑖
will be equal. What remains to show then is the relation

(𝑅Γ
Γ)
𝑡 = 𝑅Δ

Δ . This can be seen by comparing Figure 5 and Figure 6 and using the fact that taking
transpose of an R-matrix modifies the states as follows:

𝑎

𝑏 𝑐

𝑑

𝑧𝑖 , 𝑧 𝑗 ↦−→

𝑐

𝑑 𝑎

𝑏

𝑧𝑖 , 𝑧 𝑗

�

To argue that we can interpret the horizontal edges in terms of 𝑈𝑞
(
𝔤𝔩(2𝑛|1)

)
-representations, we

also need to examine 𝑅Δ
Γ and 𝑅Γ

Δ . The R-matrix 𝑅Γ
Δ would correspond to the R-matrix 𝑅∗𝑞 associated to

𝑉∗
𝑞2𝑧1
⊗ 𝑉𝑧2 . One may compute this R-matrix by using

(𝑆 ⊗ id)R = R−1.

We also note that the R-matrix can be explicitly computed from [80, Eq. (2.9)]. The a1 and a2 entries
of this R-matrix will be (following Zhang [80]) 𝑏𝑞 − 𝑎𝑞−1 and 𝑏𝑞−1 − 𝑎𝑞. In trying to match these two
entries with the corresponding entries in the 𝑅Γ

Δ matrix, we can rescale both entries by a factor and set
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the parameters a and b. Taking the limit 𝑞 → 0 or 𝑞 → ∞, we will not be able to match them with the
factors 𝑧𝑖 − 𝑧 𝑗 and 𝑧 𝑗 in a way that no factor will blow up or b1 ≠ 0.

Finally, we may consider the R-matrix 𝑅Δ
Γ , which corresponds to the R-matrix associated to𝑉𝑧1⊗𝑉

∗
𝑞2𝑧2

.
We compute this quantum R-matrix explicitly for 𝑛 = 1, 2, 3 by directly inverting the R-matrix given
by [80, Eq. (2.9)] (this uses the unitarity of the affine R-matrix). In particular, for 𝑛 = 2, the a1 and a2
entries of the R-matrix for 𝑉𝑏 ⊗ 𝑉∗𝑎 are 𝑞7𝑎 − 𝑞−1𝑏 and 𝑞5𝑎 − 𝑞𝑏, respectively. By a similar argument
to the previous paragraph, we are also unable to obtain the desired 𝑅Δ

Γ -matrix (see Figure 7).
The failure to simultaneously match the Γ and Δ horizontal rows with representations of the quantum

affine group 𝑈𝑞
(
𝔤𝔩(2𝑛|1)

)
is in accordance with the nonuniqueness of the 𝑅Γ

Δ matrix in Figure 8. If we
had a match, we would expect to compute a unique 𝑅Γ

Δ -matrix. A similar phenomena appears in the
work of Zhong [81].

One may also try to relate our K-matrix with affine K-matrices corresponding to a version of quantum
symmetric pairs. Unfortunately, there is not much research on super versions of quantum affine pairs,
so there is not much we can say on this subject.

4. Coloured lattice models and Demazure characters

In this section, we construct a coloured lattice model for a Demazure character by modifying our
previous lattice model. Consider our previous model, but replace the a2 vertices in both the Γ 𝐿-matrix
(Figure 1) and the Δ 𝐿-matrix (Figure 2) with

a′2 for Γ

𝑐′

𝑐

𝑐

𝑐′

𝑧

𝑧

a′2 for Δ

𝑐′

𝑐′

𝑐

𝑐

𝑧

1

We also change our K-matrix in both types B and C by replacing k3 with

𝑢

𝑧

𝑢

and keeping the Boltzmann weight as 1. We denote this new K-matrix configuration as k′3.
Let 𝔖𝑋𝜆,𝑤 denote the new model using these new L-matrices and K-matrix. Analogous to 𝔖

𝑋

𝜆,𝑤 , we
will often write this simply as 𝔖𝜆,𝑤 . This causes the lower-left two values in the 𝑅Γ

Γ-matrix and 𝑅Δ
Δ -

matrix to swap values. We use the same 𝑅Γ
Δ -matrix and 𝑅Δ

Γ -matrix as before. Therefore, the R-matrices
that satisfy the Yang–Baxter equation in the new model will be

𝑅Γ
Γ-matrix

𝑐′

𝑐 𝑐

𝑐′

𝑧𝑖 , 𝑧 𝑗

𝑐

𝑐′ 𝑐′

𝑐

𝑧𝑖 , 𝑧 𝑗

𝑧 𝑗 𝑧𝑖

𝑅Δ
Δ -matrix

𝑐′

𝑐 𝑐

𝑐′

𝑧𝑖 , 𝑧 𝑗

𝑐

𝑐′ 𝑐′

𝑐

𝑧𝑖 , 𝑧 𝑗

𝑧𝑖 𝑧 𝑗
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with all weights that are not listed above remaining the same as in Figures 5, 6, 7 and 8. A direct check
shows that these modified R-matrices and K-matrix still satisfy the corresponding reflection and unitary
equations.

By the same argument as in Lemma 3.7, we can prove the following functional equation for the
Demazure character model.

Lemma 4.1. Choose 𝑖 < 𝑛, 𝑗 = 𝑖 + 1 and 𝑤 ∈ 𝑊 such that ℓ(𝑠𝑖𝑤) = ℓ(𝑤) + 1. Then we have

(𝑧𝑖 − 𝑧 𝑗 )𝑍 (𝔖𝜆,𝑠𝑖𝑤 ; z) = 𝑧𝑖
(
𝑍 (𝔖𝜆,𝑤 ; z) − 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑖z)

)
. (4.1)

Now we look at the corresponding version of the fish equation.

Lemma 4.2. Choose 𝑤 ∈ 𝑊 such that ℓ(𝑠𝑛𝑤) = ℓ(𝑤) + 1. Then we have

(𝑧2
𝑛 − 1)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; z) = 𝑧2

𝑛𝑍 (𝔖𝜆,𝑤 ; z) − 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z) (type C),
(𝑧𝑛 − 1)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; z) = 𝑧𝑛𝑍 (𝔖𝜆,𝑤 ; z) − 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z) (type B).

Proof. We follow the same procedure as in the proof of Lemma 3.8 and use the same notation. In this
case, we instead have

𝑍 (𝔖𝜆,𝑤 ; z) = 𝐾𝐻−1
1 𝑍 (𝔖̃h1

; z) + 𝐻−1
2 𝑍 (𝔖̃h2 ; z).

By applying the standard train argument (see Figure 11), we see that there are now only three possible
fish

𝑧𝑛𝑧𝑛 , 𝑧
−1
𝑛

𝑢

0

𝑢

0
𝑧𝑛𝑧𝑛 , 𝑧

−1
𝑛

0

𝑢

𝑢

0
𝑧𝑛𝑧𝑛 , 𝑧

−1
𝑛

0

𝑢

0

𝑢

where u is an unbarred colour. Hence, by the same computation as in the atom case, we have

𝑍 (𝔖𝜆,𝑤 ; z) = 𝐾𝑧2
𝑛𝑍 (𝔖̃

0
𝑢; 𝑠𝑛z) + 𝑧𝑛

(
(𝑧𝑛 − 𝑧

−1
𝑛 )𝑍 (𝔖̃

0
𝑢; 𝑠𝑛z) + 𝑧−1

𝑛 𝑍 (𝔖̃
𝑢
0 ; 𝑠𝑛z)

)
= 𝐾𝑧2

𝑛𝑍 (𝔖̃
0
𝑢; 𝑠𝑛z) + (𝑧2

𝑛 − 1)𝑍 (𝔖̃0
𝑢; 𝑠𝑛z) + 𝑍 (𝔖̃𝑢0 ; 𝑠𝑛z).

Next, we note there are two choices when converting the Γ
Γ version 𝔖̃𝑢0 back to the Γ

Δ model, and thus we
have

𝑍 (𝔖̃𝑢0 (𝑤); 𝑠𝑛z) = 𝜁𝑍 (𝔖𝑢𝑢 (𝑤); 𝑠𝑛z) + (1 − 𝜁)𝑍 (𝔖𝑢𝑢 (𝑠𝑛𝑤); 𝑠𝑛z)

for some parameter 𝜁 , as the two partition functions on the right-hand side are equal. Using this, we
have

𝑍 (𝔖𝜆,𝑤 ; z) = 𝐾𝑧2
𝑛𝐾
−1
𝑍 (𝔖0

0 (𝑤); 𝑠𝑛z) + 𝜁𝑍 (𝔖𝑢𝑢 (𝑤); 𝑠𝑛z)

+ (1 − 𝜁)𝑍 (𝔖𝑢𝑢 (𝑠𝑛𝑤); 𝑠𝑛z) + (𝑧2
𝑛 − 1)𝐾−1

𝑍 (𝔖0
0 (𝑠𝑛𝑤); 𝑠𝑛z).

To obtain the desired partition functions, we require that

1 − 𝜁 = (𝑧2
𝑛 − 1)𝐾−1

, (4.2a)

𝜁 = 𝐾𝑧2
𝑛𝐾
−1
, (4.2b)

which hold if and only if K satisfies

1 =
(
(𝐾 + 1)𝑧2

𝑛 − 1
)
𝐾
−1
. (4.3)
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Indeed, using the relations in equation (4.2), we see that

𝑍 (𝔖𝜆,𝑤 ; z) = 𝜁𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z) + (1 − 𝜁)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; 𝑠𝑛z),
(1 − 𝜁)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; 𝑠𝑛z) = 𝑍 (𝔖𝜆,𝑤 ; z) − 𝜁𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z),
(𝜁 − 1)𝑍 (𝔖𝜆,𝑠𝑛𝑤 ; z) = 𝜁𝑍 (𝔖𝜆,𝑤 ; z) − 𝑍 (𝔖𝜆,𝑤 ; 𝑠𝑛z),

where 𝜁 (𝑧𝑛) = 𝜁 (𝑧−1
𝑛 ) and we applied 𝑧𝑛 ↔ 𝑧−1

𝑛 to the second equation. We see that 𝐾 = 𝑧−2
𝑛

(respectively, 𝐾 = 𝑧−1
𝑛 + 𝑧

−2
𝑛 ) satisfies equation (4.3) with 𝜁 = 𝑧−2

𝑛 (respectively, 𝜁 = 𝑧−1
𝑛 ) for type C

(respectively, B). Hence, we obtain the desired functional equations for types C and B. �

Thus we can prove our second main result.
Theorem 4.3. For Cartan type 𝑋 ∈ {𝐵,𝐶}, we have

𝑍 (𝔖𝑋𝜆,𝑤 ; z) = z𝜌𝐷𝑤 (z, 𝜆).

Proof. The proof uses induction and Lemmas 4.1 and 4.2. As it is similar to the proof of Theorem 3.10
and a straightforward computation, we omit the details. �

Example 4.4. Let 𝜆 = (2, 1). The following are all possible states for 𝔖𝜆,𝑠2𝑠1𝑠2 :
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Compare against the atoms for

𝔖𝜆,1 
𝔖𝜆,𝑠1 
𝔖𝜆,𝑠2 
𝔖𝜆,𝑠1𝑠2 
𝔖𝜆,𝑠2𝑠1 
𝔖𝜆,𝑠2𝑠1𝑠2

given in Example 3.11. Note that each inversion that was present in the atom is now either an inversion
for 𝑤0𝑤, an L-matrix a′2 or a K-matrix k′3.

Theorem 4.5. We have

𝑍 (𝔖𝜆,𝑤 ; z) =
∑
𝑦�𝑤

𝑍 (𝔖𝜆,𝑦 ; z).

Proof. We can show this combinatorially by following using the same idea as the proof of [20, Thm.
3.9]. We consider the paths taken by two colours and replace vertices accordingly. Indeed, the first
time we see two colours touch at a a2 or a†2 vertex or at a K-matrix k2, we replace it by a a†2 or
a k2, respectively. Every subsequent interaction between two colours becomes an a′2 or a k′3 for the
K-matrix. �

As an immediate corollary of Theorem 4.5, we have 𝐷𝑤 (z, 𝜆) =
∑
𝑦�𝑤 𝐴𝑦 (z, 𝜆) (see

Theorem 2.1).

Example 4.6. Let 𝜆 = (2, 1). We compute all admissible states in 𝔖𝜆,𝑠1𝑠2 :

5. Key algorithm and Proctor patterns

In this section, we will use our model to construct a key algorithm on reverse King tableaux [43,
44] for 𝐺 = Sp2𝑛 or Sundaram tableaux [73] for 𝐺 = SO2𝑛+1. We begin by recalling the weight-
preserving bijection between states of the uncoloured type C model and symplectic Proctor patterns
[66, Thm. 4.2] given in [37, Ch. 1]. We then give the analogous bijection between the states of the
uncoloured type B model and odd orthogonal Proctor patterns [66, Thm. 7.1]. Similar to [20], the order
of our variables is different by 𝑖 ↔ 𝑛 + 1 − 𝑖, which is the reason we naturally work with reverse King
tableaux. As a consequence, these bijections with our model provides a new proof of [66, Thm. 4.2,
Thm. 7.1].

5.1. Symplectic patterns and King tableaux

We consider the case for𝐺 = Sp2𝑛, which is the Lie group of Cartan type𝐶𝑛. We note that these patterns
were first given by Želobenko [79]. A symplectic Proctor pattern is a pattern of nonnegative integers of
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the form

𝑎1,1 𝑎1,2 𝑎1,3 · · · 𝑎1,𝑛
𝑏1,1 𝑏1,2 𝑏1,3 · · · 𝑏1,𝑛

𝑎2,2 𝑎2,3 · · · 𝑎2,𝑛
𝑏2,2 𝑏2,3 · · · 𝑏2,𝑛

. . .
. . .

...
...

𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛
𝑏𝑛−1,𝑛−1 𝑏𝑛−1,𝑛

𝑎𝑛,𝑛
𝑏𝑛,𝑛

that satisfies the interlacing conditions

min{𝑎𝑖, 𝑗 , 𝑎𝑖+1, 𝑗 } ≥ 𝑏𝑖, 𝑗 ≥ max{𝑎𝑖, 𝑗+1, 𝑎𝑖+1, 𝑗+1},
min{𝑏𝑖−1, 𝑗−1, 𝑏𝑖, 𝑗−1} ≥ 𝑎𝑖, 𝑗 ≥ max{𝑏𝑖−1, 𝑗 , 𝑏𝑖, 𝑗 }.

The weight of a symplectic Proctor pattern P is given by

wt(𝑃) :=
𝑛∏
𝑖=1

𝑧𝐴𝑖−2𝐵𝑖+𝐴𝑖+1
𝑖 , where 𝐴𝑖 =

𝑛∑
𝑗=𝑖

𝑎𝑖, 𝑗 and 𝐵𝑖 =
𝑛∑
𝑗=𝑖

𝑏𝑖, 𝑗 .

We consider 𝐴𝑛+1 = 0. Let P𝐶𝜆 denote the set of symplectic Proctor patterns with top row 𝜆.
A King tableau [43, 44] is a filling of a Young diagram with entries in the ordered alphabet 1 < 1 <

2 < 2 < · · · < 𝑛 < 𝑛 such that the rows are weakly increasing and columns are strictly increasing and
the smallest entry in row i is i. The weight of a King tableau T is

wt(𝑇) =
𝑛∏
𝑖=1

𝑥𝑚𝑖−𝑚𝚤

𝑖 ,

where 𝑚𝑘 is the number of times k appears in T. Let K𝜆 denote the set of King tableaux of shape 𝜆. A
reverse King tableau is a King tableau with respect to the alphabet in the reverse order; or, alternatively,
the entries in rows (respectively, columns) are weakly (respectively, strictly) decreasing and the largest
entry in row i is 𝑛 + 1 − 𝑖.

As discussed in [66], there is a natural bijection Θ𝐶 : P𝐶𝜆 → K𝜆 by extending the usual bijection
between Gelfand–Tsetlin (GT) patterns and semistandard tableaux. Indeed, the partition 𝜆 (𝑘) of the kth
row indicates the subtableau consisting of all of the letters greater than the kth letter in the alphabet. For
instance, if 𝑘 = 3, then we restrict to the letters 𝑛 − 1 < 𝑛 < 𝑛.

Proposition 5.1 [37, Ch. 1]. Let 𝔖𝐶𝜆 denote the uncoloured model for 𝐺 = Sp2𝑛. There exists a weight-
preserving bijection

Ψ𝐶 : 𝔖𝐶𝜆 → P𝐶𝜆 .

Ivanov constructed the bijection Ψ𝐶 in Proposition 5.1 explicitly by extending the usual bijection
between the five-vertex model and GT patterns (see, for example, [20, Sec. 2.1]) and using the 1 edges
between the Δ

Γ (respectively, Γ
Δ ) rows to define the {𝑎𝑖 𝑗 }𝑖, 𝑗 (respectively, {𝑏𝑖 𝑗 }𝑖, 𝑗 ) values by the GT

pattern bijection. More precisely, the ith row of vertical edges in the model is the 01-sequence of the
partition in the ith row of the symplectic Proctor pattern read from right to left. We can make the
analogous injection on the coloured model 𝔖𝜆,𝑤 or 𝔖𝜆,𝑤 by considering the positions of the coloured
vertical edges or equivalently by forgetting about the colours in our model as an intermediate step. Note
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that this is unaffected by the difference between the uncoloured version of our lattice model and that in
[37] (see Remark 3.1).
Example 5.2. Consider the states given in Example 3.11 for 𝔖𝜆,𝑤 . Then under the bijection Ψ𝐶 , the
states correspond to the following symplectic Proctor patterns:

1 :

2 1
1 0

1
0

𝑠1 :

2 1
2 0

2
0

𝑠2 :

2 1
1 0

1
1

𝑠1𝑠2 :

2 1
1 0

0
0

2 1
2 1

2
0

2 1
1 1

1
0

𝑠2𝑠1 :

2 1
2 0

2
1

2 1
2 0

2
2

𝑠1𝑠2𝑠1 :

2 1
2 0

0
0

2 1
2 0

1
0

2 1
2 0

1
1

2 1
2 1

1
0

𝑠2𝑠1𝑠2 :

2 1
2 1

2
1

2 1
2 1

2
2

2 1
1 1

1
1

𝑤0 :

2 1
2 1

1
1

5.2. Odd orthogonal patterns and Sundaram tableaux

Here we instead assume 𝐺 = SO2𝑛+1, which is the Lie group of Cartan type 𝐵𝑛. An odd
orthogonal Proctor pattern is a symplectic Proctor pattern such that the values 𝑏𝑖,𝑛, for all 1 ≤ 𝑖 ≤ 𝑛,
at the right ends are also allowed to be half integers. We remark that these patterns were first announced
by Gelfand and Tsetlin without proof in [34]. Let P𝐵𝜆 denote the set of odd orthogonal Proctor patterns
with top row 𝜆.

A Sundaram tableau [73] is a King tableau with an additional letter ∞ > 𝑛 that is allowed to repeat
down columns but can only appear once in a row. The weight of a Sundaram tableau is the same as for
a King tableau; in particular, we ignore ∞ in the weight computation. We denote the set of Sundaram
tableau of shape 𝜆 by S𝜆. A reverse Sundaram tableau is defined analogously to a reverse King tableau.
Likewise, we have a natural bijection Θ𝐵 : P𝐵𝜆 → S𝜆, as noted in [66], by the same description as Θ𝐶 ,
except that if the rightmost entry in the odd orthogonal Proctor pattern is a half integer, we replace the
leftmost entry in the corresponding row with an∞.

Recall that the models for both types B and C Demazure atoms (as well as for Demazure characters)
have the same states, but the k1 entry of the K-matrix has a binomial weight 𝑧−2 + 𝑧−1 in type B as
opposed to the monomial weight 𝑧−2 for type C. Thus, following [20], we can introduce a marking
to the states for this K-matrix entry where if the bend is marked, then it has a Boltzmann weight of
𝑧−1; otherwise the Boltzmann weight is 𝑧−2. This yields a bijection between the marked states and the
monomials of the partition function as opposed to a product of binomials.
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Proposition 5.3. Let 𝔖̂𝜆 denote the set of marked states for the uncoloured type B model. There exists
a weight-preserving bijection

Ψ𝐵 : 𝔖̂𝜆 → P𝐵𝜆 .

Proof. We extend the bijection Ψ𝐶 given above to the desired bijection by replacing 𝑏𝑖,𝑛 with 𝑏𝑖,𝑛 − 1
2

if the K-matrix entry k1 is marked. �

Similar to the case when 𝑋 = 𝐶, we can extend Ψ𝐵 to an injection with the domain the coloured
model 𝔖

𝐵

𝜆,𝑤 or 𝔖𝐵
𝜆,𝑤 .

Example 5.4. Let us take 𝑤 = 𝑠2. Then we have the one state in the model𝔖
𝐵

𝜆,𝑤 with one k1 U-turn that
we can mark, which corresponds to the following pair of odd orthogonal Proctor patterns and reverse
Sundaram tableaux

←→

2 1
1 0

1
1

,

2 1
1 0

1
1
2

←→
2 1
1

,
∞ 1
1

,

where the box in the unique state of 𝔖
𝐵

𝑠2 ,𝜆 denotes the possible marking.

5.3. Key algorithm

Using the bijections Ψ𝑋 , we now give a simple algorithm for computing the (right) key w of a reverse
King (respectively, Sundaram) tableau T for 𝑋 = 𝐶 (respectively, 𝑋 = 𝐵) using the bijections from [66].

Let T denote a set of tableaux such that 𝜒𝜆(z) =
∑
𝑇 ∈T xwt(𝑇 ) . The (right) key of T is a map

key : T→ 𝑊 such that

T =
⊔
𝑤 ∈𝑊

{𝑇 ∈ T | key(𝑇) = 𝑤} and 𝐴𝑤 (z, 𝜆) =
∑
𝑇 ∈T

key(𝑇 )=𝑤

zwt(𝑇 ) .

We consider the case when T is the set of reverse King (respectively, Sundaram) tableaux of shape
𝜆 for 𝑋 = 𝐶 (respectively, 𝑋 = 𝐵). Consider some 𝑇 ∈ T, which we convert first to the corresponding
type of Proctor pattern and then to a state in the uncoloured lattice model. That is, the state we have
is 𝑆 =

(
(Ψ𝑋 )−1 ◦ (Θ𝑋 )−1) (𝑇). From Theorem 4.5, Theorem 3.10 and the fact that 𝐷𝑤0 (z, 𝜆) = 𝜒𝜆(z),

we know there is a unique way to colour the corresponding state S. This colouring gives us a signed
permutation w by reading the left boundary of the coloured state, which then defines key(𝑇) = 𝑤.

Theorem 5.5. Let 𝜆 be a partition. Let 𝑋 = 𝐶 (respectively, 𝑋 = 𝐵), and let T denote the set of reverse
King (respectively, Sundaram) tableaux of shape 𝜆. The map key : T→ 𝑊 defined above is a right key
map.

For the remainder of this section, we assume 𝑋 = 𝐶 unless stated otherwise. We give a conjecture that
would justify that the key map given above is natural. We first need some notation from crystal theory.
For more details on crystals, we refer the reader to [22]. A highest-weight crystal 𝐵(𝜆) is a certain edge-
colored weighted connected digraph that satisfies certain additional properties and encodes the action
of the corresponding quantum group of G. In particular, we have operators 𝑒𝑖 defined by 𝑒𝑖 (𝑏) = 𝑏′ for
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every edge 𝑏′ 𝑖
−−−−−→ 𝑏. Let 𝑢𝜆 denote the highest-weight element of 𝐵(𝜆), which is the unique source

in the digraph.
Fix some 𝑤 ∈ 𝑊 , and choose some reduced expression 𝑤 = 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖ℓ . A Demazure crystal is the

crystal induced from 𝐵(𝜆) by the set of vertices

𝐵𝑤 (𝜆) := {𝑏 ∈ 𝐵(𝜆) | 𝑒𝑎ℓ𝑖ℓ · · · 𝑒
𝑎2
𝑖2
𝑒𝑎1
𝑖1
𝑏 = 𝑢𝜆 for some 𝑎1, . . . , 𝑎ℓ ∈ Z≥0}.

This does not depend on the choice of reduced expression for w [40]. The atom crystal is the crystal
induced from 𝐵(𝜆) by the set of vertices

𝐵𝑤 (𝜆) := 𝐵𝑤 (𝜆) \
⋃
𝑣<𝑤

𝐵𝑣 (𝜆).

A common model for 𝐵(𝜆) for type 𝐶𝑛 is the set of Kashiwara–Nakashima (KN) tableaux, which has a
natural crystal structure [41].

The Sheats bijection [72] is a weight-preserving bijection between King tableaux and a variant of
KN tableaux called DeConcini tableaux [26]. There is a natural map from KN tableaux to DeConcini
tableaux, so we will abuse terminology slightly and call the composite of these maps the Sheats bijection
from KN tableaux to King tableaux. However, we have the weight twisting by 𝑖 ↔ 𝑛 + 1 − 𝑖 coming
from the bijection from KN tableaux to DeConcini tableaux. To go between reverse King tableaux and
normal King tableaux, we simply replace 𝑖 ↔ 𝑛 + 1 − 𝑖 entry-wise, where 𝚤 = 𝑖. To get the alphabets to
match, we require interchanging 𝑖 ↔ 𝚤 by using the tableau switching algorithm from [9]. This leads to
the following conjecture.

Conjecture 5.6. Let T𝜆 denote the set of reverse King tableaux of shape𝜆. There exists a crystal structure
on T𝜆 such that {𝑇 ∈ T𝜆 | key(𝑇) = 𝑤} equals the corresponding crystal atom 𝐵𝑤 (𝜆). Additionally,
applying the tableau-switching algorithm from T𝜆 → K𝜆 is a crystal isomorphism with the crystal
structure on K𝜆 given by Lee [56]. Moreover, the composition of

1. applying the tableau-switching algorithm to interchange 𝑖 ↔ 𝚤 for all i,
2. replacing 𝑖 ↔ 𝑛 + 1 − 𝑖 entry-wise, and
3. applying the Sheats bijection

is a crystal isomorphism on the corresponding crystal atoms that sends key to the key map defined in
[38, 71].

We note that first two maps (1) and (2) commute.

Example 5.7. Consider the states given in Example 3.11 and the symplectic Proctor patterns under Ψ𝐶
in Example 5.2. The corresponding reverse King tableaux with the alphabet 1 < 1 < 2 < 2 are

1 :
2 1
1

, 𝑠1 :
2 2
1

, 𝑠2 :
2 1
1

,

𝑠1𝑠2 :
1 1
1

,
2 2
1

,
2 1
1

, 𝑠2𝑠1 :
2 2
1

,
2 2
1

,

𝑠1𝑠2𝑠1 :
1 1
1

,
2 1
1

,
2 1
1

,
2 1
1

, 𝑠2𝑠1𝑠2 :
2 2
1

,
2 2
1

,
2 1
1

,

𝑤0 :
2 1
1

.
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Next we change the alphabet by 𝑖 ↔ 𝚤 using the tableau-switching algorithm, so our new alphabet is
1 < 1 < 2 < 2, to yield

1 :
2 1
1

, 𝑠1 :
2 2
1

, 𝑠2 :
2 1
1

,

𝑠1𝑠2 :
1 1
1

,
2 2
1

,
2 1
1

, 𝑠2𝑠1 :
2 2
1

,
2 2
1

,

𝑠1𝑠2𝑠1 :
1 1
1

,
2 1
1

,
2 1
1

,
2 1
1

, 𝑠2𝑠1𝑠2 :
2 2
1

,
2 2
1

,
2 1
1

,

𝑤0 :
2 1
1

.

We then apply the map that sends 𝑖 ↔ 𝑛 + 1 − 𝑖 entry-wise to obtain

1 :
1 2
2

, 𝑠1 :
1 1
2

, 𝑠2 :
1 2
2

,

𝑠1𝑠2 :
2 2
2

,
1 1
2

,
1 2
2

, 𝑠2𝑠1 :
1 1
2

,
1 1
2

,

𝑠1𝑠2𝑠1 :
2 2
2

,
1 2
2

,
1 2
2

,
1 2
2

, 𝑠2𝑠1𝑠2 :
1 1
2

,
1 1
2

,
1 2
2

,

𝑤0 :
1 2
2

.

Finally, we use the Sheats bijection to obtain the KN tableaux (with the alphabet now 1 < 2 < 2 < 1)

1 :
1 1
2

, 𝑠1 :
1 2
2

, 𝑠2 :
1 1
2

,

𝑠1𝑠2 :
1 2
2

,
2 2
1

,
2 2
2

, 𝑠2𝑠1 :
1 2
2

,
1 2
2

,

𝑠1𝑠2𝑠1 :
2 1
2

,
1 1
2

,
1 1
2

,
2 1
1

, 𝑠2𝑠1𝑠2 :
2 2
1

,
2 2
1

,
2 2
2

,

𝑤0 :
2 1
1

,

which are precisely the crystal atoms (see [71, Ex. 16]).

We remark that applying 𝑤0 to the weight means we have 𝑤0 wt = −wt, and in terms of the bijection
with Proctor patterns, we instead use the initial alphabet 1 < 1 < 2 < 2. In this case, we are taking
dual atoms from the lowest weight element and replacing 𝑒𝑖 ↦→ 𝑓𝑖 in the definition of a Demazure
crystal. Equivalently, we are applying the Lusztig involution (or the contragradient dual) to the crystal
atom. However, this does not remove the fact we are working with reverse King tableaux unlike
in [20].
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Example 5.8. We note that applying tableau switching 𝑖 ↔ 𝚤 is not the same as taking the Proctor
patterns for the alphabet changed under 𝑤0. Indeed, the following tableaux are fixed under the tableau
switching but are interchanged using the alphabet 1 < 1 < 2 < 2:

2 1
1

,
2 1
1

.

If we instead took the order of the spectral parameters from [35, 37], the weight would instead be
twisted by the longest element 𝑤𝐴 of natural 𝑆𝑛 ⊆ 𝑊 . Yet this would give us King tableaux as our image
under the bijection Φ𝐶 . This would mean we would have a key algorithm on King tableaux for a twisted
version of atoms working with an extremal weight crystal 𝐵(𝑤𝐴𝜆) in the terminology of [40]. We have
similar results for 𝐺 = SO2𝑛+1 and Sundaram tableaux, as well as conjecture a crystal structure that is
an extension of a solution of Conjecture 5.6.

A. SageMath code

We give our SageMath [70] code that we used to prove Proposition 3.3.

def type_C_R_matrix(gamma_L1=True, gamma_L2=True, max_m=4):
BR = ZZ
c = [1] * max_m

# The auxiliary space is the horizontal lines and the quantum space
# is the vertical line. The input the left and bottom sides.
def L_gamma(aux_in, q_in, aux_out, q_out, z):

if set([aux_in, q_out]) != set([aux_out, q_in]):
return 0

if aux_in == aux_out == q_out == q_in == 0: # blank
return 1

if aux_out == q_out == 0: # right turn corner
return z*c[aux_in -1]

if aux_in == q_in == 0: # left turn corner
return 1*c[aux_out -1]

if q_in == q_out == 0: # horizontal line
return z*c[aux_in -1]

if aux_in == aux_out == 0: # vertical line
return 0

# Must be a crossing
assert aux_in > 0 and aux_out > 0 and q_in > 0 and q_out > 0
if aux_in == aux_out:

if q_in == q_out == aux_in == aux_out:
return z*c[aux_in -1]^2

if q_in < aux_out:
return z*c[aux_in -1]*c[q_in-1]

elif aux_in == q_in:
if q_in < q_out:

return z*c[aux_in -1]*c[aux_out -1]
return 0

# Infinite recursion if we set L_gamma = L_gamma_mirror ,
# so we introduce an auxiliary function name.
L_gamma_mat = L_gamma

def L_delta(aux_in, q_in, aux_out, q_out, z):
if set([aux_in, q_in]) != set([aux_out, q_out]):

return 0
if aux_in == aux_out == q_out == q_in == 0: # blank

return z
if aux_out == q_in == 0: # right turn corner

return 1/c[aux_in -1]
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if aux_in == q_out == 0: # left turn corner
return z/c[aux_out -1]

if q_in == q_out == 0: # horizontal line
return 1/c[aux_in -1]

if aux_in == aux_out == 0: # vertical line
return 0

# Must be a crossing
assert aux_in > 0 and aux_out > 0 and q_in > 0 and q_out > 0
if aux_in == aux_out:

if q_in == q_out == aux_in == aux_out:
return 1/c[aux_in -1]^2

if q_in > aux_in:
return 1/c[aux_in -1]/c[q_in-1]

elif aux_in == q_out:
if q_in > q_out:

return 1/c[aux_in -1]/c[aux_out -1]
return 0

if gamma_L1:
L1_wt = L_gamma_mat

else:
L1_wt = L_delta

if gamma_L2:
L2_wt = L_gamma_mat

else:
L2_wt = L_delta

states_to_vars = {(in_top,in_bot,out_top,out_bot): 0
for in_top in range(max_m)
for in_bot in range(max_m)
for out_top in range(max_m)
for out_bot in range(max_m)
}

zi, zj = BR[’zi,zj’].fraction_field().gens()
base = zi.parent()
S = PolynomialRing(base, ’x’, len(states_to_vars))
vars_to_states = []
for i, st in enumerate(states_to_vars):

states_to_vars[st] = S.gen(i)
vars_to_states.append(st)

def R_wt(in_top, in_bot, out_top, out_bot):
return states_to_vars.get((in_top,in_bot,out_top,out_bot), 0)

data = [list(range(max_m)), list(range(max_m)), list(range(max_m))])
states = list(cartesian_product(data)
print("Building matrices")

L1 = matrix(base, [[L1_wt(s[0], s[2], t[0], t[2], zj) if s[1] == t[1]
else 0 for t in states] for s in states])

L2 = matrix(base, [[L2_wt(s[1], s[2], t[1], t[2], zi) if s[0] == t[0]
else 0 for t in states] for s in states])

R = matrix(S, [[R_wt(s[0], s[1], t[1], t[0]) if s[2] == t[2] else 0
for t in states] for s in states])

print("Computing RLL - LLR")
RLL = R * (L1 * L2) - (L2 * L1) * R

print("Setting up equations")
def extract_coeffs(p):

d = p.dict()
zero = p.parent().zero()
return [d.get(gen.exponents()[0], zero) for gen in S.gens()]

M = matrix(base, [extract_coeffs(RLL[i,j])
for i in range(len(states))
for j in range(len(states))])

print("Computing kernel")
ker = [b for b in M.right_kernel().basis()]
assert len(ker) == 1
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ret = {}
for i, val in enumerate(ker[0]):

if val != 0:
ret[vars_to_states[i]] = SR(val).factor()

return ret
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