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A NOTE ON JESMANOWICZ' CONJECTURE CONCERNING
PYTHAGOREAN TRIPLES

MAOHUA L E

Let n be a positive integer, and let (a, b, c) be a primitive Pythagorean triple. In
this paper we give certain conditions for the equation (an)x + (bn)y — (cn)z to
have positive integer solutions (x,y,z) with (x,y, z) / (2,2,2). In particular, we
show that x,y and z must be distinct.

Let N be the set of all positive integers. Let n be a positive integer, and let (a, 6, c)
be a primitive Pythagorean triple such that

(1) a2 + 62 = c2, a,b,ceN, gcd(a,b,c) = 1, 2 | b.

Then we have

(2) a = u2-v2, b = 2uv, c = u2+v2,

where u, v are positive integers satisfying u > v, gcd(u, v) — 1 and 2 | uv. In 1956,
Jesmanowicz [2] conjectured that the equation

(3) ( a n ) x + ( b n ) v = ( c n ) z , x , y , z e N

has only the solution (x, y, z) = (2,2,2) for any n. This conjecture has been proved to
be true in many special cases for n = 1.

Recently, Deng and Cohen [1] considered this conjecture for n > 1. For any
positive integer t with t > 1, let P(t) denote the product of distinct prime factors of
t. Further let P(l) = 1. Deng and Cohen proved that i f n > l , u = v + l , a i s a prime
power and either P(b) \ n or P{n) \b, then (3) has only the solution (a;,y,z) — (2,2,2).
In this paper we prove a general result as follows.
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THEOREM . If (x, y, z) is a solution of (3) with {x, y, z) ± (2,2,2), then one of the

following conditions is satisfied:

(i) max(x,y) > min(x, y) > z, P(n) \ c and P{n) < P(c),
(ii) x > z > y and P(n) \ b.

(iii) y > z > x and P(n) \ a.

By the above result, we can obtain the following corollaries immediately.

COROLLARY 1 . If (x, y, z) is a solution of (3) with (x, y, z) ^ (2,2, 2), then x, y

and z are distinct.

COROLLARY 2 . If P{n) does not divide any one of a, b and c, then (3) has only

the solution (x, y, z) = (2,2,2).

The proof of our theorem depends of the following lemma.

LEMMA . Let m, t be positive integers, and let p be a prime such that p | m and

p\t. If pa\\t and pP\\m with a > 1, then we have

P R O O F : For A; = 1 , . . . , m — 1, let plk\\k + 1. Then we have

(4) % <

Since p2 | t, we get

by (4). The lemma is proved.

P R O O F OF THEOREM: Let (x,y,z) be a solution of (3) with (x,y,z) jt (2,2,2).

By [1, Lemma 2], we may assume that z < max(x,y). We now eliminate the following

three cases.

C A S E I. x > y and y = z. Then from (3) we get

(5) axnx~y = cy -by.

Since c + b\a2 by (1), if 2 \ y, then from (5) we get cy - by = -2by = 0 (mod c + b).

But, by (1), this is impossible. So we have 2 | y and
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by (5). Let p be a prime factor of a. Since gcd(a, b) = 1, we see from (6) that p | y/2.
Further let pa\\a and p" | |y /2. By the Lemma, we obtain

This implies that

y/2-1

(8)

The combination of (6) and (8) yields

(9) a(x -2)^0.

Let p run through all distinct prime factors of a. Then, by (9), we get ax~2 \ y/2 and

(10) y > 2a1-2.

However, since x > y and a > 1, (10) is impossible.

CASE II. y > x and x — z. Then we have

Since c + a | b2, if 2 f x, then from (11) we get (f — zx = 2cx = 0 (mod c + a), a
contradiction. So we have 2 | x and

(12) 6*-V-* - - 5 — % =

by (11). Using the same method as in Case I, we can prove that (12) is impossible.

By using the same arguments, we can prove that (3) has no solution (x, y, z)
satisfying the folowing condition:

CASE III. x = y and y > z.

If x > y > z, then from (3) we get

(13) o » n - » + 6v = _£!_,

where c*/ny~z is an integer with cz/ny~z > 1. This implies that P(n) | c. Further, if
P(n) — P(c), then there exists a prime p such that p | (^/nv~z and p\n. But, since
gcd(b,c) = 1, this is impossible by (13). So we have P(n) \ c and P{n) < P(c). A

similar result can be proved for y > x > z. Therefore, we get the condition (i).
If x > z > y, then we have

(14) axnx-z + _ ^ _ = c z

We see from (14) that P(n) | b. The condition (ii) is proved. By using the same
arguments, we can obtain the condition (iii) if y > z > x. The proof is complete. D
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