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ON THE EXISTENCE AND UNIQUENESS OF 
SOLUTIONS OF THE EQUATION 

BY 

JOHN C. CLEMENTS1 

ABSTRACT. The existence and uniqueness of strong global 
solutions of initial-boundary value problems for the quasilinear 
equation uu—dai{ux^ldxi—I^NUt=f is established for functions 
#,(£), i = l , . . . , N, satisfying: cr,(£)e CK-co, oo), cri(0)=0 
and 0<c^(f)<JZo for some constant K0. 

1. Introduction. Sufficient conditions on the functions u0, ux and f(t) are estab
lished here to ensure the existence and uniqueness of a strong global solution of the 
initial-boundary value problem 

rs 

( 1 ) « « - — ^(uXi)-ANut = /, 0 < t < T 

where ut=dujdt, uu^dujdxiy AN-=d2Jdxl (summation of second term over 
i = l , . . . , N is understood), Q is a bounded domain in iV-dimensional Euclidean 
space EN with smooth boundary d£l and ai9 w0, ut and/are real-valued functions 
with <ti(ë), i = l , . . . , N satisfying 

(2) oitf) G C * ( - oo, oo), cr<(0) = 0, 0 < oJ«) ^ X 0 

for some constant K0 where .'=d.ld£. 
Considerable attention ([4], [5], [6], [8]) has recently been given to quasi-

linear equations such as that appearing in (1) and related equations which arise 
in the study of nonlinear elasticity-plasticity theory. For JV=1 and/=0, MacCamy 
and Mizel [6] have established the existence, uniqueness and stability of a global 
smooth solution for o,

1(|)=o,(|) satisfying 

(T(|) G C 3 ( - 00, 00), (7(0) = 0, 0 < (T'(!). 

Their results follow from the consideration of the differential equation in (1) as 
two different inhomogeneous equations. For large space dimension N9 the investi
gation of the existence of global classical solutions of quasilinear equations is 
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often replaced by the search for weak or perhaps even strong solutions. In what 
follows, a compactness argument (see e.g. [3], chapter 1) is used to prove the 
existence of a unique strong solution of (1) for arbitrary N and the afê) satisfying 
conditions (2). In particular, it is shown that the solutions are just as differentiable 
as the initial data in the Sobolev class 772'2(0). 

2. The existence theorem. For each p, 1 < / ? < O O , L*(Q) shall denote the 
usual real Lebesgue space with norm 

I|M|IO.P = I \u(x)\»dx< oo if l<p<œ 

||M||0OO = essup \u(x)\ < oo if p = oo. 
n 

L2(Q) is a Hilbert space with respect to the scalar product 

(u, v) = u(x)v(x) dx. 
Jn 

For brevity in notation in the L2(Q) norm ||. ||0i2 is denoted by ||. ||. Hm,2(Q) = 
{ueL2(u)\Dxu=0%ld^'-dx^)eL2(Q) for every orf- • ' + o:N=\oc\<m} 
with norm ||«||^,2=2|a|^m ll^*wll2 where the derivatives are considered in the weak 
or distribution sense and by H™,2,{Q) we mean the closure in Hm,2(C£) of the smooth 
functions with compact support in O. 

Let \\.\\x t>e ^ e norm and X* the dual space of a Banach space X. We denote 
by Lp(0, T; X) l^p^oo the space of (classes of) real functions /(f):(0, T)-+X 
with 

U T \1/D 

WMfxdt] < o o for l < p < o ) 
and with the usual modification for/?=oo. 

We shall require the following lemma, the proof of which can be found in ([1], 
p. 59). 

LEMMA 1. Let D be any bounded domain in EN with smooth boundary and let the 
functions w;(x), y = l , 2 , . . . , form an orthogonal basis in L2(Q). Then for any 
£>0 there exists a number Ne such that 

( Ne \ l /2 

for all u(x) in Hlt2{Q) and the number Nt does not depend on u. 

With the assumption that conditions (2) hold for the 0^(1), the following result 
concerning the existence of a generalized solution of problem (1) is established 
here. 
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THEOREM 1. For any ti0effJ'a(Q) n H2'2(ù), uxeHl'\Cl) and feL\0,T; 
L2(Q)) there exists one and only one function u with 

u e L°°(0, T; J?S'2(Q) n H2-2(Q)) 

ut G L*(0, T; JfJ-2(Q)) n L2(0, T; ff2(2(fi)) 

U « G L 2 ( 0 , T ; L 2 ( Q ) ) 

such that w(0)=w0 a«J w<(0)=w1 a.e. on Q. and 

uu-~— cfi(uXt)-àNut = / a.e. 
OXi 

REMARK 1. The precise sense in which the above equation is satisfied is that the 
L.H.S. and R.H.S. are equivalent a.e. on (0, T) as functions from (0, T) into 
La(Q). 

REMARK 2. If u(t):(09 Ty+V-ÇCl) is Lebesgue summable on (0, T), then there 
exists a function u(.,t) defined and measurable on Clx(0, T) which is uniquely 
determined up to a subset of measure zero on Q X (0, T) and such that 
w(0=w(. ,0 a.e. on (0, T) and u(x9 t) eL^Qx(0, T)). Furthermore if u(t): 
[0, r]->Lp(p), ( 1 < / ? < O O ) , is strongly continuous, then there exists u(.9 t) meas
urable on Q,x [0, T] such that u(t)=u(., t) for every t in [0, T\. It will be clear 
from the construction of u from the approximate solutions un and the corresponding 
a priori estimates that both u and ut are strongly continuous from [0, T] into 
L2(fi). 

REMARK 3. A much more difficult but interesting problem is that of proving 
the existence of unique global classical solutions of (1) when N=2 or 3. It is 
believed that this could be accomplished using techniques similar to those found 
in [7] by a suitable strengthening of the regularity requirements on the a{ in (2) 
and on the data u09 ux and/. 

Proof of existence. Let wz(x), J=l> 2 , . . . , be the normalized eigenfunctions 
associated with the Laplace operator with domain 3){—AN)=Hl'2(Q) n H2'2(Q). 
That is, the functions satisfying 

—àNWj — fjtjWj in Q,9 Wj = 0 on 3 0 ( j = 1, 2 , . . . ) . 

It is well known that for sufficiently smooth Q, the functions wô are in C2(£i U dQ). 
Let Pn be the projection in L2(Q) onto the subspace {wl9... , wn} generated by 
the distinct basis elements wl9... , wn. It follows from conditions (2) that for each 
n there exists a solution wn(0=2fc=i cnk(t)wk of the system 

K ( 0 , w , ) - ( £ " * * « ( 0 ) , w,.) -(A^itf*), w,) = ( / (0, w,) j = 1 , . . . , n 

(3) un(t)ePnl3(Q) for all * e [0, T] 

ti"(0) = Pnw0, iiftO) = P % 
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which satisfies (3) a.e. on [0, Tn] for some Tn with 0< Tn< T. The a priori estimates 
which follow allow each [0, Tn] to be taken to be [0, T\. One obtains from (3) 
in the usual way 

|ut"(0l|2+2jft^
Ul'(',<ri(s) ds~\ </x} + IK,«ll2 = (fit), K(t)) 

ld_ 
2dt 

and since 0<Jfofc) ds^K^jl, 

(4) NrWf+IK/Of+J jK^n 2 ds <; ^ 

for every n independent of t in [0, T\. Replacing w} by — A^H" in (3) gives 

K«(o, < , . ( 0 ) + ( * ; K ( ' ) K % ( 0 , A^««(0) 

(5) + ; I l|A^«"(0lla = -( /(0. Aff«-(0) 
2 at 

and, since ||^.o..(OII<^211^^(011 for all t independent of « ([2]), (5) gives by 
(4) and conditions (2) 

jjANun(s)f ds < ^ J J J J I A ^ C T ) ! 2 dr^j ds+Ktt+K5 

for all t in [0, T] and K3i K^ and £"5 independent of n. Hence, 

(6) fW«"(s)||2 ds ^ Ke. 
JO 

Now, by replacing w;- by — ANu?(t), (3) becomes 

™ [K<(oii2+iiAtf"r(ou2 = -(««<(OK4.4(o, A^rcB-c/co, Aw«rco> 
and from (6) 

(7) K/0ll*+JTW«.W rfs < i<:7 

independent of « and t in [0, T\. (5) now gives by (7) 

(8) l|A^Mn(0H2 < K8 

independent of n and if t in [0, 71. Finally, replacing û  by uu(t) gives from (4), 
(7) and (8) 

fll«.".( 
Jo 

(9) \\\ul(s)rds^K9 
Jo 

for some constant K9 independent of n and of t in [0, T], 
Integration of (3) from tx to t2, tl9 t2 e [0, T] and the subsequent integration of 
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that result from / to t+h with respect to tt gives by (4), (7), (8), (9) and condition 
(2) 

\un(t+h)-un(t), wk)\ = \cnh(t+h)-cnk(t)\ < Kw(h+h2) 

where K10 depends on k but not on n for n>k or on t e [0, T], Similarly, integration 
of (3) from t to t+h gives 

\(ûft + h)-ûW)> H>,)| = Klc(t + h)-c'nk(t)\ < Kn(h + yfh) 

with Kn independent of k for n>k. Thus, the functions cnk(t)=(un(t), wk) and 
c'nk(t)=(u"(t), wk), n=l, 2 , . . . , are uniformly bounded and equicontinuous for 
fixed k and arbitrary n>k. Therefore, by the usual diagonal procedure we can 
select a subsequence nm9 m=\, 2 , . . . , such that for each fc=l, 2 , . . . , cn k(t) 
and c'n k(t) converge uniformly on [0, T] to some continuous functions ck(t) 
and 4(r). These functions determine u(x, 0 = 2 X i ck(t)wk a nd u(x9 0—XLi 4(0W* 
and it follows that 

unm-+u 
(10) weakly in L2(£î) uniformly in t e [0, T]. 

Indeed, for any v(x) e L2(Cï), 

\M / 00 \ I 

|(un« —W, t?)| = 2<>> Wfc)(M
nm-M, W^+l I ln m-t l , 2 0> W&)^) 

( M \ / oo \l/2 

2l(f>w f c)|-1^(0-^(01)+^ 2 (t>,w*)2 

where K12 does not depend on nm and we can choose M and «m so large that for 
every t e [0, T] both terms in the above sum become less than e/2 for any 
preassigned £>0. Similarly for w*m—u. It follows easily that u=ut in the sense 
of distributions. For brevity in notation all subsequences unm shall again be denoted 
simply by un. Taking further subsequences if necessary, it is clear that the estimates 
(4), (7), (8) and (9) yield 

un -> u weak* in L00 (0, T; HS'a(Q) n if2'2(£2)) 
< -* M« weak * in Lœ(0, T ; L2(ft)) and weakly in L2(Q x (0, T)) 

<*,~* w w weak* in Lœ(0, T; L2(Q)) and weakly in L2(Qx(0, T)) 
and 

ul -* utt weakly in L2(0, T; L2(Q)) 

^ r ~+ A^M weakly in L2(0, T; L2(Q)) 

as «->oo, with all derivatives being considered in the usual weak or distribution 
sense. Lemma 1 applied to wn—u and u"—ut gives 

un->u 
strongly in L2(fi) uniformly in t on [0, T] 
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and u(x9 0)=u0(x) and ut(x, 0)=u1(x) a.e. on Q. Lemma 1 applied to uXi—uX{ 

yields ul~>ux. strongly in L2(£i x (0, T)) and again extracting further subsequences 
ul~>uXi a.e. on O x ( 0 , T) for each f = l , . . . , N. Thus, cr^u^-^a^u^) a.e. on 
£2x(0, T) by continuity and by Lebesgue dominated convergence, a'i(ult)v-> 
<Ji(ux)v strongly in I 2 ( D x ( 0 , T)) as «->oo for any fixed function v in L 2( i lx 
(0, JO). Consequently, for any v in L2(Qx (0, T)), 

i W(«2>w ») * 
/.y /.y 

-r 
Jo 

(<y'i(iix)uXiXi, v) dt as n -> oo. 

Passage to the limit in (3) as «->oo now gives the required result. 

Proof of uniqueness. Let u(x, t) and v(x, t) be two strong solutions of problem 
(1). Then w=w—v is a strong solution of the problem 

7) F) 
wtt-ANw-ANwt = -AN(u-c)+— ai(Mx)-— <fi(cx), 0<t<T 

MÔCI = 0> w(x,0 = 0> Wj(x,0) = 0. 

Since \ai{S)--ai{r})\<KQ\^—ri\ for all real | and ^ and each / = 1 , . . . , J V , 
taking the product of this differential equation with wt and integrating over Q. 
gives 

-l-jdî of+iiw^oiî +iî wu2 

2 at 

< l|w./0ll2+llw.4(0llV2+^|oi(««4)-tf<(i;(,l)|» dx 

^llw^Wf+^o+^dk/Of+llw^OII2}. 
Therefore 

IWOf+IWOIIl.-o 
and the theorem is proved. 

REMARK 4. For N<2, the uniform bound a'^^KKo in conditions (2) is not 
required since \u%(x, t)\ <K13 ||wn(0ll2,2

 a-e- o n & f ° r every fixed t and some con
stant Kl3 independent of x in £2. For N>39 the condition e'i(0)<K0 amounts 
to a restriction that the a{ have at most monomial growth. However, the relaxing 
of this constraint to permit polynomial growth in the at introduces serious 
technical problems [9]. It is no longer possible to obtain sufficient a priori esti
mates to permit the application of a compactness argument. 
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EXAMPLE. A simple two-dimensional example of (1) is furnished by the model 
for a clamped vibrating plate if one assumes nonlinear stress relations with a 
memory term with the equation of motion being given by 

d / uXi \ 

and it is clear that each cr i(|)=^+(|/(l + |2)), z=l, 2, satisfies (2). 
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