
2
Linear Algebra and Bundle Theory

In this chapter we discuss the linear algebra of symplectic vector spaces and
symplectic vector bundles. To prepare the ground for the discussion of Künneth
structures on manifolds in later chapters we introduce linear Künneth struc-
tures on vector bundles, and we work out consequences of the existence of
Künneth structures in terms of characteristic classes.

The earlier parts of this chapter contain standard material that some readers
may be able to skip. There is a substantial overlap, for example, with Chapter
2 of the book of McDuff–Salamon [McS-95]. The later parts contain some
important results that are used throughout the book. While not original, these
results clarify some of the folklore around symplectic vector bundles and their
Lagrangian subbundles. Our reference for the theory of characteristic classes
is Milnor–Stasheff [MS-74].

2.1 Linear Algebra

2.1.1 Linear Symplectic Forms

Here is the most basic definition, which is the beginning of all of symplectic
mathematics.

Definition 2.1 Let V be a finite-dimensional (real) vector space. A symplectic
form on V is a 2-form ω ∈ Λ2V∗ that is non-degenerate in the sense that

ω(v, u) = 0 for all u ∈ V

implies v = 0. Equivalently,

ω(v,V) ≡ 0⇒ v = 0
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14 Linear Algebra and Bundle Theory

or

ivω = ω(v,−) ≡ 0⇒ v = 0 .

We call (V, ω) a symplectic vector space.

One can characterise non-degenerate two-forms in the following way.

Lemma 2.2 A two-form ω ∈ Λ2V∗ is non-degenerate if and only if the map

φω : V −→ V∗

v 7−→ ivω = ω(v,−)

is an isomorphism.

Proof In one direction, since V and V∗ have the same dimension, the linear
map φω is an isomorphism if and only if it is injective. Conversely, injectivity
of φω is equivalent to the non-degeneracy of ω. �

Example 2.3 Let V = R2n with basis

(e1, . . . , en, f1, . . . , fn) .

We denote the dual basis of V∗ by

(α1, . . . , αn, β1, . . . , βn) .

Then

ω =

n∑
i=1

αi ∧ βi

is a symplectic form on V . It is uniquely characterised by

ω(ei, f j) = δi j (Kronecker delta) ,

ω(ei, e j) = 0 = ω( fi, f j) .

The map φω is given by

φω(ei) = βi ,

φω( fi) = −αi , ∀i = 1, . . . , n,

showing that it is indeed an isomorphism between V and V∗.

Just as in the case of scalar products, there is a notion of a symplectic or-
thogonal for a subspace.
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2.1 Linear Algebra 15

Definition 2.4 Let (V, ω) be a symplectic vector space and U ⊂ V a linear
subspace. The symplectic orthogonal of U is defined as

U⊥ω = {v ∈ V | ω(v,U) ≡ 0}

= {v ∈ V | ω(v, u) = 0 ∀u ∈ U} .

In other words, if i : U ↪→ V is the injection, then U⊥ω is the kernel of the
linear map

V
φω
−→ V∗

i∗
−→ U∗.

We will now prove that, up to a choice of basis, every linear symplectic form
has the form given in Example 2.3. This is often called the Linear Darboux
Theorem, because it is the infinitesimal version of the Darboux Theorem for
symplectic forms on manifolds, to be proved later.

Theorem 2.5 (Linear Darboux Theorem) Let ω be a symplectic form on a
vector space V. Then there exists a basis

(e1, . . . , en, f1, . . . , fn)

of V with dual basis

(α1, . . . , αn, β1, . . . , βn)

of V∗ such that ω is given by

ω =

n∑
i=1

αi ∧ βi .

Such a basis of V (or V∗) is called a symplectic basis with respect to ω.

Proof Since ω is non-degenerate, it is not identically zero, so there exist vec-
tors e1, f1 ∈ V with ω(e1, f1) = 1. We set

V1 = span{e1, f1} .

Since ω is non-degenerate on V1, the symplectic orthogonal V⊥ω1 intersects
V1 only in the zero vector, and is a complement to V1; compare Lemma 2.10
below. We claim that the restriction ω|V⊥ω1

is non-degenerate. For the proof
suppose there exists a vector v in V⊥ω1 with

ω
(
v,V⊥ω1

)
= 0 .

Since we also have

ω(v,V1) = 0 ,

https://doi.org/10.1017/9781108902977.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902977.002


16 Linear Algebra and Bundle Theory

and V1 and V⊥ω1 are complementary, this would give

ω(v,V) = 0 .

By the non-degeneracy of ω on V we conclude v = 0.
We can now find a symplectic basis for V by induction on the dimension,

replacing V by V⊥ω1 in the inductive step. �

Corollary 2.6 If ω is a symplectic form on a real vector space V, then the
dimension of V is even, dim V = 2n.

Corollary 2.7 A two-form ω on a vector space V of dimension 2n is symplec-
tic if and only if

ωn = ω ∧ · · · ∧ ω︸        ︷︷        ︸
n

∈ Λ2nV∗

is non-zero, i.e. a volume form on V. In particular, every symplectic vector
space has a canonical orientation defined by ωn.

Proof If ω is symplectic, we can choose a symplectic basis for V and calcu-
late ωn. We then see that ωn , 0. Conversely, assume that ω is not symplectic,
so that there exists a non-zero vector v ∈ V with ivω = 0. Then also iv(ωn) = 0,
and ωn is not a volume form. �

Structure-preserving maps of symplectic vector spaces are called symplec-
tomorphisms.

Definition 2.8 Let (V, ωV ) and (W, ωW ) be symplectic vector spaces. A linear
isomorphism f : V → W is called a symplectomorphism if

f ∗ωW = ωV .

If such an f exists, then (V, ωV ) and (W, ωW ) are called symplectomorphic.

We can rephrase the Linear Darboux Theorem (Theorem 2.5) to state that
all symplectic vector spaces of the same dimension are symplectomorphic to
one another.

2.1.2 Subspaces in Symplectic Vector Spaces

Let (V, ω) be a symplectic vector space of dimension 2n. We are interested in
linear subspaces of V that are in a special position with respect to ω.

Definition 2.9 Let U ⊂ V be a linear subspace.

(i) We call U symplectic if the restriction ω|U is symplectic.
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2.1 Linear Algebra 17

(ii) We call U isotropic if the restriction ω|U vanishes identically.
(iii) We call U Lagrangian if it is isotropic and

dim U =
1
2

dim V = n.

In terms of the symplectic orthogonal, one has the following.

Lemma 2.10 Let U ⊂ V be a linear subspace. The following hold:

(i) dim U + dim U⊥ω = dim V,
(ii) (U⊥ω)⊥ω = U,

(iii) U is symplectic if and only if U ∩ U⊥ω = 0,
(iv) U is isotropic if and only if U ⊂ U⊥ω,
(v) if U is isotropic, then dim U ≤ 1

2 dim V.

Proof Since U⊥ω is the kernel of

V
φω
−→ V∗

i∗
−→ U∗ ,

φω is an isomorphism and i∗ is an epimorphism, we have

dim U⊥ω = dim V − dim U∗ .

This proves the first claim. For the second, we first prove U ⊂ (U⊥ω)⊥ω. Fix
u ∈ U. Then

ω(u, v) = 0 ∀v ∈ U⊥ω ,

hence u ∈ (U⊥ω)⊥ω. Using part (i), this inclusion cannot be strict, and thus (ii)
holds.

For the third claim, we have U ∩U⊥ω , 0 if and only if there exists a v ∈ U
such that ω(v,U) = 0. But this happens if and only if ω|U is not symplectic.

For the fourth claim, we have U ⊂ U⊥ω if and only if ω(U,U) ≡ 0, i.e. if
and only if U is isotropic.

Finally, if U is isotropic, then by (i) and (iv) we have

dim V = dim U + dim U⊥ω ≥ 2dim U ,

proving the fifth claim. �

Corollary 2.11 A linear subspace U in a symplectic vector space (V, ω) is
Lagrangian if and only if U = U⊥ω. A Lagrangian subspace is an isotropic
subspace of maximal dimension.
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18 Linear Algebra and Bundle Theory

Example 2.12 Let (V, ω) be a symplectic vector space of dimension 2n. Choose
a symplectic basis

(e1, . . . , en, f1, . . . , fn)

for V . Then

L = span(e1, . . . , en)

and

L′ = span( f1, . . . , fn)

are Lagrangian subspaces. Note that these subspaces are complementary, i.e.
L ⊕ L′ = V .

Conversely we have the following result.

Proposition 2.13 Let (V, ω) be a symplectic vector space of dimension 2n and
L ⊂ V a Lagrangian subspace. Any basis (e1, . . . , en) for L can be completed
to a symplectic basis (e1, . . . , en, f1, . . . , fn) of V.

Proof Consider the span U = span{e2, . . . , en}. The symplectic orthogonal
U⊥ω has dimension n + 1 and contains L, which has dimension n. Hence there
exists a vector f1 ∈ U⊥ω that is not an element of L. It satisfies

ω(ei, f1) = 0 ∀i = 2, . . . , n

but

ω(e1, f1) , 0 ,

since f1 is not an element of L and L is maximally isotropic. Normalising f1
we can assume that

ω(e1, f1) = 1 .

As in the proof of Theorem 2.5, let

V1 = span{e1, f1} .

Then ω restricts to a symplectic form on the orthogonal V⊥ω1 and U is a La-
grangian subspace in this symplectic vector space. By induction, we construct
a symplectic basis

(e1, . . . , en, f1, . . . , fn)

for V . �

Corollary 2.14 Let L ⊂ V be a Lagrangian subspace in a symplectic vector
space. Then there exists a complementary Lagrangian subspace L′ with V =

L ⊕ L′.
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2.1 Linear Algebra 19

We also have the following Linear Darboux Theorem for a pair (V, L) con-
sisting of a symplectic vector space and a Lagrangian subspace.

Corollary 2.15 Let (V, ωV ) and (W, ωW ) be symplectic vector spaces of the
same dimension and assume that LV ⊂ V and LW ⊂ W are Lagrangian sub-
spaces. Then there exists a symplectomorphism f : V → W taking LV onto
LW .

We can adapt the proof of Proposition 2.13 to show the following:

Proposition 2.16 Let (V, ω) be a symplectic vector space of dimension 2n
and L, L′ ⊂ V two complementary Lagrangian subspaces. For any basis
(e1, . . . , en) of L there exists a unique basis ( f1, . . . , fn) of L′, so that

(e1, . . . , en, f1, . . . , fn)

is a symplectic basis of V.

Proof In the proof of Proposition 2.13 the subspace U⊥ω intersects L′ in a
one-dimensional subspace. Hence there is a unique vector f1 in this intersec-
tion with

ω(e1, f1) = 1.

By induction, this implies the claim. �

2.1.3 The Space of Lagrangian Complements

Let (V, ω) be a symplectic vector space. In Corollary 2.14 we showed that
every Lagrangian subspace L ⊂ V has a Lagrangian complement L′, so that
L ⊕ L′ = V . However, the Lagrangian complement L′ is not unique. For the
applications to Lagrangian distributions on manifolds, it is important to under-
stand the space of all Lagrangian complements to a given Lagrangian subspace
L.

We will approach this issue using the following construction of a tautologi-
cal symplectic vector space. Let W be an arbitrary real vector space of dimen-
sion n, and V = W ⊕W∗. Elements of V consist of pairs (w, λ) ∈ W ⊕W∗. We
define a map

ω0 : V × V −→ R

by

ω0((w1, λ1), (w2, λ2)) = λ1(w2) − λ2(w1) .
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20 Linear Algebra and Bundle Theory

It is clear that ω0 is a skew-symmetric two-form on V . Moreover, it is non-
degenerate and therefore symplectic. To see this, note that the map

φω0 : W ⊕W∗ −→ W∗ ⊕W

is given by

(w, λ) 7−→ (λ,−w) ,

which is an isomorphism.
It is clear that W and W∗ are Lagrangian subspaces of (V, ω0). Corollary 2.15

tells us that, for any pair consisting of a symplectic vector space V of dimen-
sion 2n and a Lagrangian subspace W, there exists a symplectomorphism onto
the pair (V,W). To understand the space of Lagrangian complements for a La-
grangian in a general symplectic vector space it therefore suffices to understand
the space of Lagrangian complements to W in (V, ω0).

Lemma 2.17 A vector subspace A ⊂ V is complementary to W if and only if
π2|A : A → W∗ is an isomorphism. If A is complementary to W, then A is the
graph of a uniquely determined linear map α : W∗ → W.

Proof The subspace A is complementary to W if and only if A ∩W = 0 and
A has dimension n. The first fact is equivalent to π2|A being injective. This
implies the first claim.

Suppose A is complementary to W. Then the inverse of π2|A is of the form

(π2|A)−1 : W∗ −→ A ⊂W ⊕W∗

λ 7−→ (α(λ), λ) .

Since the inverse of π2|A is linear, the map α itself is linear. This proves the
second claim. �

We want to understand when a complementary subspace A is Lagrangian.
For this we use the natural pairing

〈· , ·〉 : W×W∗ −→ R
(w,λ) 7−→ λ(w) .

A linear map α : W∗ → W is self-adjoint with respect to this pairing if

〈α(µ), λ〉 = 〈α(λ), µ〉 ∀µ, λ ∈ W∗ .

We then have the following result.

Proposition 2.18 Let A ⊂ V = W ⊕W∗ be a linear subspace complementary
to W, defined as the graph of a linear map α : W∗ → W. Then A is Lagrangian
with respect to ω0 if and only if α is self-adjoint.
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2.1 Linear Algebra 21

Proof The subspace A is Lagrangian if and only if ω0 vanishes on all pairs of
vectors (α(λ), λ) and (α(µ), µ) in V . For the evaluation we have

λ(α(µ)) − µ(α(λ)) = 〈α(µ), λ〉 − 〈α(λ), µ〉 .

This vanishes if and only if α is self-adjoint. �

Since there is a one-to-one correspondence between complements A and
linear maps α : W∗ → W, the space of all Lagrangian complements to W can
be identified with the vector space of symmetric, real (n × n)-matrices.

We summarise this discussion in the following result.

Theorem 2.19 Let (V, ω) be an arbitrary symplectic vector space of dimen-
sion 2n and L ⊂ V a Lagrangian subspace. Then the space L(V, ω, L) of all
Lagrangian subspaces L′ ⊂ V complementary to L is a real vector space of
dimension 1

2 n(n + 1).

2.1.4 Compatible Complex Structures

Recall that a complex structure on a real vector space V is an isomorphism
J : V → V such that J2 = −IdV . This makes V into a complex vector space by
declaring scalar multiplication by i ∈ C to be the application of J.

If V is a symplectic vector space, there are compatibility conditions one can
impose on the symplectic and complex structures.

Definition 2.20 Let (V, ω) be a symplectic vector space. A complex structure
J : V → V is tamed by the symplectic form if

ω(v, Jv) > 0 ∀v , 0 ∈ V .

A complex structure J on V is called compatible with the symplectic form ω if

gJ(v,w) = ω(v, Jw)

defines a positive-definite scalar product gJ on V .

We denote by J(V, ω) the space of all complex structures on V compatible
with the given symplectic form ω.

Lemma 2.21 A complex structure J on V is compatible with a symplectic
form ω if and only if it is tamed by ω and ω is J-invariant in the sense that

ω(Jv, Jw) = ω(v,w) ∀v,w ∈ V .
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22 Linear Algebra and Bundle Theory

Proof The complex structure is compatible with the symplectic form ω if and
only if gJ is symmetric and positive definite, i.e.

gJ(v,w) = gJ(w, v) ∀v,w ∈ V ,

gJ(v, v) > 0 ∀v , 0 ∈ V .

The second condition is equivalent to J being tamed by ω and the first condi-
tion is equivalent to

ω(Jv, Jw) = ω(v,w) ∀v,w ∈ V .

�

Proposition 2.22 Let (V, ω) be a symplectic vector space. Then there exists a
compatible complex structure J.

Proof According to the Linear Darboux Theorem (Theorem 2.5) there exists
a symplectic basis

(e1, . . . , en, f1, . . . , fn)

for V . Then J : V → V , defined by

Jei = fi ,

J fi = −ei ,

is a compatible complex structure. �

We want to understand the space J(V, ω) of all compatible complex struc-
tures. In particular, we want to show that this space is contractible. There are
several ways to prove this; the way we do it here involves Lagrangian sub-
spaces.

Lemma 2.23 Let (V, ω) be a symplectic vector space of dimension 2n with a
compatible complex structure J. If L ⊂ V is a Lagrangian subspace then JL is
a complementary gJ-orthogonal Lagrangian subspace to L.

Proof Since J is an isomorphism, the subspace JL has dimension n. It is
Lagrangian, because

ω(Jv, Jw) = ω(v,w) = 0 ∀v,w ∈ L .

Furthermore, it is gJ-orthogonal to L, for if v ∈ L and w ∈ JL, then Jw ∈ L and

gJ(v,w) = ω(v, Jw) = 0 .

�
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2.1 Linear Algebra 23

Proposition 2.24 Let (V, ω) be a symplectic vector space and L ⊂ V a La-
grangian subspace. For every positive-definite scalar product h on L and every
Lagrangian complement L′ there exists a unique, ω-compatible complex struc-
ture J on V such that L′ = JL and gJ |L = h.

Proof We first prove the existence of J. To do so we choose an h-orthonormal
basis (e1, . . . , en) for L and let ( f1, . . . , fn) be the unique basis for L′ so that
both bases together form a symplectic basis for V; see Proposition 2.16. We
then define a complex structure J on V by

Jei = fi ,

J fi = −ei .

By definition, we have JL = L′. It is clear that J is compatible with ω, be-
cause the basis (e1, . . . , en, f1, . . . , fn) is symplectic. In addition, (e1, . . . , en) is
an orthonormal basis of L for both h and gJ |L, hence gJ |L = h.

To show uniqueness, suppose that J and J′ are two complex structures that
satisfy the condition in the proposition. Choose again an h-orthonormal basis
(e1, . . . , en) for L, and let

f j = Je j ,

f ′j = J′e j .

The vectors { f j} and { f ′j } each form a basis for L′. It suffices to show that

f j = f ′j

for all indices j, since then J ≡ J′ on all of V .
By the uniqueness statement of Proposition 2.16 it suffices to show that

(e1, . . . , en, f1, . . . , fn)

and

(e1, . . . , en, f ′1 , . . . , f ′n)

are symplectic bases for V . We show this for the first basis; the argument is the
same for the second basis. We have

ω(ei, e j) = 0 = ω( fi, f j) ,

since L and L′ are Lagrangian. Furthermore,

ω(ei, f j) = ω(ei, Je j) = gJ(ei, e j) = h(ei, e j) = δi j ,

since J is ω-compatible. This proves the claim. �

We can now describe the space of compatible complex structures.
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24 Linear Algebra and Bundle Theory

Theorem 2.25 Let (V, ω) be a symplectic vector space. Fix some Lagrangian
subspace L and denote by Met(L) the space of all positive-definite scalar prod-
ucts on L. Then the map

F : J(V, ω) −→ L(V, ω, L)×Met(L)

J 7−→ (JL,gJ |L)

is a bijection, and a homeomorphism with respect to the natural topologies.
In particular, the space J(V, ω) of complex structures compatible with ω is

contractible.

Proof The map F is well defined and continuous. In Proposition 2.24 we
constructed the continuous inverse.

By Theorem 2.19 the space L(V, ω, L) is a vector space, and therefore is
contractible. The space of metrics Met(L) is not a vector space, but is convex,
and therefore contractible as well. �

To end this subsection, we need to discuss the relationship between orienta-
tions and Lagrangian splittings of symplectic vector spaces. Recall that a sym-
plectic vector space (V, ω) of dimension 2n has a canonical orientation defined
by ωn. This can also be thought of as the orientation defined by a compatible
complex structure J.

Suppose that we are given a decomposition V = L ⊕ L′ into complemen-
tary Lagrangian subspaces. Then it is possible to choose J so that it maps L
isomorphically to L′, and so any Lagrangian splitting has the form V = L ⊕ L.

Lemma 2.26 Let (V, ω) be a symplectic vector space of dimension 2n and
V = L ⊕ L a splitting into complementary Lagrangian subspaces. Choose
an orientation of L. Then the product orientation on L ⊕ L differs from the
symplectic orientation of V by the sign

ε(n) = (−1)
n(n−1)

2 .

Proof We can choose a symplectic basis

(e1, . . . , en, f1, . . . , fn)

for V , where the ei are an oriented basis for L, and the fi are an oriented basis
for L′ = L. The symplectic orientation of V corresponds to

e1 ∧ f1 ∧ . . . ∧ en ∧ fn

and we need

1 + 2 + 3 + 4 + · · · + (n − 1) =
1
2

n(n − 1)
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2.2 Symplectic and Complex Vector Bundles 25

many transpositions to change

e1 ∧ e2 ∧ . . . ∧ en ∧ f1 ∧ f2 ∧ . . . ∧ fn

to the symplectic orientation. This proves the claim. �

2.2 Symplectic and Complex Vector Bundles

Let π : E −→ M be a smooth real vector bundle over a smooth manifold M.

Definition 2.27 A symplectic structure on the vector bundle E is a smooth
section ω ∈ Γ(Λ2E∗) with the property that, for all x ∈ M, the form ω(x) is
symplectic on the fibre Ex.

In other words, ω is a fibrewise symplectic form on the fibres of E varying
smoothly in the neighbourhood of any point. We will sometimes refer to the
pair (E, ω) as a symplectic vector bundle.

Since symplectic vector spaces are even-dimensional and canonically ori-
ented by the top power of the symplectic form, every symplectic vector bundle
is oriented and of even rank 2n.

Definition 2.28 A complex structure on the vector bundle E is a smooth
section J ∈ Γ(End(E)) with the property that, for all x ∈ M, the endomorphism
J(x) is a complex structure on the fibre Ex.

Such a J makes E into a complex vector bundle, with scalar multiplication
by i being given by the application of J.

It turns out that every symplectic vector bundle is a complex vector bundle
in an essentially unique way. To discuss this we use compatibility between
symplectic forms and complex structures, which can be formulated for bundles
in the same way as we did for single vector spaces.

Theorem 2.29 Let (E, ω) be a symplectic vector bundle. Then there exists
a compatible complex structure J on E. Moreover, this complex structure is
unique up to homotopy.

Proof Let J(E, ω) → M be the locally trivial fibre bundle associated to
E whose fibre over x consists of the space J(Ex, ω(x)) of compatible com-
plex structures. According to Theorem 2.25, the fibres of this bundle are con-
tractible. Therefore the bundle admits a section, and, moreover, any two sec-
tions are homotopic through sections. �
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26 Linear Algebra and Bundle Theory

Conversely, if we are given a complex structure J on an arbitrary real vec-
tor bundle E, we can always choose a J-invariant positive-definite fibre-wise
scalar product g. Then

ω(v,w) = g(Jv,w)

is skew-symmetric. Since J is invertible and g is non-degenerate, it follows that
ω is non-degenerate and therefore a symplectic structure on E. Moreover, J is
compatible with this symplectic structure. The space of possible scalar prod-
ucts g in this construction is convex, and so up to homotopy ω is independent
of g and depends only on J.

To summarise, symplectic and complex vector bundles are really the same
(up to suitable notions of equivalence). We want to extend this equivalence to
include Lagrangian subbundles on the symplectic side.

Definition 2.30 Let (E, ω) be a symplectic vector bundle over a smooth man-
ifold M. A subbundle L ⊂ E is called Lagrangian if the fibre Lx is Lagrangian
in the symplectic vector space (Ex, ω(x)), for all x ∈ M.

Proposition 2.31 Let (E, ω) be a symplectic vector bundle over a smooth
manifold M, and L ⊂ E a Lagrangian subbundle. Then there exists a comple-
mentary Lagrangian subbundle L′, so that L ⊕ L′ = E.

Proof Let L(E, ω, L) → M be the smooth fibre bundle associated to E and
L whose fibre over x ∈ M consists of the space L(Ex, ω(x), Lx) of Lagrangian
subspaces in Ex complementary to Lx. Since the fibres of this bundle are con-
tractible according to Theorem 2.19, the bundle has a global section L′ over
M. �

With Proposition 2.24 we obtain the following.

Theorem 2.32 Let (E, ω) be a symplectic vector bundle of rank 2n over a
smooth manifold M. Suppose E = L ⊕ L′ is a splitting of E into two comple-
mentary Lagrangian subbundles. Choose an arbitrary, positive-definite bundle
metric h on L. Then there exists a unique complex structure J on E, compatible
with ω, such that L′ = JL and gJ |L = h.

Recall that a totally real subbundle F ⊂ E in a complex vector bundle (E, J)
is a subbundle with the property that J(Fx) ∩ Fx = 0 for all x ∈ M. By the
following result, totally real subbundles of maximal rank correspond to La-
grangian subbundles in symplectic vector bundles.

Theorem 2.33 A symplectic vector bundle (E, ω) of rank 2n admits a La-
grangian subbundle L ⊂ E if and only if the corresponding complex vector
bundle (E, J) admits a totally real subbundle F of rank n.
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Proof Given a Lagrangian subbundle L, the previous theorem gives a com-
plex structure J for which L is totally real. Conversely, given a totally real
subbundle F in (E, J), of maximal rank n, we can choose a J-invariant metric
g so that F and J(F) are g-orthogonal. Then the symplectic structure ω defined
by ω(v,w) = g(Jv,w) on E has F as a Lagrangian subbundle. �

Since a complex structure J : E → E is an orientation-preserving bundle
isomorphism, Lemma 2.26 implies the following.

Corollary 2.34 Let (E, ω) be a symplectic vector bundle of rank 2n over a
smooth manifold M. Suppose E = L ⊕ L′ is a splitting of E into two comple-
mentary Lagrangian subbundles.

(i) The vector bundles L and L′ are isomorphic as real, unoriented vector bun-
dles over M.

(ii) If L is orientable and we fix an orientation, then the product orientation on
L ⊕ L differs from the symplectic orientation of E by the sign

ε(n) = (−1)
n(n−1)

2 .

2.3 Künneth Vector Bundles

We can now define linear Künneth or bi-Lagrangian structures on vector bun-
dles.

Definition 2.35 A Künneth vector bundle is a symplectic vector bundle (E, ω)
together with a splitting E = L ⊕ L′ into complementary Lagrangian subbun-
dles.

Note that an ω-compatible J can be chosen so that it gives an isomorphism
between L and L′, and so the Lagrangian splitting always has the form L ⊕ L.
We will sometimes refer to the triple (E, ω, L) as a (linear) Künneth structure.

The definition of a Künneth structure can be reformulated in several ways.

Proposition 2.36 Let (E, ω) be a symplectic vector bundle of rank 2n. The
following conditions are equivalent:

(i) (E, ω) admits a Künneth structure,
(ii) (E, ω) admits a Lagrangian subbundle L ⊂ E,

(iii) the corresponding complex vector bundle (E, J) admits a totally real sub-
bundle of rank n,
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(iv) the corresponding complex vector bundle (E, J) is isomorphic to the com-
plexification L ⊗R C of a real vector bundle L of rank n.

Proof Clearly the first condition implies the second. Moreover, the existence
of Lagrangian complements in Proposition 2.31 gives the converse.

The second and third conditions are equivalent by Theorem 2.33.
The third condition implies the fourth since if F ⊂ E is totally real for J, then

(E, J) is C-linearly isomorphic to F ⊗R C. Conversely, if (E, J) is isomorphic
to L ⊗R C, then E = L ⊕ iL, and both summands are totally real. �

A Künneth vector bundle is in particular symplectic and therefore orientable
and oriented. However, the Lagrangian subbundle L may very well be non-
orientable. This motivates the following definition.

Definition 2.37 A Künneth structure (E, ω, L) is orientable if L is an ori-
entable vector bundle.

The existence of a Künneth structure on a vector bundle will impose restric-
tions on its characteristic classes. As usual, we will call Chern classes of a
symplectic vector bundle (E, ω) the Chern classes of the corresponding com-
plex vector bundle (E, J). Since J is unique up to homotopy, the Chern classes
are independent of the exact choice we make for J.

Theorem 2.38 Let (E, ω) be a symplectic vector bundle admitting a La-
grangian subbundle L ⊂ E. Then the odd-degree Chern classes c2i+1(E) ∈
H4i+2(M;Z) are two-torsion classes. If the Lagrangian subbundle L is ori-
entable, then c1(E) = 0.

Proof Under the assumption of the theorem, the complex vector bundle (E, J)
is the complexification of L, and its underlying real bundle is isomorphic to
L ⊕ L. It follows that

c2i+1(E) = β(w2i(L) ∪ w2i+1(L)) , (2.1)

where the w j denote the Stiefel–Whitney classes and

β : H4i+1(M;Z2) −→ H4i+2(M;Z)

is the Bockstein homomorphism associated to multiplication by 2 in the coef-
ficients. See for example Problem 15-D in [MS-74].

If L is orientable, so that w1(L) = 0, then we obtain

c1(E) = β(w1(L)) = 0 ∈ H2(M;Z) . (2.2)

�
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This is of course a strong obstruction to the existence of orientable Künneth
structures, because most real vector bundles do not admit a complex structure
with vanishing first Chern class.

Another obstruction comes from the Euler class:

Corollary 2.39 Let E be a Künneth vector bundle of real rank 4k + 2. Then
the Euler class e(E) is a two-torsion class.

Proof For any complex vector bundle, the Euler class of the underlying ori-
ented real vector bundle equals the top Chern class. By (2.1) this is a 2-torsion
class, since we assumed that the complex rank of E was odd. �

If (E, ω) is a Künneth bundle with Lagrangian subbundle L, then, as a real
unoriented vector bundle, E is isomorphic to L ⊕ L. If L is orientable and ori-
ented, then L ⊕ L has a product orientation induced from that of L. By Corol-
lary 2.34 this agrees with the canonical, symplectic or complex, orientation of
E after multiplication by

ε(n) = (−1)
n(n−1)

2 ,

where n is the complex rank of E, which is the real rank of L. Thus the isomor-
phism E � L⊕L is orientation-preserving if ε(n) = 1, and orientation-reversing
otherwise. If ε(n) = −1, we can think of the oriented bundle E as L ⊕ L, where
L denotes L endowed with the reversed orientation.

Now, by the Whitney sum formula for the Euler class, we have

e(E) = e(L) ∪ ε(n)e(L) = ε(n)e(L)2 . (2.3)

If n is odd, then e(L) is a two-torsion class, and so is e(E), which is what we
saw above. However, when n is even, e(L)2 may well be non-torsion.

Notes for Chapter 2
1. Using a different terminology, Künneth vector bundles were considered by Bejan
in [Bej-93].
2. Dazord [Daz-81] claimed that the (real) Euler class of any Künneth bundle vanishes.
His argument was that the Chern–Weil integrand vanishes identically if one chooses
an orthogonal connection adapted to the splitting E = L ⊕ L. A moment’s thought
about permutations shows that this argument requires the same dimension assumption
as Proposition 2.39, when the claim reduces to (2.1). In the Erratum [Daz-85], Dazord
mentions the dimension assumption, and then goes on to claim that e(ER) = e(L)2,
missing the sign in (2.3). This sign will be crucial in our considerations of tangent
bundles of four-manifolds in Chapter 10.

https://doi.org/10.1017/9781108902977.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108902977.002



