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Abstract

We focus on a question raised by Daws [‘Arens regularity of the algebra of operators on a Banach space’,
Bull. Lond. Math. Soc. 36 (2004), 493–503] concerning the Arens regularity of B(X), the algebra of
operators on a Banach space X. Among other things, we show that B(X) is Arens regular if and only if X
is ultrareflexive.
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1. Introduction

The second dual A∗∗ of a Banach algebra A can be made into a Banach algebra
with two, in general, different (Arens) products, each extending the original product
of A [1]. A Banach algebra A is said to be Arens regular when the Arens products
coincide. For example, every C∗-algebra is Arens regular [2]. For an explicit
description of the properties of these products and the notion of Arens regularity, one
may consult [3].

For the Banach algebra B(X) of bounded operators on a Banach space X, Daws
[5, Theorem 1] showed that if X is superreflexive, then B(X) is Arens regular. He also
conjectured the validity of the converse. To the best of our knowledge, this has not yet
been resolved. However, it is known that the Arens regularity of B(X) necessitates the
reflexivity of X (see [7, Theorems 2, 3] or [3, Theorem 2.6.23]).

In Section 2, we provide some preliminaries related to ultrapowers and
superreflexivity. In Section 3 we prove Theorem 3.1 from which we show that the
reflexivity of X is equivalent to the wo-compactness of Ball(B(X)). This motivates us
to introduce the notion of an ultrareflexive space and compare it with superreflexivity.
Section 4 is devoted to the main result of the paper (Theorem 4.4) stating that B(X) is
Arens regular if and only if X is ultrareflexive.
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2. Preliminaries

Let X be a Banach space, I an indexing set andU an ultrafilter on I. We define the
ultrapower XU of X with respect toU to be the quotient space

XU = `∞(X, I)/NU ,

where `∞(X, I) is the Banach space

`∞(X, I) =
{
(xα)α∈I ⊆ X : ‖(xα)‖ = sup

α∈I
‖xα‖ <∞

}
,

and NU is the closed subspace

NU =
{
(xα)α∈I ∈ `

∞(X, I) : lim
U
‖xα‖ = 0

}
.

Then the norm ‖(xα)‖U := limU ‖xα‖ coincides with the quotient norm. We can identify
X with a closed subspace of XU via the canonical isometric embedding X ↪→ XU ,
sending x ∈ X to the constant family (x). More information about ultrapowers can be
found in [6].

A Banach space X is called superreflexive if every finitely representable Banach
space in X is reflexive. We recall that a Banach space Y is finitely representable in X
if each finite dimensional subspace of Y is (1 + ε)-isomorphic to some subspace of X,
for each ε > 0. For example, every Banach space is finitely representable in c0, and
every finitely representable Banach space in `2 is a Hilbert space. In the language of
ultrapowers, Y is finitely representable in X if and only if Y is isometrically isomorphic
to a subspace of XU for some ultrafilter U on X [6, Theorem 6.3]. It follows that a
Banach space is superreflexive if and only if all of its ultrapowers are reflexive. Further,
X is superreflexive if and only if X∗ is superreflexive [6].

From [6, Section 7], there is a canonical isometry J : (X∗)U → (XU)∗ defined by

〈J(( fα)U), (xα)U〉 = lim
U
〈 fα, xα〉, (( fα)U ∈ (X∗)U , (xα)U ∈ XU),

which is a surjection if and only if XU is reflexive (whereU is countably incomplete).
In particular, when X is superreflexive, J is an isometric isomorphism.

As Ball(X∗∗) is w∗-compact, we can define a norm-decreasing map σ : XU → X∗∗

by
σ((xα)U) = w∗ − lim

U
κX(xα), ((xα)U ∈ XU),

where κX is the canonical embedding of X into X∗∗.

Proposition 2.1 [6, Proposition 6.7]. Let X be a Banach space. Then there exist an
ultrafilter U and a linear isometric embedding K : X∗∗ → XU such that σ ◦ K is the
identity on X∗∗ and K ◦ κX is the canonical embedding of X into XU . Thus K ◦ σ is a
norm-one projection of XU onto K(X∗∗).
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Note that the ultrafilter U, used in the above proposition, is countably incomplete.
Indeed,U is the ultrafilter induced by refining the order filter on the set

I = {(M,N, ε) : M ⊆ X∗∗ is finite, N ⊆ X∗ is finite, ε > 0}.

Set In = I(M,N,n−1) = {(M0,N0, ε) ∈ I : M ⊆ M0,N ⊆ N0 and ε ≤ n−1}. Then In+1 ⊆ In and⋂∞
n=1 In = ∅, soU is countably incomplete.
There are several criteria for the Arens regularity of a Banach algebra, from which

we quote the following, which we will use frequently. For a proof see [3, 5].

Proposition 2.2. For every Banach algebra A the following assertions are equivalent.

(1) A is Arens regular.
(2) For each λ ∈ A∗ the operator a 7→ λ · a : A −→ A∗ is weakly compact.
(3) For each λ ∈ A∗ there exist a reflexive space Z and a pair of bounded linear maps

φ : A→ Z and ψ : A→ Z∗ such that 〈λ, ab〉 = 〈ψ(a), φ(b)〉 for all a, b ∈ A.

We remark that, in Proposition 2.2, we can choose Z and φ so that ‖λ‖ ≤ ‖φ‖.

3. Weak operator compactness and reflexivity

Let X and Y be two Banach spaces and let τ be a locally convex topology on
Y induced by a separating family {pγ}γ∈Γ of seminorms. Then τ induces a τo-
topology on B(X, Y) which is induced by the family {x ⊗ pγ}x∈X,γ∈Γ of seminorms,
where (x ⊗ pγ)(T ) = pγ(T (x)) for all x ∈ X, T ∈ B(X, Y). Consequently, Tα

τo
−→ T if

and only if Tα(x)
τ
−→ T (x), for each x ∈ X. For example, in the case when τ = w is

the weak topology on Y , the τo-topology on B(X, Y) is the weak operator topology
(wo-topology) on B(X,Y). The next result relates Ball(Y) and Ball(B(X,Y)).

Theorem 3.1. Let X and Y be two Banach spaces and let τ be a locally convex topology
on Y which is weaker than the norm topology and induced by the seminorms {pγ} such
that ‖y‖ ≤ sup‖pγ‖≤1 |pγ(y)|, for all y ∈ Y. Then Ball(Y) is τ-compact if and only if
Ball(B(X,Y)) is τo-compact.

Proof. Suppose Ball(B(X,Y)) is τo-compact and fix f ∈ X∗ with ‖ f ‖ = 1 and f (x0) = 1,
for some x0 ∈ X. Then the operator Ψ : Y → B(X, Y), where Ψ(y)(x) = f (x)y is an
isometry. Moreover, yα

τ
−→ y if and only if Ψ(yα)

τo
−→ Ψ(y). If {yα} is a net in Ball(Y),

then {Ψ(yα)} is a net in Ball(B(X, Y)), so it has a τo-convergent subnet, say, {Ψ(yαβ)}.
Then {yαβ} is τ-convergent in Y: that is, Ball(Y) is τ-compact.

For the converse, define the operator Φ : B(X, Y)→ Πx∈S X Y by Φ(T ) = (T x)x∈S X .

Obviously, Φ is one-to-one and Tα
τo
−→ T if and only if Φ(Tα)

Πτ
−−→ Φ(T ). If {Tα}

is a net in Ball(B(X, Y)), then {Φ(Tα)} is a net in Πx∈S X Ball(Y). By the Tychonoff

theorem, Πx∈S X Ball(Y) is compact in the product τ-topology, so {Φ(Tα)} has a subnet
{Φ(Tαβ)} convergent in the product τ-topology and we can define an operator T :
X → X by T (x) = τ − limβ Tαβ(x). For each x ∈ S X , since |pγ(Tαβ(x))| ≤ ‖pγ‖ ‖Tαβ(x)‖,
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we have |pγ(T(x))|≤‖pγ‖ lim inf ‖Tαβ(x)‖. It follows that ‖T (x)‖≤ sup‖pγ‖≤1 |pγ(T (x))| ≤

lim inf ‖Tαβ(x)‖ ≤ 1. Thus ‖T‖ ≤ 1 and Tαβ
τo
−→ T , as claimed. �

The next result is an immediate consequence.

Proposition 3.2. Let X be a Banach space. Then:

(1) Ball(B(X)) is wo-compact if and only if X is reflexive;
(2) Ball(B(X)) is so-compact if and only if X is finite dimensional; and
(3) Ball(X∗) is w∗-compact (Banach–Alaoglu).

Proof. For (1) (respectively, (2)) we use Theorem 3.1 for Y = X with τ as the weak
(respectively, norm) topology. For (3) we use Theorem 3.1 for Y = C with τ as the
usual topology. �

4. Arens regularity of B(X) and ultrareflexivity

We commence with the next key lemma that will be used frequently in the
subsequent work.

Lemma 4.1. If X is reflexive then there is an (countably incomplete) ultrafilter U
such that every λ ∈ B(X)∗ can be identified with xU ⊗ fU for some xU ∈ `2(X)U and
fU ∈ `2(X∗)U .

Proof. The reflexivity of X implies that B(X)∗ � (X ⊗̂ X∗)∗∗. By Proposition 2.1, there
exist an ultrafilterU and a linear isometric embedding

(X ⊗̂ X∗)∗∗ ↪→ (X ⊗̂ X∗)U ,

such that the composition (X ⊗̂ X∗) ↪→ (X ⊗̂ X∗)∗∗ ↪→ (X ⊗̂ X∗)U coincides with the
canonical embedding (X ⊗̂X∗) ↪→ (X ⊗̂X∗)U . Consider λ ∈ B(X)∗ ↪→ (X ⊗̂X∗)U . Then
λ = (λα)U with λα =

∑∞
n=1 xαn ⊗ f αn , ‖λα‖ ≤

∑∞
n=1 ‖x

α
n‖ ‖ f

α
n ‖ ≤ ‖λ‖ + 1 and ‖xαn‖ = ‖ f αn ‖

for each (α, n) ∈ I × N.
For each α, put xα = (xαn )n∈N and f α = ( f αn )n∈N. Then xα ∈ `2(X) and f α ∈ `2(X∗).

Indeed

‖xα‖22 =

∞∑
n=1

‖xαn‖
2 =

∞∑
n=1

‖xαn‖ ‖ f
α
n ‖ ≤ ‖λ‖ + 1.

Now set xU = (xα)U and fU = ( f α)U . Clearly xU ∈ `2(X)U and fU ∈ `2(X∗)U . Then
λ = xU ⊗ fU , because

λ(T ) = (λα)U(T ) = lim
U
λα(T ) = lim

U

∞∑
n=1

f αn (T xαn )

= ((xα)U ⊗ ( f α)U)(T ) = (xU ⊗ fU)(T ). �

We recall that the superreflexivity of X is equivalent to that of `2(X), the Banach
space of all two-summable sequences in X (see [5, Proposition 4]). So X is
superreflexive if and only if Ball(`2(X)U) is weakly compact, or, equivalently, by
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Proposition 3.2, if Ball(B(`2(X)U)) is wo-compact for every ultrafilter U. This
motivates us to introduce the notion of ultrareflexivity in the next definition.

Definition 4.2. A Banach space X is called ultrareflexive if Ball(B(X))(xU) is weakly
compact for every ultrafilterU and each xU ∈ `2(X)U .

Clearly, every ultrareflexive space X is reflexive. Indeed, for each nonzero x ∈ X,
B(X)(x) = X. Further, if X is superreflexive then X is ultrareflexive (see Corollary 4.5).
Therefore ultrareflexivity lies between reflexivity and superreflexivity.

We are now ready to prove our main result characterising the Arens regularity of
B(X) in terms of the ultrareflexivity of X. The next technical lemma from [4] will be
used in the proof of Theorem 4.4.

Lemma 4.3 [4, Lemma 1]. Let X be a Banach space and W ⊆ X be a bounded,
symmetric and convex subset. For each n ∈ N let the norm ‖ · ‖n denote the gauge
of Un = 2nW + 2−nBall(X). Set Y = {x ∈ X : |||x||| = (

∑∞
n=1 ‖x‖

2
n)1/2 <∞}. Then:

(i) W ⊆ Ball(Y);
(ii) (Y, ||| · |||) is a Banach space and the identity embedding j : Y → X is bounded;
(iii) j∗∗ : Y∗∗ → X∗∗ is one-to-one and ( j∗∗)−1(X) = Y; and
(iv) Y is reflexive if and only if W is weakly relatively compact.

Theorem 4.4. For a Banach space X the following assertions are equivalent:

(a) B(X) is Arens regular;
(b) fU ◦ Ball(B(X)) is w∗-compact for every ultrafilterU and each fU ∈ `2(X)U

∗;
(c) fU ◦ Ball(B(X)) is w-compact for every ultrafilterU and each fU ∈ `2(X)U

∗;
(d) X is ultrareflexive.

Proof. (a)⇒ (b). Suppose B(X) is Arens regular,U is an ultrafilter, fU ∈ `2(X)U
∗ and

x ∈ X. These elements induce the functional x ⊗ fU ∈ B(X)∗.
Suppose that {Tα} is a net in Ball(B(X)). Since X is reflexive [3, Theorem 2.6.23],

by Proposition 3.2, Ball(B(X)) is wo-compact, so {Tα} has a subnet {Tαβ} such that

Tαβ
wo
−−→ T0, for some T0 ∈ Ball(B(X)). This implies that

(x ⊗ fU) · Tαβ
w∗
−−→ (x ⊗ fU) · T0.

By Proposition 2.2, the Arens regularity of B(X) also implies the weak compactness
of the operator

T 7→ (x ⊗ fU) · T : B(X)→ B(X)∗, (T ∈ B(X)),

from which
(x ⊗ fU) · Tαβ

w
−→ (x ⊗ fU) · T0,

for some new subnet {Tαβ} of the previous one.
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Fix xU ∈ `2(X)U and choose SU ∈ B(`2(X)U) so that SU(x) = xU . Define the
operator FSU : (x ⊗ fU) · B(X)→ C by

FSU ((x ⊗ fU) · T ) = fU(T (S (x))), (T ∈ B(X)).

Then FS U is linear and bounded. Indeed

‖FSU‖ = sup
‖(x⊗ fU)·T‖≤1

|FSU ((x ⊗ fU) · T )| = sup
‖ fU◦T‖≤1

| fU(T ◦ SU(x))|

≤ sup
‖ fU◦T‖≤1

‖ fU ◦ T‖ ‖x‖ ‖SU‖ ≤ ‖SU‖.

So we can extend FSU to an element FS U ∈ B(X)∗∗ with the same norm. This gives

( fU ◦ Tαβ)(xU) = fU(Tαβ(SU(x))) = FSU ((x ⊗ fU) · Tαβ)
→ FSU ((x ⊗ fU) · T0) = ( fU ◦ T0)(xU),

which implies that ( fU ◦ Tαβ)
w∗
−−→ ( fU ◦ T0), so fU ◦ Ball(B(X)) is w∗-compact in

`2(X)U
∗.

(b) ⇒ (c). Fix an ultrafilter U and fU ∈ `2(X)U
∗. By Proposition 2.1, there exists

an embedding `2(X)U
∗∗
↪→ `2(X)U×V, for some ultrafilter V. We also consider the

identification fU 7→ ( fU)V : `2(X)U
∗
↪→ `2(X)U×V

∗. By (b), ( fU)V ◦ Ball(B(X)) is w∗-
compact in `2(X)U×V

∗. From the above identifications, fU ◦ Ball(B(X)) is w-compact
in `2(X)U

∗.
(c)⇒ (d). First note that, since B(X) is isometrically ∗-antiisomorphic to B(X∗), the

Arens regularity of B(X) implies that of B(X∗). Now using (c) for xU ◦ Ball(B(X∗)),
the identification Ball(B(X))(xU) � xU ◦ Ball(B(X∗)) implies that Ball(B(X))(xU) is
weakly compact in `2(X)U for each xU ∈ `2(X)U .

(d) ⇒ (a). Suppose that X is ultrareflexive. Then X must be reflexive, so, by
Lemma 4.1, each element λ ∈ B(X)∗ has the tensorial form λ = xU ⊗ fU for some xU in
`2(X)U , fU ∈ `2(X)U

∗. To prove that B(X) is Arens regular, we use Proposition 2.2. For
this we first apply Lemma 4.3 to the subset W = Ball(B(X))(xU) of `2(X)U . It induces a
reflexive subspace YxU of `2(X)U such that W ⊆ Ball(YxU ) and the identity embedding
j : YxU −→ `2(X)U is bounded. Now we define φ : B(X)→ YxU and ψ : B(X)→ YxU

∗

by φ(T ) = T (xU) and ψ(T ) = fU ◦ T ◦ j, respectively. A direct verification reveals that
φ, ψ are bounded linear mappings satisfying

λ(S T ) = (xU ⊗ fU)(S T ) = 〈ψ(S ), φ(T )〉, (S ,T ∈ B(X)).

So B(X) is Arens regular, as required. �

For every superreflexive space X, the algebra B(X) is Arens regular (see [5, Theorem
1]). This remark gives the next corollary.

Corollary 4.5. Every superreflexive space is ultrareflexive.
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We do not know of an ultrareflexive space which is not superreflexive and it would
be highly desirable to find such an example. An example of a reflexive space which is
not ultrareflexive can be found in [5, Corollary 2].

5. On Daws’ conjecture

Daws [5, Theorem 1] showed that, if X is superreflexive, then B(X) is Arens regular
and he conjectured the validity of the converse statement. The following incomplete
idea may suggest a way of resolving Daws’ conjecture.

Let B(X) be Arens regular and let U be an arbitrary ultrafilter. For xU ∈ XU
choose fxU ∈ XU∗ so that ‖ fxU‖ = 1 and fxU (xU) = ‖xU‖. This induces a functional
λxU : B(X)→ C defined by 〈λxU , T 〉 = 〈 fU , T (xU)〉. By Proposition 2.2, there exist
a reflexive space ZxU and operators φxU : B(X)→ ZxU and ψxU : B(X)→ ZxU

∗ such
that ‖φxU‖ ≤ ‖λxU‖ and 〈λxU , S T 〉 = 〈ψxU (S ), φxU (T )〉, for all S , T ∈ B(X). Define
Z =
⊕`2

xU∈XU
ZxU . Trivially, Z is reflexive. If one could establish an (isometric)

embedding from XU into Z, then the reflexivity of Z implies that X is superreflexive.
However, we do not know how to find such an embedding.

For such an embedding, one may consider the map θ : XU → Z, which is defined
by θ(xU) = φxU (I). Then θ preserves the norm. Indeed,

‖θ(xU)‖ = ‖φxU (I)‖ ≤ ‖φxU‖ ≤ ‖λxU‖ ≤ ‖xU‖

and

‖θ(xU)‖ = ‖φxU (I)‖ = sup
‖z∗‖≤1,z∗∈Z∗

|〈z∗, φxU (I)〉| ≥ |〈ψxU (I), φxU (I)〉| = |〈λxU , I〉| = ‖xU‖.

However, we know nothing about the linearity of θ.
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