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The object of this note is to give an aspect to the problem of the functional
equation of the generalized gamma function and Dirichlet series which are
defined in [I].1 In general, we cannot answer the problem yet. But it is worthy to
attack this problem for some special cases.

Throughout this note 03 and Z denote the reals and the integers respectively.
Let F(X) and E(X)be two homogeneous polynomials in U[X~], X = (Xu •••,Xn),
of degree d > 0. Asume that F(x) ^ 0, E(x) ^ 0 for non-zero x e W. We put

C(F,s) = 2

r(£,s) = f e~|x' E(x)s-("ld)dx,
J K"

where | x|2 = x\ + ••• + xl and dx = dxt ••• dxn. It is proved in [1] that Z(F,s)
and F(£, s) are meromorphic functions of s.

If n = 1, we may assume F(X) = aX\ a > 0, and put F'1(X)=(l/a)Xd. We
denote the number a by | F\. We shall use the same notations for E(X).

If « ^ 2, we only consider the case of the quadratic forms, i.e., d = 2. Let

E(X)= £ e^Xj, F(X)= 2 fuXtXj

be two positive-definite quadratic forms. We may assume that E = (eu) and
F = (fij) are two n x n positive-definite matrices with real entries. So | E | = det(£)
/ 0, | F | = det(F) ^ 0 . Let E~l and f-1 be the inverse matrices of £ and F,
respectively.

1 The result in [1] appeared in the Bulletin of the American Mathematical Society, May
1969.
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The main result of this paper is

[2]

THEOREM. Under the above assumptions, £(E,F,s) satisfies the following
functional equation

For n = 1, we observe

T(E,s) = ar-H

where K = (— l)d, £(s) is the Riemann-zeta function and T(s) is the gamma func-
tion. Then, the theorem for n = 1 follows immediately from the functional
equation of the Riemann zeta function.

For n 2: 2 and d = 2, we shall use the polar coordinates in n-dimension ([1]).
Thus, we have

T(E, s) = i r(s) f E{(o)s-nl2d(o.

We want to prove the following lemma:

LEMMA. / / n S: 2 and d = 2, f/ien

| * f £(co)s-"/2da> = f fi-

PROOF. It is well known that there is an orthogonal n x n matrix U, i.e.,
t /"1 = ' [ / , such that

'UEU = A =
O

o
at>0.

Viewing X as a n x 1 matrix, £(X) = 'X£X and changing variables by X = U Y,
we shall have dx = dy, E(X) = A(Y) and \x\2 = \y\2. Hence, r ( £ , s ) = r(A,s),

i.e.,

Thus, it is enough to prove the lemma for the matrix A.
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Let

T =
O

O
, i.e., A = T2

and z = Ty. We shall have dy = | T\~1dz, A(y) = ]z)2 and ^ " ' ( z ) = \y\z.

So

By changing variables into the polar coordinates, i.e., z = rco,

we get

Put

*( f " e-'2^" 1(wV2s~'drrf©.
Js--i Jo

Jo

Since yl"J(co) > 0, for all oeS*"1 , we may put t = (^""'(
Then

H(co) = f °° <T'2f2s" \A ~ \co)ysdt = K^ " \o
Jo

So, we shall have

But, on the other hand

*r(s) f (i4">

f (
Js"-»

From above two forms, it is clear to see the lemma, q.e.d.
If we apply the functional equation for Epstein zeta function, i.e., ([2]),

and the lemma to Z(E,F,s), we shall obtain

« £ " \ F~ \ in - s) = | E |*| F |*£(£, F, s),

which proves the theorem.
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3

For general cases, I think that all the difficulties in solving this problem of
the functional equation come from the integral over n-sphere

f E(co)s-nlddco
Js»->

in the form of the generalized gamma function and from the lack of theta-formula
for the polynomials of higher degree. For example, we may define the function

0(T,X)= Z exp(27riTF(y + x))

for a positive-definite homogeneous polynomial F(I)eR[X], But, the infor-
mation for non-quadratic forms is inadequate. Some work in this direction has
been done by Ekkehard Kratzel [3].
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