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Abstract. An automorphism ϕ of a group G is said to be normal if ϕ(H) = H
for each normal subgroup H of G. These automorphisms form a group containing the
group of inner automorphisms. When G is a non-abelian free (or free soluble) group,
it is known that these groups of automorphisms coincide, but this is not always true
when G is a free metabelian nilpotent group. The aim of this paper is to determine the
group of normal automorphisms in this last case.
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1. Preliminary results. In a group G, consider a map ϕ : G → G of the form

ϕ : x �→ x [x, u1]λ(1) . . . [x, um]λ(m) ,

where u1, . . . , um are elements of G, the exponents λ(1), . . . , λ(m) being integers (as
usual, the commutator [a, b] is defined by [a, b] = a−1b−1ab). When G is metabelian,
using the relation [xy, u] = y−1[x, u]y[y, u], it is easy to see that ϕ is an endomorphism.
These endomorphisms appear in [4] (also see [1]). Such endomorphisms are not
necessarily automorphisms. But in a nilpotent group, each map of the form

x �→ w0xλ(1)w1xλ(2) . . . xλ(n)wn (with λ(1) + λ(2) + · · · + λ(n) = ±1)

is bijective [2, Theorem 1]. Hence we have:

PROPOSITION 1.1. In a metabelian nilpotent group G, every map ϕ : G → G of the
form ϕ : x �→ x

∏m
i=1 [x, ui]

λ(i) (ui ∈ G, λ(i) ∈ �) is an automorphism.

For convenience sake, in a metabelian nilpotent group, an automorphism of the
form x �→ x

∏m
i=1 [x, ui]

λ(i) will be called a generalized inner automorphism.
As usual, in a group, the left-normed commutator [x1, . . . , xn] is defined inductively

by

[x1, . . . , xn] = [x1, . . . , xn−1]−1[x1, . . . , xn−1]xn

= [x1, . . . , xn−1]−1x−1
n [x1, . . . , xn−1]xn.

The next technical result will be useful in the following.
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170 GÉRARD ENDIMIONI

PROPOSITION 1.2. In a group G, consider a map ϕ : G → G of the form

ϕ(x) = x
n∏

i=1

[x, vi,1, . . . , vi,σ (i)]η(i) (η(i) ∈ �),

for some function σ : {1, . . . , n} → � \ {0} and elements vi,j ∈ G (1 ≤ i ≤ n, 1 ≤ j ≤
σ (i)). Then ϕ(x) can be written in the form

ϕ(x) = x [x, u1]λ(1) . . . [x, um]λ(m) (λ(i) ∈ �, ui ∈ G).

Proof. By induction, using the relation [x, y, z] = [x, y]−1[x, z]−1[x, yz] �

Frequently in this paper we shall make use of well-known commutator identities
(see for example [7, 5.1.5]). In particular, we have the following relations, valid in a
metabelian group G, for any x, y, z ∈ G, t ∈ G′ and λ ∈ �:

[xt, y] = [x, y][t, y], [tλ, y] = [t, y]λ,

[x, y, z][y, z, x][z, x, y] = 1, [t, x, y] = [t, y, x].

PROPOSITION 1.3. The set of generalized inner automorphisms of a metabelian
nilpotent group G forms a (normal) subgroup of the group of automorphisms of G.

Proof. If ϕ and ψ are generalized inner automorphisms, the fact that ψ ◦ ϕ is a
generalized inner automorphism follows from Proposition 1.2. It remains to prove
that ϕ−1 is a generalized inner automorphism. For that, it suffices to construct for each
integer k ≥ 1 a generalized inner automorphism ψk such that ψk ◦ ϕ is of the form

ψk ◦ ϕ : x �→ x
m∏

i=1

[x, vi,1, . . . , vi,σ (i)]η(i)

for some function σ : {1, . . . , m} → � \ {0} and elements vi,j ∈ G (1 ≤ i ≤ m, 1 ≤ j ≤
σ (i)), and where each commutator is of weight ≥ 1 + 2k−1 (namely, σ (i) ≥ 2k−1 for
i = 1, . . . , m). Indeed, since G is nilpotent, this implies that ψk ◦ ϕ(x) = x for k large
enough, thus ϕ−1 = ψk is a generalized inner automorphism, as required. We argue by
induction on k. The result is clear when k = 1 by taking for ψ1 the identity map. Now
suppose that for some integer k ≥ 1, there exists a generalized inner automorphism
ψk such that ψk ◦ ϕ(x) = x

∏m
i=1[x, vi,1, . . . , vi,σ (i)]η(i), with σ (i) ≥ 2k−1 for i = 1, . . . , m.

Put ψk+1 = ψ ′ ◦ ψk, where ψ ′ is defined by ψ ′(x) = x
∏m

i=1[x, vi,1, . . . , vi,σ (i)]−η(i). We
have

ψk+1 ◦ ϕ(x) = x
m∏

i=1

[x, vi,1, . . . , vi,σ (i)]η(i)

×
m∏

j=1

[
x

m∏
i=1

[x, vi,1, . . . , vi,σ (i)]η(i), vj,1, . . . , vj,σ (j)

]−η(j)

.
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Since

m∏
j=1

[
x

m∏
i=1

[x, vi,1, . . . , vi,σ (i)]η(i), vj,1, . . . , vj,σ (j)

]−η(j)

=
m∏

i=1

[x, vj,1, . . . , vj,σ (j)]−η(j)
m∏

j=1

m∏
i=1

[x, vi,1, . . . , vi,σ (i), vj,1, . . . , vj,σ (j)]−η(i)η(j),

we obtain

ψk+1 ◦ ϕ(x) = x
m∏

j=1

m∏
i=1

[x, vi,1, . . . , vi,σ (i), vj,1, . . . , vj,σ (j)]−η(i)η(j)

and this completes the proof of the proposition. �

2. Main result. We recall that a normal automorphism ϕ of a group G is
an automorphism such that ϕ(H) = H for each normal subgroup H of G. These
automorphisms form a subgroup of the group of all automorphisms of G. Obviously,
this subgroup contains the subgroup of inner automorphisms of G. It happens these
subgroups coincide, for instance, when G is a non-abelian free group [5], a non-abelian
free soluble group [8], or a non-abelian free nilpotent group of class 2 [3]. On the other
hand, the subgroup of inner automorphisms is of infinite index in the group of normal
automorphisms when G is a non-abelian free nilpotent group of class k ≥ 3 [3]. Also
note there are exactly two normal automorphisms in a (non-trivial) free abelian group:
x �→ x and x �→ x−1.

Certainly, in a metabelian nilpotent group, each generalized inner automorphism
is a normal automorphism, but a normal automorphism need not to be a generalized
inner automorphism. However, our main result states that the converse holds in a
non-abelian free metabelian nilpotent group.

THEOREM 2.1. In a non-abelian free metabelian nilpotent group, the group of normal
automorphisms coincides with the group of generalized inner automorphisms.

3. Proof of Theorem 2.1. In all this section, we consider a fixed set S of cardinality
≥2 and we denote by Mk the free metabelian nilpotent group of class k > 1 freely
generated by S. In other words, Mk = F/F ′′γk+1(F), where F is the free group freely
generated by S and γk+1(F) the (k + 1)th term of the lower central series of F . The
normal closure in a group G of an element a is written 〈aG〉.

LEMMA 3.1. For any distinct elements a, b ∈ S and any integer t, the
subgroup 〈(atb)Mk〉 ∩ γk(Mk) � Mk is generated by the set of elements of the form
[atb, c1, . . . , ck−1], with c1, . . . , ck−1 ∈ S.

Proof. First suppose that t = 0 and consider an element w ∈ 〈bMk〉 ∩ γk(Mk).
Hence w is a product of elements of the form [c0, c1, . . . , ck−1]±1, with ci ∈ S. More
precisely, we can write w = w0w1, where w0 (resp. w1) is a product of elements of the
form [c0, c1, . . . , ck−1]±1 with ci ∈ S \ {b}, (resp. with ci ∈ S, the element b occurring
once at least in [c0, c1, . . . , ck−1]). In fact, substituting 1 for the indeterminate b in
the relation w = w0w1 and using the fact that w lies in 〈bMk〉, we obtain w0 = 1.
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Thus w is a product of elements of the form [c0, c1, . . . , ck−1]±1, with ci = b for some
i ∈ {0, . . . , k − 1}. If i = 1, we can write [c0, b, . . . , ck−1] = [b, c0, . . . , ck−1]−1. If i > 1,
we have [c0, c1, . . . , b, . . . , ck−1] = [c0, c1, b, . . . , ck−1] and it follows:

[c0, c1, . . . , b, . . . , ck−1] = [b, c1, c0, . . . , ck−1][b, c0, c1, . . . , ck−1]−1.

Thus we have shown that any element of 〈bMk〉 ∩ γk(Mk) is a product of elements of
the form [b, c1, . . . , ck−1]±1, with ci ∈ S. Since [b, c1, . . . , ck−1] ∈ 〈bMk〉 ∩ γk(Mk), the
lemma is proved when t = 0.

Now consider the general case. Actually, since clearly S′ = {atb} ∪ S \ {b} is a free
basis of Mk, we can use the result obtained in the particular case. It follows that
〈(atb)Mk〉 ∩ γk(Mk) is generated by the set of elements of the form [atb, c1, . . . , ck−1],
with ci ∈ S′. But, in fact, we may take ci ∈ S and so conclude, since

[atb, c1, . . . , atb, . . . , ck−1] = [atb, c1, . . . , a, . . . , ck−1]t[atb, c1, . . . , b, . . . , ck−1].

�
As usual, the expression [x,n y] is defined in a group by [x,0 y] = x and [x,n y] =

[[x,n−1 y], y] for each positive integer n.
For a fixed subset {a0, . . . , ar} ⊆ S and a function � : {0, . . . , r} → �, we define

in Mk the symbol [x, y,�] (x, y ∈ Mk) by

[x, y,�] = [x, y,�(0) a0,�(1) a1, . . . ,�(r) ar].

Note that for any sequence b1, . . . , bk of elements of {a0, . . . , ar}, there is a function
� : {0, . . . , r} → � such that [x, y, b1, . . . , bk] = [x, y,�], with �(0) + · · · + �(r) = k.
If j, j′ are distinct given integers in {0, . . . , r} and if �(j) �= 0, we define the function
�

(j′)
(j) : {0, . . . , r} → � by

�
(j′)
(j) (j) = �(j) − 1, �

(j′)
(j) (j′) = �(j′) + 1 and

�
(j′)
(j) (i) = �(i) for all i ∈ {0, . . . , r} \ {j, j′}.

When � is not the zero-function, we shall denote by m(�) the least integer j such that
�(j) �= 0.

If S is ordered, we may define in Mk basic commutators (see for example [6,
Chapter 3]). Recall that a basic commutator of weight k′ (2 ≤ k′ ≤ k) is a commutator
of the form [b1, b2, . . . , bk′ ] (bi ∈ S), with b1 > b2 and b2 ≤ b3 ≤ · · · ≤ bk′ . Any set of
these commutators freely generates a free abelian subgroup of M′

k.
In the next lemma, we aim to express a product of commutators of the form

[as, ai,�] as a product where only basic commutators occur.

LEMMA 3.2. Let {a0, . . . , ar} be a finite subset of S (r > 0). Choose an integer
s ∈ {0, . . . , r} and consider an element w ∈ Mk+2 (k > 0) of the form

w =
∏
i,�

[as, ai,�]ε(i,�) (ε(i,�) ∈ �),

where the product is taken over all integers i ∈ {0, . . . , r} \ {s} and all functions � :
{0, . . . , r} → � such that �(0) + · · · + �(r) = k. Then:

https://doi.org/10.1017/S0017089509990267 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990267


NORMAL AUTOMORPHISMS 173

(i) We have

w =
∏

i<s, i≤m(�)

[as, ai,�]ε(i,�)
∏

s<i, s≤m(�)

[ai, as,�]−ε(i,�)

×
∏

m(�)<s, m(�)<i

[
ai, am(�),�

(s)
(m(�))

]−ε(i,�) ∏
m(�)<s, m(�)<i

[
as, am(�),�

(i)
(m(�))

]ε(i,�)

(in all these products, i lies in {0, . . . , r} \ {s}).
(ii) We have w = 1 only if all exponents ε(i,�) with i ∈ {0, . . . , r} \ {s} occurring in the
expression of w are zero.

Proof. (i) First we write w as a product of two factors:

w =
∏

i≤m(�)

[as, ai,�]ε(i,�)
∏

m(�)<i

[as, ai,�]ε(i,�).

The first factor can be expressed in the form∏
i≤m(�)

[as, ai,�]ε(i,�) =
∏

i<s, i≤m(�)

[as, ai,�]ε(i,�)
∏

s<i≤m(�)

[as, ai,�]ε(i,�)

=
∏

i<s, i≤m(�)

[as, ai,�]ε(i,�)
∏

s<i≤m(�)

[ai, as,�]−ε(i,�).

In the same way, we have∏
m(�)<i

[as, ai,�]ε(i,�) =
∏

s≤m(�)<i

[as, ai,�]ε(i,�)
∏

m(�)<s, m(�)<i

[as, ai,�]ε(i,�)

=
∏

s≤m(�)<i

[ai, as,�]−ε(i,�)
∏

m(�)<s, m(�)<i

[as, ai,�]ε(i,�).

Therefore Lemma 3.2(i) is proved if we show the relation∏
m(�)<s, m(�)<i

[as, ai,�]ε(i,�) =
∏

m(�)<s, m(�)<i

[
ai, am(�),�

(s)
(m(�))

]−ε(i,�)

×
∏

m(�)<s, m(�)<i

[
as, am(�),�

(i)
(m(�))

]ε(i,�)
. (1)

For that, write more explicitly the commutator [as, ai,�] (in the following equalities,
we write m instead of m(�)):

[as, ai,�] = [as, ai,�(0) a0, . . . ,�(r) ar]

= [as, ai,�(m) am, . . . ,�(r) ar]

= [as, ai, am,�(m)−1 am, . . . ,�(r) ar].

Since [as, ai, am] = [ai, am, as]
−1 [am, as, ai]

−1 = [ai, am, as]
−1 [as, am, ai], we obtain

[as, ai,�] = [
ai, am,�

(s)
(m)

]−1[as, am,�
(i)
(m)

]
. (2)

Relation (1) is now an immediate consequence of (2).

https://doi.org/10.1017/S0017089509990267 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990267
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(ii) Choose an ordering of S such that as is the lowest element. Then, since [as, ai,�] =
[ai, as,�]−1, all commutators involved in w are inverses of basic commutators, and the
basic commutators that occur are distinct. The result follows. �

LEMMA 3.3. Let ϕ be a normal automorphism of Mk+2 (k > 0) acting trivially on
Mk+2/γk+2(Mk+2). Then, for all distinct elements a, b ∈ S, there exists a generalized
inner automorphism ψ of Mk+2 such that ϕ(a) = ψ(a) and ϕ(b) = ψ(b).

Proof. Let a, b be two distinct elements of S. Then a−1ϕ(a) and b−1ϕ(b) belong to
〈aMk+2〉 ∩ γk+2(Mk+2) and 〈bMk+2〉 ∩ γk+2(Mk+2) respectively. By Lemma 3.1, there is a
finite subset {a = a0, a1, . . . , ar = b} ⊆ S such that

ϕ(a) = ϕ(a0) = a0

∏
i,�

[a0, ai,�]α(i,�) (α(i,�) ∈ �),

ϕ(b) = ϕ(ar) = ar

∏
i,�

[ar, ai,�]β(i,�) (β(i,�) ∈ �),

where the two products are taken over all integers i ∈ {0, . . . , r} and all functions � :
{0, . . . , r} → � with �(0) + · · · + �(r) = k (as in Lemma 3.2, [as, ai,�] is defined by
[as, ai,�] = [as, ai,�(0) a0, . . . ,�(r) ar]). Note that if |S| = 2 (and so r = 1), Lemma 3.3
is easily verified by taking the generalized inner automorphism ψ defined by

ψ(x) = x
∏
�

[x, a1,�]α(1,�)
∏
�

[x, a0,�]β(0,�).

Thus we shall assume in the following that |S| > 2. By Lemma 3.1, for any positive
integer t, (at

0ar)−1ϕ(at
0ar) can be expressed as a product of elements of the form[

at
0ar, c1, . . . , ck+1

]±1
, with c1, . . . , ck+1 ∈ S. But (at

0ar)−1ϕ(at
0ar) = (at

0ar)−1ϕ(a0)tϕ(ar)
belongs to 〈a0, a1, . . . , ar〉. Therefore, substituting 1 for all indeterminates in S \
{a0, a1, . . . , ar} in the expression of (at

0ar)−1ϕ(at
0ar), we can assume that c1, . . . , ck+1 ∈

{a0, a1, . . . , ar}. It follows that ϕ(at
0ar) can be expressed in the form

ϕ(at
0ar) = at

0ar

∏
i,�

[
at

0ar, ai,�
]ηt(i,�)

(ηt(i,�) ∈ �)

= at
0ar

∏
i,�

[a0, ai,�]tηt(i,�)
∏
i,�

[ar, ai,�]ηt(i,�).

Thus the relation ϕ(at
0ar) = ϕ(a0)tϕ(ar) implies

∏
i,�

[a0, ai,�]tηt(i,�)
∏
i,�

[ar, ai,�]ηt(i,�)

=
∏
i,�

[a0, ai,�]tα(i,�)
∏
i,�

[ar, ai,�]β(i,�). (3)

Choose an order in S such that a0 < a1 < · · · < ar and express each product in (3)
as a product of basic commutators (or their inverses). Considering, for instance, the
left-hand side of (3) (the treatment of the righthand side is similar), we have∏

i,�

[a0, ai,�]tηt(i,�) =
∏

i �=0, �

[ai, a0,�]−tηt(i,�)
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and, by using Lemma 3.2(i) with s = r,∏
i,�

[ar, ai,�]ηt(i,�) =
∏

i �=r, i≤m(�)

[ar, ai,�]ηt(i,�)

×
∏

i �=r, m(�)<i

[
ai, am(�),�

(r)
(m(�))

]−ηt(i,�) ∏
i �=r, m(�)<i

[ar, am(�),�
(i)
(m(�))]

ηt(i,�).

Thus relation (3) can be written in the form∏
i �=0, �

[ai, a0,�]−tηt(i,�)
∏

i �=r, i≤m(�)

[ar, ai,�]ηt(i,�)

×
∏

i �=r, m(�)<i

[
ai, am(�),�

(r)
(m(�))

]−ηt(i,�) ∏
i �=r, m(�)<i

[
ar, am(�),�

(i)
(m(�))

]ηt(i,�)

=
∏

i �=0, �

[ai, a0,�]−tα(i,�)
∏

i �=r, i≤m(�)

[ar, ai,�]β(i,�)

×
∏

i �=r, m(�)<i

[
ai, am(�),�

(r)
(m(�))

]−β(i,�) ∏
i �=r, m(�)<i

[
ar, am(�),�

(i)
(m(�))

]β(i,�)
. (4)

Now consider an integer i ∈ {1, . . . , r − 1} and a function � : {0, . . . , r} → �, with
�(0) + · · · + �(r) = k (we can always suppose that r > 1 since |S| > 2). By identifying
the exponents of the basic commutator [ai, a0,�] of each side of relation (4), it is easy
to see that

tηt(i,�) + ηt

(
i,�(0)

(r)

)
= tα(i,�) + β

(
i,�(0)

(r)

)
(5)

if �(r) > 0, and ηt(i,�) = α(i,�) if �(r) = 0. We prove by induction on �(r) that
actually, we have always the equality ηt(i,�) = α(i,�). At first observe that if �(r) > 0,
we have �

(0)
(r) (r) = �(r) − 1 and so ηt(i,�

(0)
(r) ) = α(i,�(0)

(r) ) by induction. Hence relation
(5) implies

α
(

i,�(0)
(r)

)
− β

(
i,�(0)

(r)

)
= t {α(i,�) − ηt(i,�)} .

Consequently, each positive integer t divides the integer α(i,�(0)
(r) ) − β(i,�(0)

(r) ), which
is independent of t. It follows that α(i,�(0)

(r) ) = β(i,�(0)
(r) ) and so ηt(i,�) = α(i,�), as

required.
Using theses relations and taking t = 1, relation (3) implies∏

�

[a0, ar,�]η(r,�)
∏
i,�

[ar, ai,�]η(i,�) =
∏
�

[a0, ar,�]α(r,�)
∏
i,�

[ar, ai,�]β(i,�)

(we write η for η1) and so∏
i,�

[ar, ai,�]β(i,�) =
∏
i,�

[ar, ai,�]η(i,�)
∏
�

[ar, a0,�]α(r,�)−η(r,�).

Since ϕ(ar) = ar
∏

i,�[ar, ai,�]β(i,�), we obtain

ϕ(ar) = ar

∏
i,�

[ar, ai,�]η(i,�)
∏
�

[ar, a0,�]α(r,�)−η(r,�) (6)
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Now consider the generalized inner automorphism ψ defined by

ψ(x) = x
∏

i=1,...,r, �

[x, ai,�]α(i,�)
∏
�

[x, a0,�]α(r,�)+η(0,�)−η(r,�).

We have

ψ(a0) = a0

∏
i=1,...,r, �

[a0, ai,�]α(i,�) = ϕ(a0).

In the same way,

ψ(ar) = ar

∏
i=1,...,r−1, �

[ar, ai,�]α(i,�)
∏
�

[ar, a0,�]α(r,�)+η(0,�)−η(r,�)

= ar

∏
i=1,...,r−1, �

[ar, ai,�]η(i,�)
∏
�

[ar, a0,�]α(r,�)+η(0,�)−η(r,�)

= ar

∏
i, �

[ar, ai,�]η(i,�)
∏
�

[ar, a0,�]α(r,�)−η(r,�)

and so ψ(ar) = ϕ(ar) by (6). This completes the proof of Lemma 3.3. �
LEMMA 3.4. Let ϕ be a normal automorphism of Mk+2 (k > 0) acting trivially on

Mk+2/γk+2(Mk+2). Then ϕ is a generalized inner automorphism of Mk+2.

Proof. We can assume that |S| > 2 (otherwise Lemma 3.4 is a consequence of
Lemma 3.3). Consider two distinct elements a, b ∈ S. According to Lemma 3.3, there
exists a generalized inner automorphism ψ such that ϕ(a) = ψ(a) and ϕ(b) = ψ(b). It
suffices to prove that for any c ∈ S \ {a, b}, we have ϕ(c) = ψ(c). For that, apply again
Lemma 3.3: there are generalized inner automorphisms ψ ′, ψ ′′ such that ϕ(a) = ψ ′(a),
ϕ(c) = ψ ′(c) and ϕ(b) = ψ ′′(b), ϕ(c) = ψ ′′(c). There exists a finite subset {a0, . . . , ar} ⊆
S, containing a, b, c, such that ψ,ψ ′, ψ ′′ can be defined by the equations

ψ(x) = x
∏
i, �

[x, ai,�]ε(i,�)

ψ ′(x) = x
∏
i, �

[x, ai,�]ε
′(i,�)

ψ ′′(x) = x
∏
i, �

[x, ai,�]ε
′′(i,�)

(the products are taken over all integers i ∈ {0, . . . , r} and all functions � : {0, . . . , r} →
� with �(0) + · · · + �(r) = k). Since ψ(a) = ψ ′(a), we have

a
∏
i, �

[a, ai,�]ε(i,�) = a
∏
i, �

[a, ai,�]ε
′(i,�)

and so ∏
i,�

[a, ai,�]ε(i,�)−ε′(i,�) = 1.

Applying Lemma 3.2(ii), we obtain ε(i,�) = ε′(i,�) for all functions � and all
integers i ∈ {0, . . . , r} such that ai �= a. Similarly, we have ε(i,�) = ε′′(i,�) if ai �= b

https://doi.org/10.1017/S0017089509990267 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990267


NORMAL AUTOMORPHISMS 177

and ε′(i,�) = ε′′(i,�) if ai �= c. It follows that ε(i,�) = ε′(i,�) for all function � and
all integer i ∈ {0, . . . , r}, hence ψ = ψ ′. Thus ϕ(c) = ψ ′(c) = ψ(c), as required. �

Proof of Theorem 2.1. We argue by induction on the nilpotency class k of Mk. If k =
2, the result follows from [3, Theorem 2(ii)] (in this case, each normal automorphism
is inner). Now consider a normal automorphism ϕ of Mk, with k > 2. Then ϕ induces
a normal automorphism on the quotient group Mk/γk(Mk). By induction, since this
quotient is isomorphic to Mk−1, there exists a generalized inner automorphism ψ :
Mk → Mk such that ϕ(x) = ψ(x)θ (x), where θ (x) is an element of γk(Mk). It follows
that ψ−1(ϕ(x)) = xψ−1(θ (x)). Thus ψ ′ := ψ−1 ◦ ϕ is a normal automorphism of Mk

acting trivially on Mk/γk(Mk). By Lemma 3.4, ψ ′ is a generalized inner automorphism,
and so is ϕ = ψ ◦ ψ ′. This completes the proof of Theorem 2.1. �
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