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MAXIMIZING THE PROBABILITY OF STOPPING
ON ANY OF THE LAST m SUCCESSES IN
INDEPENDENT BERNOULLI TRIALS
WITH RANDOM HORIZON

MITSUSHI TAMAKI,∗ Aichi University

Abstract

We consider the problem of maximizing the probability of stopping on any of the last m

successes in independent Bernoulli trials with random horizon of length N , where m is
a predetermined integer. A prior is given for N . It is known that, when N is degenerate,
i.e. P{N = n} = 1 for a given n > m, the sum-the-multiplicative-odds theorem gives
the solution and shows that the optimal rule is a threshold rule, i.e. it stops on the first
success appearing after a given stage. However, when N is nondegenerate, the optimal
rule is not necessarily a threshold rule. So our main concern in Section 2 is to give
a sufficient condition for the optimal rule to be a threshold rule when N is a bounded
random variable such that P{N ≤ n} = 1. Application will be made to the usual (discrete
arrival time) secretary problem with a random number N of applicants in Section 3.
When N is uniform or curtailed geometric, the optimal rules are shown to be threshold
rules and their asymptotic results are obtained. We also examine, as a nonhomogeneous
Poisson process model, an intermediate prior that allows N to be uniform or degenerate.
In Section 4 we consider a continuous arrival time version of the secretary problem with
a random number M of applicants. It is shown that, whatever the distribution of M , we
can win with probability greater than or equal to u∗

m, where u∗
m is, as given in (1.4), the

asymptotic win probability of the usual secretary problem when N degenerates to n and
n → ∞.

Keywords: Optimal stopping; secretary problem; best choice; sum-the-odds theorem;
sum-the-multiplicative-odds theorem; threshold rule; e−1-law; continuous arrival time
model
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1. Introduction and summary

Before considering our problems, we briefly review the sum-the-multiplicative-odds theorem
and the secretary problem. Let n be a given positive integer, and suppose that n independent
Bernoulli trials are performed one at a time, each of which results in a success or a failure. That
is, if we let Xj equal 1 if the j th trial is a success and 0 if it is a failure, then X1, X2, . . . , Xn

are independent Bernoulli random variables that are observed sequentially. When we seek an
optimal stopping rule of this sequential observation problem with the objective of maximizing
the probability of stopping on any of the last m successes for a predetermined m (we assume
that n > m throughout this paper unless otherwise specified, because, for n ≤ m, the optimal
rule evidently stops on the first success), the following theorem gives a solution if we let
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aj = P{Xj = 1}, bj = 1 − aj , and rj = aj /bj , and define, for j ≥ 1 and k ≥ 0,

Rk,i,j =
∑

k<t1<t2<···<tj ≤i

rt1rt2 · · · rtj (1.1)

for k + j ≤ i ≤ n and Rk,i,j = 0 for k + j > i.

Theorem 1.1. (Sum-the-multiplicative-odds theorem (STMOT).) For the problem of maximiz-
ing the probability of stopping on any of the last m successes in n independent Bernoulli trials,
the optimal rule stops on the first success Xk = 1 with k ≥ sm(n), if any, where

sm(n) = min{k ≥ 1 : Rk,n,m ≤ 1}. (1.2)

Moreover, the maximal probability of win (i.e. achieving the objective) is

um(n) =
( n∏

j=sm(n)

bj

)( m∑
j=1

Rsm(n)−1,n,j

)
.

See Tamaki (2010) for further details of the STMOT. When m = 1, the STMOT is referred
to as the sum-the-odds theorem, which was obtained in Bruss (2000) and later extended into
several directions in Ferguson (2008). See also Hill and Krengel (1992), Hsiau andYang (2002),
Bruss (2003), Bruss and Paindaveine (2000), Bruss and Louchard (2009), and Ano et al. (2010)
for related works.

An interesting application of the STMOT appears in the secretary problem described as
follows. A known number n of rankable applicants (1 being the best and n the worst) appear
one at a time in random order with all n! permutations equally likely. That is, each of the
successive ranks of n applicants constitutes a random permutation. Suppose that all that can be
observed are the relative ranks of the applicants as they appear. If Yj denotes the relative rank
of the j th applicant among the first j applicants, the sequentially observed random variables
are Y1, Y2, . . . , Yn. It is well known that

(a) Y1, Y2, . . . , Yn are independent random variables;

(b) P{Yj = i} = 1/j, 1 ≤ i ≤ j, 1 ≤ j ≤ n.

The j th applicant is called a candidate if he/she is relatively best, i.e. Yj = 1. If the objective
is to stop on any of the last m successes, that is, any of the last m candidates (stopping is identified
with selection of an applicant in the secretary problem), independent Bernoulli random variables
X1, X2, . . . , Xn are specified by Xj = I (Yj = 1), where I (E) is the indicator function of an
event E, so the STMOT gives the solutions sm(n) and um(n) corresponding to aj = 1/j . In
particular, as n tends to ∞, we have

s∗
m = lim

n→∞
sm(n)

n
= exp{−(m!)1/m} (1.3)

and

u∗
m = lim

n→∞ um(n) = exp{−(m!)1/m}
m∑

j=1

(m!)j/m

j ! . (1.4)
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See Lemma 3.2 and Table 1 of Tamaki (2010) for (1.3), (1.4), and their numerical values.
The secretary problem with m = 1, referred to as the best-choice problem (because the last
candidate is best overall), gives the well-known result s∗

1 = u∗
1 = e−1. The reader is referred

to Ferguson (1989) and Samuels (1991) for reviews of the secretary problem.
In Section 2, the STMOT is extended to allow for a random horizon of length N . That is,

N represents the random number of Bernoulli trials to be performed, and is assumed to be a
bounded random variable that is also independent of Bernoulli trials. A prior distribution will
be given for N . A stopping rule is said to be a threshold rule if it stops only on the first success
appearing after a given stage. In particular, the optimal rule, as described in the STMOT, is said
to be a threshold rule with value sm(n). It is known that, for a random N , the optimal rule is not
necessarily a threshold rule (see, e.g. Presman and Sonin (1972)). Hence, our main concern in
Section 2 is to give a simple sufficient condition for the optimal rule to be a threshold rule.

An application of this condition again appears in the secretary problem (i.e. aj = 1/j )
with a random number N of applicants. In particular, for the problem with N uniform on
{1, 2, . . . , n}, the optimal rule will be shown to be a threshold rule with value tm(n) having the
limiting property

t∗m = lim
n→∞

tm(n)

n
= exp{−[(m + 1)!]1/m}. (1.5)

The corresponding probability of win vm(n) also has the limit

v∗
m = lim

n→∞ vm(n) = exp{−[(m + 1)!]1/m}
m∑

j=1

[(m + 1)!](j+1)/m

(j + 1)! . (1.6)

See Lemma 3.1 and Table 1 in Section 3 for (1.5), (1.6), and their numerical values. We see that
t∗1 = e−2 and v∗

1 = 2e−2, which coincides with the result derived in Presman and Sonin (1972),
who were the first to study the best-choice problem with a random number of applicants. See
also Irle (1980) and Petruccelli (1983). It may be interesting to compare (t∗m, v∗

m) and (s∗
m, u∗

m)

as two extremes. A generalized uniform prior that can be a bridge between (s∗
m, u∗

m) and
(t∗m, v∗

m) will be discussed as a nonhomogeneous Poisson process model in Section 3.1. In
addition to the uniform prior, a curtailed geometric prior is also examined in detail. See also
the best-choice problem with random freeze in Samuel-Cahn (1995) as a related work.

We consider a variation of the secretary problem in Section 4 as a contrast to the problem
studied in Sections 2 and 3. Instead of having the applicants appear in discrete time, we have
them appear in continuous time. As such, we consider the continuous arrival time model posed
in Bruss (1984) and give a generalization of the so-called e−1-law for m = 1.

2. Bernoulli trials with random horizon

Let X1, X2, . . . be a sequence of independent Bernoulli random variables with P{Xi =
1} = ai for 1 ≤ i, and let N be a bounded random variable having a prior distribution
pk = P{N = k} such that

∑n
k=1 pk = 1 and pn > 0 for a given n. We also assume that

N is independent of X1, X2, . . . . The objective of the problem is to find a stopping rule that
maximizes the probability of stopping on any of the last m successes in N trials. Remember
that the problem with {ai = 1/i, i ≥ 1} is referred to as a secretary problem.

For ease of description, let, for a given prior {pk, 1 ≤ k ≤ n},
πk = P{N ≥ k} = pk + pk+1 + · · · + pn, 1 ≤ k ≤ n,
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with π1 = 1 and πn > 0 (π0 is interpreted as 1 if it appears). Write bi = 1 − ai and ri = ai/bi

as before, and let

Bk,i = bk+1bk+2 . . . bi, 0 ≤ k < i ≤ n,

with Bk,k = 1 for convenience. Define Rk,i,j as in (1.1). Then we have the following
preliminary lemma concerning the number of successes.

Lemma 2.1. For a given k ≥ 0, assume that 0 < al < 1 for l ≥ k + 1. Then, for j ≥ 0,

(i) P{Xk+1 + · · · + Xi = j} = Bk,iRk,i,j , k + j ≤ i ≤ n;
(ii) P{Xk+1 + · · · + XN = j | N ≥ k} = ∑n

i=k+j (Bk,iRk,i,j )pi/πk, k + j ≤ n,

where we use the additional convention that Rk,i,0 = 1 for i ≥ k to make (i) and (ii) valid for
j = 0 as well.

Proof. (i) See the proof of Theorem 1 of Bruss (2000). Since the Xj s are independent of
N , (ii) is immediate from (i) by conditioning on the value of N ≥ k.

Remark 2.1. In the secretary problem, a1 = 1, so Lemma 2.1 is not applicable to the secretary
problem for k = 0. However, since X1 = 1 and N ≥ 1 with probability 1, it is easy to relate
k = 0 to k = 1 as follows:

(i) P{X1 + · · · + Xi = j} = P{X2 + · · · + Xi = j − 1};
(ii) P{X1 + · · · + XN = j | N ≥ 0} = P{X2 + · · · + XN = j − 1 | N ≥ 1}.

To avoid an unnecessary complication, we assume that 0 < ai < 1 for i ≥ 1 throughout this
paper except for the secretary problem.

Denote by k the state in which we have observed the kth trial to be successful, 1 ≤ k ≤ n.
Let S(k) and C(k) represent the win probabilities when stopping on the present success in state
k and when continuing observations (after leaving state k) in an optimal manner, respectively.
Then V (k) = max{S(k), C(k)} represents the optimal value attained by starting from state k.
Let Qj(k) be the probability that the number of successes resulting from the future trials, after
leaving state k, is j . This is just the probability given in Lemma 2.1(ii), i.e.

Qj(k) =
n∑

i=k+j

(Bk,iRk,i,j )
pi

πk

, k + j ≤ n, (2.1)

with Qj(k) = 0, k + j > n, and we can write

S(k) =
min(m−1,n−k)∑

j=0

Qj(k) =

⎧⎪⎪⎨
⎪⎪⎩

m−1∑
j=0

Qj(k) if k ≤ n − m,

1 if k > n − m,

(2.2)

because, by stopping in state k, we win if the number of future successes is less than m.
On the other hand, if we decide not to stop in state k and proceed to the next stage, we can

observe the (k + 1)th trial with probability πk+1/πk , but observe no trial with the remaining
probability 1 −πk+1/πk , in which case we come to know that the kth trial was the last trial and
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we have lost. The (k + 1)th trial, if performed, results in a success or a failure with respective
probabilities of ak+1 and bk+1. Hence, we have

C(k) = πk+1

πk

[ak+1V (k + 1) + bk+1C(k + 1)], 1 ≤ k < n, (2.3)

with the obvious boundary condition C(n) = 0. Note that the same reasoning can be used to
yield the recursive form of Qj(k), in addition to (2.1), as follows:

Qj(k) = πk+1

πk

[ak+1Qj−1(k + 1) + bk+1Qj(k + 1)], j ≥ 1, (2.4)

Q0(k) = pk

πk

+ πk+1

πk

bk+1Q0(k + 1). (2.5)

Define C̃(k) to be the win probability when using a rule of stopping on the first success after
leaving state k, if any. Then, from (2.3), C̃(k) satisfies the relation

C̃(k) = πk+1

πk

[ak+1S(k + 1) + bk+1C̃(k + 1)], 1 ≤ k < n. (2.6)

Under this rule, we win if and only if the number of future successes is greater than 0 but less
than m + 1, so C̃(k) must be expressed as

C̃(k) =
min(m,n−k)∑

j=1

Qj(k) =

⎧⎪⎨
⎪⎩

m∑
j=1

Qj(k) if k ≤ n − m,

1 − Q0(k) if k > n − m.

(2.7)

Remark 2.2. We can formally check that (2.7) holds by induction as follows. It clearly holds
for k > n − m. Assume that C̃(k + 1) = ∑m

j=1 Qj(k + 1) for k + 1 ≤ n − m. Then we have,
from (2.6), (2.2), and the induction hypothesis,

C̃(k) = πk+1

πk

[
ak+1

m−1∑
j=0

Qj(k + 1) + bk+1

m∑
j=1

Qj(k + 1)

]

= πk+1

πk

[
ak+1

m∑
j=1

Qj−1(k + 1) + bk+1

m∑
j=1

Qj(k + 1)

]

=
m∑

j=1

Qj(k)

as desired, where the last equality follows from (2.4).

Let

tm(n) = min{j : S(k) ≥ C̃(k) for all j ≤ k ≤ n}. (2.8)

Then the backward induction shows that it is optimal to stop in state k ≥ tm(n). We now have
the following result.

Lemma 2.2. Whatever the distribution of N(≤ n), the first time the optimal rule stops on a
success occurs no later than the sm(n)th trial, where sm(n) is as defined in (1.2). Moreover,
the optimal rule stops on the first success among trials sm(n), sm(n) + 1, . . . , n if stopping has
not occurred previously.
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Proof. It is sufficient to show that tm(n) ≤ sm(n). Since tm(n) ≤ n − m + 1 from (2.2) and
(2.7), and S(k) ≥ C̃(k) is equivalent to Q0(k) ≥ Qm(k) for k ≤ n − m, we can write

tm(n) = min{j : Q0(k) − Qm(k) ≥ 0 for all j ≤ k ≤ n − m} (2.9)

with min{φ} = n − m + 1, and obtain, from (2.1), the expression

Q0(k) − Qm(k) = (π−1
k )

[k+m−1∑
i=k

Bk,ipi +
n∑

i=k+m

Bk,ipi(1 − Rk,i,m)

]
. (2.10)

By definition, Rk,i,m is nonincreasing in k and nondecreasing in i, so we easily see that tm(n) ≤
sm(n) from (1.2), (2.9), and (2.10).

Theorem 2.1. A necessary and sufficient condition for the optimal rule to be a threshold rule
with value tm(n) is that, for all 1 ≤ k < tm(n) − 1 (if such a k exists),

πk

m−1∑
j=0

Qj(k) < πtm(n)−1

m∑
j=1

Qj(tm(n) − 1). (2.11)

Proof. The optimal rule obviously stops in state k if k ≥ tm(n). If tm(n) = 1, the proof is
complete. Suppose now that tm(n) > 1. Then, from the definition of tm(n) given in (2.8) we
have

S(tm(n) − 1) < C̃(tm(n) − 1),

which is, from (2.2) and (2.7), equivalent to

m−1∑
j=0

Qj(tm(n) − 1) <

m∑
j=1

Qj(tm(n) − 1),

implying that (2.11) holds for k = tm(n) − 1 and the optimal rule does not stop in state
tm(n) − 1. Suppose that there exists j < tm(n) − 1 such that the optimal rule stops in
state j . This prevents the optimal rule from being a threshold rule. Let k be the largest among
such js. Considering that, if we stop in state k, we win with probability S(k), whereas if we
follow, after leaving state k, a threshold rule with value tm(n), we will win with probability
(πtm(n)−1/πk)C̃(tm(n) − 1) (because we win with probability C̃(tm(n) − 1) by pretending we
are leaving state tm(n) − 1 if the Bernoulli trials continue up to time tm(n) − 1 inclusive,
otherwise we lose), we must have

S(k) ≥ πtm(n)−1

πk

C̃(tm(n) − 1),

or, equivalently,

πk

m−1∑
j=0

Qj(k) ≥ πtm(n)−1

m∑
j=1

Qj(tm(n) − 1),

which violates (2.11). Hence, (2.11) ensures that the optimal rule never stops before tm(n).

Let

A(k) = Qm(k)

Q0(k)
, 1 ≤ k ≤ n − m.

Then we can give a simpler condition.
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Lemma 2.3. A sufficient condition for (2.11) to hold, i.e. for the optimal rule to be a threshold
rule with value tm(n), is that the sequence {A(k)} is nonincreasing in k.

Proof. Let �(k) denote the probability of win attained by the threshold rule with value k,
1 ≤ k ≤ n − m + 1. Then it can be computed from

�(k) = πk−1C̃(k − 1). (2.12)

We thus have, from (2.6),

�(k) − �(k + 1) = πk−1C̃(k − 1) − πkC̃(k)

= πk[akS(k) + bkC̃(k)] − πkC̃(k)

= akπk[S(k) − C̃(k)]
= akπk[Q0(k) − Qm(k)]. (2.13)

Considering that

A(1) ≥ · · · ≥ A(tm(n) − 1) > 1 ≥ A(tm(n)), (2.14)

from the assumption of the lemma and the definition of tm(n) given in (2.9), we find from (2.13)
that �(k) is unimodal with peak �(tm(n)), implying that, for k ≤ tm(n) − 1,

�(k − 1) < �(tm(n)). (2.15)

Again applying (2.14), i.e. Q0(k) < Qm(k) for k ≤ tm(n) − 1, to �(k − 1) yields

�(k − 1) = πk

m∑
j=1

Qj(k) > πk

m−1∑
j=0

Qj(k),

which, combined with (2.15), ensures condition (2.11).

Lemma 2.3 is considered a special case of Theorem 2.1 of Tamaki (2010), giving a condition
for the one-stage look-ahead rule (1-sla rule) to be optimal in a monotone problem. See also
Ferguson (2006) for the 1-sla rule. The STMOT is obtained by letting N be degenerate,
i.e. P{N = n} = 1, because A(k) then proves to be Rk,n,m, which is nonincreasing in k.
However, when N is nondegenerate, this condition does not work very well. For example, we
have, for the secretary problem,

Bk,i = k

i
, Rk,i,j =

∑
k<i1<i2<···<ij ≤i

j∏
t=1

1

it − 1
. (2.16)

Hence,

A(k) =
∑n

i=k+m Rk,i,mpi/i∑n
i=k pi/i

.

The numerator and the denominator of A(k) are both nonincreasing in k, but it is not easy
to check the monotonicity of A(k) as a whole even for such a simple prior as uniform (see
Example 2.3(a) given later).

https://doi.org/10.1239/aap/1316792669 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792669


Maximizing the probability of stopping 767

To find a more convenient sufficient condition, we make the following transformations:

s(k) = B1,kπkS(k),

c(k) = B1,kπkC(k),

v(k) = B1,kπkV (k) = max{s(k), c(k)}.
Let µ(k) = s(k) − c(k). Then the following recursive relation holds.

Lemma 2.4. For 1 ≤ k ≤ n − m,

µ(k) = µ(k + 1) + rk+1 min{0, µ(k + 1)} + B1,kG(k) (2.17)

with µ(n − m + 1) = ∑n
i=n−m+1 B1,ipi , where

G(k) = pk − rk+1

n∑
i=k+m

Bk,iRk+1,i,m−1pi. (2.18)

Proof. Let qj (k) = B1,kπkQj (k). Then, for k ≤ n − m, we have

s(k) =
m−1∑
j=0

qj (k) (2.19)

from (2.2) and

c(k) = c(k + 1) + rk+1v(k + 1) (2.20)

from (2.3). Equations (2.4) and (2.5) can be written as

qj (k) = qj (k + 1) + rk+1qj−1(k + 1), j ≥ 1, (2.21)

q0(k) = q0(k + 1) + B1,kpk, (2.22)

respectively. Summing both sides of (2.21) over 1 ≤ j ≤ m − 1 and then adding it to (2.22)
yields, via (2.19),

s(k) = s(k + 1) + B1,kpk + rk+1{s(k + 1) − qm−1(k + 1)}. (2.23)

Hence, subtracting (2.20) from (2.23) yields

µ(k) = µ(k + 1) + rk+1{s(k + 1) − v(k + 1)} + B1,k

{
pk − rk+1qm−1(k + 1)

B1,k

}
= µ(k + 1) + rk+1 min{0, µ(k + 1)} + B1,kG(k),

as desired. For k > n − m, S(k) − C(k) = Q0(k) from (2.2) and (2.7). Hence, µ(k) =
B1,kπkQ0(k) = ∑n

i=k B1,ipi .

Observe that (2.17) implies that if µ(k + 1) ≥ 0 and G(k) ≥ 0 then µ(k) ≥ 0, and that,
since µ(j) ≥ 0 for j ≥ sm(n) from Lemma 2.2, we only require that, for k < sm(n),

G(j) ≥ 0 for all k ≤ j < sm(n) (2.24)
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to guarantee that µ(j) ≥ 0 for j ≥ k. The following theorem shows that, under an additional
condition on G(k) given below in (2.25), µ(k) for k ≤ sm(n) is unimodal with a peak attained
at min(ξ, sm(n)), where

ξ = min{1 ≤ k ≤ n − m : G(k) ≥ 0}
with min{φ} = n − m + 1.

Theorem 2.2. A sufficient condition for the optimal rule to be a threshold rule is that G(k)

changes its sign from negative to positive at most once before sm(n), that is,

once G(k) ≥ 0 for some k, then G(j) ≥ 0 for all k ≤ j < sm(n). (2.25)

Proof. Assume first that ξ < sm(n), which implies that G(k) ≥ 0 for ξ ≤ k < sm(n) and
G(k) < 0 for k ≤ ξ − 1 from (2.25). Then, for ξ ≤ k < sm(n), we have, from (2.17) and
(2.24),

µ(k) − µ(k + 1) = B1,kG(k) ≥ 0,

whereas, for k ≤ ξ − 1, we have, from (2.17),

µ(k) − µ(k + 1) ≤ B1,kG(k) < 0.

When ξ ≥ sm(n), G(k) < 0 for all k < sm(n) from (2.25), and so µ(k) − µ(k + 1) ≤
B1,kG(k) < 0 from (2.17). Thus, the unimodality of µ(k) is shown. This property, combined
with µ(sm(n)) ≥ 0, ensures that the optimal rule is a threshold rule.

The foregoing argument to derive Lemmas 2.2 and 2.4, and Theorems 2.1 and 2.2 follows
the same lines as in Petruccelli (1983), who considered the best-choice problem.

If the optimal rule turns out to be a threshold rule, the threshold value tm(n) and the
corresponding probability of win vm(n) = �(tm(n)) are respectively given as follows from the
preceding argument (see (2.1), (2.7), (2.8), and (2.12)):

tm(n) = min

{
k :

n∑
i=k

Bk,ipi ≥
n∑

i=k+m

Bk,iRk,i,mpi

}
, (2.26)

vm(n) =
m∑

j=1

( n∑
i=tm(n)−1+j

Btm(n)−1,iRtm(n)−1,i,jpi

)
. (2.27)

Example 2.1. Let N take on only the value greater than sm(n) − 1, i.e. p1 = p2 = · · · =
psm(n)−1 = 0. In such a case, G(k) < 0 for all k < sm(n), so the optimal rule is a threshold
rule.

Example 2.2. (Secretary problem with fixed population size.) Let N be degenerate, i.e. P{N =
n} = 1. This is the problem considered in Tamaki (2010, Section 3). As a simple consequence
of Example 2.1, the optimal rule is a threshold rule.

For the secretary problem, Bk,i and Rk,i,j are given by (2.16), so we have, from (2.18),

G(k) = pk −
n−k∑
j=m

1

k + j
Rk+1,k+j,m−1pk+j . (2.28)

For the purposes of most applications to the secretary problem, the following corollary is useful.
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Corollary 2.1. For the secretary problem with pk > 0 for all 1 ≤ k ≤ n, a sufficient condition
for the optimal rule to be a threshold rule is that

pk+j

pk

is nonincreasing in k(< sm(n)) (2.29)

for each possible value of j .

Proof. From the assumption that pk > 0 and (2.28),

G(k) = pk(1 − H(k)),

where

H(k) =
n−k∑
j=m

1

k + j
Rk+1,k+j,m−1

pk+j

pk

. (2.30)

To verify condition (2.25), it suffices to show that H(k) is nonincreasing in k. This immediately
follows from two observations:

(i) In the secretary problem, ri = 1/(i −1) is decreasing in i, so Rk+1,k+j,m−1 is decreasing
in k by definition for each j . Moreover, from condition (2.29), each term on the right-hand
side of (2.30) is nonincreasing in k.

(ii) Each term on the right-hand side of (2.30) is nonnegative, so removing it does not increase
the sum.

Example 2.3. It is easy to see that the following priors satisfy condition (2.29) with no
restriction on k.

(a) Uniform: pk = 1/n, 1 ≤ k ≤ n.

(b) Curtailed geometric: for a given parameter 0 < q < 1,

pk = (1 − q)qk−1

1 − qn
, 1 ≤ k ≤ n.

(c) Curtailed Poisson: for a given parameter 0 < λ,

pk = e−λ λk

k!
/ n∑

j=1

e−λ λj

j ! , 1 ≤ k ≤ n.

(d) Curtailed binomial: for a given parameter 0 < p < 1,

pk =
(
n
k

)
pk(1 − p)n−k

1 − (1 − p)n
, 1 ≤ k ≤ n.

The following example serves as a unification of the two secretary problems.

Example 2.4. (Generalized uniform.) Let N be a uniform random variable on {T , T +1, . . . , n}
for a given parameter T = 1, 2, . . . , n, i.e.

pk =
⎧⎨
⎩

0 if 1 ≤ k ≤ T − 1,
1

n − T + 1
if T ≤ k ≤ n.
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The cases T = 1 and T = n correspond to Example 2.3(a) and Example 2.2, respectively. The
optimality of the threshold rule for 1 < T < n can be ascertained from (2.25) by noting that
G(k) < 0 for k ≤ T − 1, whereas G(k) is nondecreasing in k for k ≥ T .

The asymptotic values for some secretary problems will be given in Section 3. Before
concluding this section, we briefly consider two problems other than the secretary problem.
A problem of interest may include the case of constant success probability ak ≡ a (hence,
bk ≡ b and rk ≡ r = a/b). We then have

Bk,i = bi−k, Rk,i,j =
(

i − k

j

)
rj .

Therefore, for pk > 0 for all 1 ≤ k ≤ n, G(k) of (2.18) can be written as

G(k) = pk

[
1 − rm

n−k∑
j=m

bj

(
j − 1

m − 1

)
pk+j

pk

]
,

which implies that condition (2.29) also gives a sufficient condition for this case to have a
threshold rule.

Another problem of interest may be to examine the condition on the sequence {ak, 1 ≤ k ≤
n} for the optimal rule to be a threshold rule for a given prior. For example, when N is uniform,
the optimal rule is a threshold rule if ak satisfies the condition

ak+1 ≤ ak

1 + ak

, or, equivalently, ak ≥ ak+1

1 − ak+1
.

This can be shown as follows. Let Ak,i = Bk,irk+1Rk+1,i,m−1. Then,

G(k) = 1

n

(
1 −

n∑
i=k+m

Ak,i

)
.

From Theorem 2.2, it suffices to show that Ak,i is nonincreasing in k for each i, i.e. Ak−1,i ≥
Ak,i . However, we easily see that

Ak−1,i − Ak,i = Bk,i(rkbkRk,i,m−1 − rk+1Rk+1,i,m−1)

≥ Bk,iRk+1,i,m−1(rkbk − rk+1)

= Bk,iRk+1,i,m−1

(
ak − ak+1

1 − ak+1

)
≥ 0,

where the first inequality follows since Rk,i,m−1 is nonincreasing in k and the second inequality
follows from the above condition on {ak}.

3. Asymptotic results for the secretary problem

When the optimal rule of the secretary problem is a threshold rule, we have, from (2.16),
(2.26), and (2.27),

tm(n) = min

{
k :

k+m−1∑
i=k

k

i
pi +

n∑
i=k+m

k

i
pi(1 − Rk,i,m) ≥ 0

}
, (3.1)
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vm(n) = (tm(n) − 1)

m∑
j=1

n∑
i=tm(n)−1+j

pi

i
Rtm(n)−1,i,j , (3.2)

where Rk,i,j is given in (2.16). Equation (3.2) is valid for tm(n) ≥ 2. For tm(n) = 1, we
obviously have, from (2.2),

vm(n) = S(1) =
m−1∑
j=0

n∑
i=j+1

pi

i
R1,i,j .

For later use, define, as a function of t , vm(n, t) to be vm(n) by replacing tm(n) by t . Hence,
vm(n, tm(n)) = vm(n), and vm(n, t) is interpreted as the probability of win attained by the
threshold rule with value t .

When N is degenerate (i.e. Example 2.2), we use the notation s∗
m(n) and u∗

m(n) for tm(n)

and vm(n), respectively, conforming to the notation of the STMOT. Their asymptotics when
n → ∞, i.e. s∗

m = limn→∞ s∗
m(n)/n and u∗

m = limn→∞ u∗
m(n), are already given in (1.3) and

(1.4). When N is nondegenerate, we are mainly concerned with examining the asymptotic
behaviors for a uniform prior, curtailed geometric prior, and generalized uniform prior.

Lemma 3.1. (Uniform prior.) Let n tend to ∞ for the uniform prior given in Example 2.3(a).
Then, (1.5) and (1.6) hold asymptotically.

Proof. For a uniform prior, we have, from (3.2),

vm(n, t) = t − 1

n

m∑
j=1

n∑
i=t−1+j

1

i

∑
t−1<k1<k2<···<kj ≤i

1

k1 − 1

1

k2 − 1
· · · 1

kj − 1
.

If we let n tend to ∞ and write z as the limit of t/n, then, using y for i/n and xs for ks/n, 1 ≤
s ≤ m, and dy and dxs for 1/n, vm(n, t) becomes a Riemann approximation to a multiple
integral, i.e. vm(n, t) → �m(z), where

�m(z) = z

m∑
j=1

∫
z<y<1

dy

y

∫
z<x1<x2<···<xj <y

dx1

x1

dx2

x2
· · · dxj

xj

= z

m∑
j=1

∫ 1

z

dy

y

(∫ y

z

dx1

x1

∫ y

x1

dx2

x2
· · ·

∫ y

xj−1

dxj

xj

)

= z

m∑
j=1

∫ 1

z

dy

y

[log(y/z)]j
j !

= z

m∑
j=1

(− log z)j+1

(j + 1)! . (3.3)

The value z that maximizes �m(z) is easily found by setting the derivative with respect to z

equal to 0 and then solving for z. When this is done, we obtain (1.5) because

� ′
m(z) = (− log z)m+1

(m + 1)! + log z
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Table 1: Values of t∗m and v∗
m for several m.

m

1 2 3 4 5 10

t∗m 0.1353 0.0863 0.0559 0.0365 0.0240 0.0032
v∗
m 0.2707 0.4705 0.6172 0.7243 0.8020 0.9635

and the optimal z ∈ (0, 1) can be considered as t∗m = limn→∞ tm(n)/n from the above
approximation. Substituting the optimal value back into (3.3) yields the desired probability
�m(t∗m) = v∗

m(= limn→∞ vm(n)) as given in (1.6). This completes the proof.

Remark 3.1. The left-hand side of the inequality in (3.1),

k+m−1∑
i=k

k

i

1

n
+

n∑
i=k+m

k

i

1

n
(1 − Rk,i,m),

can be approximated, as n → ∞, by∫
z<y<1

zdy

y

(
1 −

∫
z<x1<x2<···<xm<y

dx1

x1

dx2

x2
· · · dxm

xm

)
,

because the first term vanishes. This integral is simplified to

(−z log z)

[
1 − (− log z)m

(m + 1)!
]
,

so equating this to 0 and then solving for z ∈ (0, 1) yields

exp{−[(m + 1)!]1/m}.
This coincides with (1.5).

In Table 1 we present some numerical values of t∗m and v∗
m.

To obtain interesting asymptotic results for the curtailed geometric prior given in Exam-
ple 2.3(b), we must allow the parameter q to depend on n.

Lemma 3.2. (Curtailed geometric prior.) Let q depend on n through q = 1 − c/n for a fixed
positive value c(< n), and define tm,c = limn→∞ tm(n)/n. Then tm,c is a unique root z of the
equation ∫ 1/z

1

e−czx

x

[
1 − (log x)m

m!
]

dx = 0. (3.4)

Moreover, as n → ∞, the optimal probability tends to

vm,c = ct

1 − e−c

∫ 1/t

1

e−ctx

x

[ m∑
j=1

(log x)j

j !
]

dx, (3.5)

where t = tm,c.
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Table 2: Values of tm,c (upper) and vm,c (lower) for several pairs of (m, c).

m
c

1 2 3 4 5

0 0.1353 0.0863 0.0559 0.0365 0.0240
0.2707 0.4705 0.6172 0.7243 0.8020

0.1 0.1317 0.0840 0.0543 0.0355 0.0234
0.2689 0.4681 0.6149 0.7222 0.8004

1 0.1008 0.0643 0.0416 0.0272 0.0179
0.2546 0.4494 0.5964 0.7059 0.7867

5 0.0346 0.0225 0.0148 0.0098 0.0065
0.2337 0.4209 0.5671 0.6792 0.7641

10 0.0174 0.0113 0.0075 0.0049 0.0033
0.2329 0.4196 0.5656 0.6778 0.7628

50 0.0035 0.0023 0.0015 0.0010 0.0007
0.2329 0.4196 0.5656 0.6778 0.7628

We omit the proof of Lemma 3.2 because it is similar to that of Lemma 3.1. See Remark 3.3
below for a more transparent proof via a nonhomogeneous Poisson process model.

Remark 3.2. It is easy to see that, from (3.4) and (3.5),

lim
c→0

tm,c = t∗m, lim
c→0

vm,c = v∗
m.

That is, as c → 0, a curtailed geometric prior behaves like a uniform prior.

In Table 2 we present some numerical values of tm,c and vm,c for several m and c. It seems
that, as c → ∞, vm,c converges to some positive value. For m = 1, this value is approximately
0.2329, which coincides with the value given in Presman and Sonin (1972) (see Example 3.4
of Samuel-Cahn (1995) for this value).

For the generalized uniform prior given in Example 2.4, we let T depend on n in such a
way that T/n → α as n → ∞ for a fixed 0 < α < 1. For ease of treatment, we consider this
problem as a nonhomogeneous Poisson process model in Section 3.1.

3.1. Nonhomogeneous Poisson process model

Presman and Sonin (1972, p. 772) found the nonhomogeneous Poisson process (NPP) to
be an appropriate setting in which to define the infinite version of the secretary problem as the
limit of the corresponding finite problems. See also Section 3 of Tamaki (2010). Suppose that
n applicants appear at fractional times 1/n, 2/n, . . . , n/n instead of at times 1, 2, . . . , n. As
k/n → x with n → ∞, the occurrence of candidates in the limiting problem constitutes an NPP
with intensity function λ(x) = 1/x, 0 < x ≤ 1, due to properties (a) and (b) of the secretary
problem described in Section 1. That is, if we denote by M(s, t) the number of candidates
appearing in the time interval (s, t), 0 < s < t ≤ 1, then M(s, t) is distributed as a Poisson
random variable with parameter

∫ t

s
λ(x)dx = log(t/s), namely,

P{M(s, t) = k} = s

t

{log(t/s)}k
k! , k ≥ 0. (3.6)
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The secretary problem with a random number N of applicants is represented as an NPP with
an appropriate random truncation time V (≤ 1) adjusted to N . The objective is to stop on any
of the last m candidates before V . Let �(z) be the probability of win when we use a (limiting)
threshold rule with value z, which stops on the first candidate that appears after time z, if any.
Then, conditioning on the value of V , we have, from (3.6),

�(z) =
m∑

j=1

P{M(z, V ) = j} =
m∑

j=1

∫ 1

z

z

v

{log(v/z)}j
j ! fV (v) dv, (3.7)

where fV (v) is the density of V . When N is a generalized uniform random variable with
parameter T = αn, it is obvious that the corresponding density is given by

fV (v) =
⎧⎨
⎩

0 if 0 < v ≤ α,
1

1 − α
if α < v < 1.

Write �m,α(z) for �(z) corresponding to this density. Then, the straightforward calculation
from (3.7) yields

�m,α(z) = z

1 − α

m∑
j=1

∫ 1

max(α,z)

{log(v/z)}j
j !

dv

v

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z

1 − α

m∑
j=1

{log(1/z)}j+1 − {log(α/z)}j+1

(j + 1)! if 0 < z ≤ α,

z

1 − α

m∑
j=1

{log(1/z)}j+1

(j + 1)! if α < z ≤ 1.

(3.8)

Lemma 3.3. (Generalized uniform prior.) Let tm,α denote the optimal threshold value, and let
vm,α be the optimal probability (tm,0 and vm,0 are already given as t∗m in (1.5) and v∗

m in (1.6),
respectively). Two cases are distinguished according to whether α ≤ t∗m or α > t∗m.

Case (i): 0 ≤ α ≤ t∗m. In this case

tm,α = t∗m, (3.9)

vm,α = v∗
m

1 − α
. (3.10)

Case (ii): t∗m < α < 1. The optimal threshold value tm,α is a unique root z ∈ (0, α) of the
equation

{
log

(
1

z

)}m+1

−
{

log

(
α

z

)}m+1

= (m + 1)! log

(
1

α

)
, (3.11)

or, equivalently,

m∑
j=0

(log α)j (− log z)m−j

(j + 1)! (m − j)! = 1. (3.12)
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Moreover,

vm,α = tm,α

1 − α

m∑
j=1

{log(1/tm,α)}j − {log(α/tm,α)}j
j ! . (3.13)

In particular,
lim
α→1

tm,α = s∗
m,

lim
α→1

vm,α = u∗
m, (3.14)

where s∗
m and u∗

m are as given in (1.3) and (1.4), respectively.

Proof. Differentiating �m,α(z) in (3.8) with respect to z yields

� ′
m,α(z) =

⎧⎪⎪⎨
⎪⎪⎩

aα(z)

(1 − α)(m + 1)! if 0 < z ≤ α,

b(z) log(1/z)

(1 − α)(m + 1)! if α < z ≤ 1,

(3.15)

where

aα(z) =
{

log

(
1

z

)}m+1

−
{

log

(
α

z

)}m+1

− (m + 1)! log

(
1

α

)
,

b(z) =
{

log

(
1

z

)}m

− (m + 1)!.

To prove (3.9) and (3.11), it suffices to show that

(a) � ′
m,α(z) = 0 has a unique root z ∈ (0, 1) for each α;

(b) � ′
m,α(z) = 0 is reduced to b(z) = 0 for α ≤ t∗m, whereas � ′

m,α(z) = 0 is reduced to
aα(z) = 0 for α > t∗m.

Differentiating � ′
m,α(z) in (3.15) again yields

�
′′
m,α(z) =

⎧⎪⎪⎨
⎪⎪⎩

{log(α/z)}m − {log(1/z)}m
(1 − α)m! z if 0 < z ≤ α,

m! − {log(1/z)}m
(1 − α)m! z if α < z ≤ 1,

showing that �
′′
m,α(z) changes its sign at max(α, s∗

m) from negative to positive. This property,
together with the boundary conditions limz→0 � ′

m,α(z) > 0 and � ′
m,α(1) = 0 from (3.15),

ensures part (a). For part (b), it is important to see that

� ′
m,α(α) = − log α

(1 − α)(m + 1)! [(− log α)m − (m + 1)!],

which implies that, from the definition of t∗m, � ′
m,α(α) < 0 if α > t∗m, whilst � ′

m,α(α) ≥ 0 if
α ≤ t∗m. This just proves part (b) because, if α > t∗m, tm,α must be less than α, whereas, if
α ≤ t∗m, tm,α must be greater than or equal to α.
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The optimal probability vm,α is obtained from (3.8) through vm,α = �m,α(tm,α). Note that
(3.10) is also due to (1.6) and that, to obtain (3.13), (3.11) with z replaced by tm,α must be taken
into consideration. Letting α → 1 in (3.12) yields

(− log z)m

m! = 1,

which proves (3.14). Moreover, from (3.13), (3.14), (1.3), and (1.4),

lim
α→1

vm,α = s∗
m

m∑
j=1

1

j ! lim
α→1

(− log s∗
m)j − (− log s∗

m + log α)j

1 − α

= s∗
m

m∑
j=1

1

j !j (− log s∗
m)j−1

= s∗
m

m∑
j=1

(m!)(j−1)/m

(j − 1)!
= u∗

m.

This completes the proof.

For m = 1 and m = 2, we can give explicit expressions for tm,α and vm,α .

Example 3.1. Suppose that m = 1 and t∗1 = e−2.

Case (i): 0 ≤ α ≤ t∗1 . In this case

t1,α = e−2, v1,α = 2

1 − α
e−2.

Case (ii): t∗1 < α < 1. In this case

t1,α = √
αe−1, v1,α = −√

α log α

1 − α
e−1.

Example 3.2. Suppose that m = 2 and t∗2 = e−√
6.

Case (i): 0 ≤ α ≤ t∗2 . In this case

t2,α = e−√
6, v2,α = 3 + √

6

1 − α
e−√

6.

Case (ii): t∗2 < α < 1. In this case

t2,α = √
α exp{−ν(α)}, v2,α = −√

α log α

1 − α
(1 + ν(α)) exp{−ν(α)},

where

ν(α) =
√

72 − 3(log α)2

6
.
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Remark 3.3. (i) When N is a curtailed geometric random variable with parameter q = 1 −
c/n, the corresponding V is, as is easily seen, a curtailed exponential random variable with
parameter c, namely,

fV (v) = ce−cv

1 − e−c
, 0 < v < 1.

Therefore, from (3.7),

�(z) = cz

1 − e−c

∫ 1/z

1

e−czv

v

[ m∑
j=1

(log v)j

j !
]

dv,

which is consistent with (3.5).

(ii) Let, for j = 0, 1, . . . ,

Fj (z) =
∫ 1

z

{log(v/z)}j
j !

fV (v)

v
dv.

Then, (3.7) can be written as

�(z) =
m∑

j=1

zFj (z).

We easily find that

F ′
j (z) = −1

z
Fj−1(z), j ≥ 1,

and so

� ′(z) = Fm(z) − F0(z),

implying that, if the optimal rule is a threshold rule for a truncation time V , the threshold value
is a unique root z of the equation Fm(z) = F0(z).

4. Continuous arrival time model

Let Z1, Z2, . . . be continuous independent and identically distributed random variables with
a common distribution function F , and let M be an integer-valued random variable independent
of the Zks. The random variable M represents the total number of applicants and Zk, 1 ≤ k ≤
M , denotes the arrival time of the kth best applicant. Unlike N , M is not assumed to be bounded.
When we consider the problem of stopping on any of the last m candidates in this framework,
the optimal rule becomes very complicated in general, because it depends not only on the
arrival time of the candidate but also on the number of arrivals observed up to that time. See,
for example, Tamaki and Wang (2010) for the exact form of the optimal rule of the best-choice
problem with M uniform on {1, 2, . . . , n}.

Here we consider, as a class of suboptimal stopping rules, the t-strategy (0 < t < 1), which
passes up all the applicants that appear before time t and then stops on the first candidate, if
any. The function F can be assumed to be uniform on [0, 1] without loss of generality. Let Kn

represent the number of candidates to appear when the total number of applicants is n (i.e. this
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corresponds to the case P{M = n} = 1). Then the probability mass function of Kn is given as

pn(k) = P{Kn = k} = 1

n!
[
n

k

]
, 1 ≤ k ≤ n,

where the notation
[
n
k

]
, 1 ≤ k ≤ n, 1 ≤ n, is a real number called the Stirling number of the

first kind, and pn(k) satisfies the recursion

pn(k) = 1

n
pn−1(k − 1) +

(
1 − 1

n

)
pn−1(k), 1 ≤ k ≤ n, 2 ≤ n, (4.1)

with p1(1) = 1 and pn(k) = 0 for k = 0 or k > n (see, e.g. Equation (2.5.9) of Arnold et
al. (1998)). An important identity of the Stirling number of the first kind is, for any positive
integer k,

∞∑
n=k

[
n

k

]
zn

n! = 1

k!
(

log
1

1 − z

)k

, 0 < z < 1, (4.2)

as listed in Graham et al. (1989, Equation (7.50), p. 337). See also Tamaki (2009) for a
probabilistic proof of this identity.

Let Rn(t) represent the (true) rank of the (relatively) best applicant among those that have
arrived by time t , if any. If no applicant appears before t , Rn(t) is assumed to be n + 1 for
convenience. Then conditioning on Rn(t) yields

Pn(t) = P{win by the t-strategy}

=
n∑

j=0

P{win by the t-strategy | Rn(t) = j + 1} P{Rn(t) = j + 1}. (4.3)

Since Rn(t) = j + 1 occurs if and only if the (j + 1)th best applicant appears before t , while
the top j applicants (i.e. best, second best, …, j th best) all appear after t for 0 ≤ j < n, we
have

P{Rn(t) = j + 1} =
{

t (1 − t)j if 0 ≤ j ≤ n − 1,

(1 − t)n if j = n.

Moreover, given Rn(t) = j + 1, we win by the t-strategy if the number of future candidates
is greater than 0 but less than m + 1. This occurs with probability dj if we let dj = P{Kj ≤
m}, j ≥ 1 (d0 = 0 for convention), because, given Rn(t) = j + 1, future applicants under
consideration are restricted to the top j and their arrival orders are equally likely. Thus, we
have, from (4.3),

Pn(t) =
n−1∑
j=1

dj t (1 − t)j + dn(1 − t)n, n ≥ 1. (4.4)

Note that Pn(t) = 1 − t for 1 ≤ n ≤ m, because dj = 1 for 1 ≤ j ≤ m.

Lemma 4.1. Some properties of Pn(t) are as follows.

(i) Pn(t) ≥ Pn+1(t), n ≥ 1. More precisely,

Pn(t) − Pn+1(t) = (1 − t)n+1

n + 1
pn(m). (4.5)

https://doi.org/10.1239/aap/1316792669 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792669


Maximizing the probability of stopping 779

(ii) For n ≥ 1,

P ′
n(t) =

n−1∑
k=m

pk(m)(1 − t)k − 1, P
′′
n (t) = −

n−1∑
k=m

kpk(m)(1 − t)k−1,

where the vacuous sum is assumed to be 0.

(iii) Let n tend to ∞. Then

Pn(t) → P(t) = t

m∑
i=1

(− log t)i

i! .

Moreover, P(t), 0 ≤ t ≤ 1, is maximized at t = s∗
m and P(s∗

m) = u∗
m, where s∗

m and u∗
m

are given in (1.3) and (1.4), respectively.

Proof. (i) From (4.4),

Pn(t) − Pn+1(t) = (dn − dn+1)(1 − t)n+1.

On the other hand, from (4.1),

dn − dn+1 =
m∑

j=1

{pn(j) − pn+1(j)}

=
m∑

j=1

{
pn(j) − 1

n + 1
pn(j − 1) − n

n + 1
pn(j)

}

= 1

n + 1
pn(m).

Hence, (4.5) is obtained.
(ii) The proof follows by a straightforward calculation from (4.4).
(iii) As n tends to ∞, Pn(t) in (4.4) converges uniformly to

P(t) = t

∞∑
j=1

dj (1 − t)j

= t

∞∑
j=1

[ m∑
i=1

pj (i)

]
(1 − t)j

= t

m∑
i=1

[ ∞∑
j=i

pj (i)(1 − t)j
]

= t

m∑
i=1

(− log t)i

i! ,

where the last equality follows from (4.2). The equation P ′(t) = 0 is solved to yield t = s∗
m

and P(s∗
m) = u∗

m is easily checked. This completes the proof.
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From Lemma 4.1 we see that Pn(t) has a unique maximum at t = tn and that, as n → ∞,

Pn(t) ↘ P(t) and tn ↗ s∗
m.

Also, note that tn = 0 for n < n∗ and tn > 0 for n ≥ n∗, where

n∗ = min{n ≥ m + 1 : P ′
n(0) > 0} = min

{
n ≥ m + 1 :

n−1∑
k=m

pk(m) > 1

}
.

Let H(t) be the probability of win by the t-strategy. Then

H(t) =
∑
n≥1

Pn(t) P{M = n} ≥ P(t),

implying that, in total ignorance of the distribution of M , the s∗
m-strategy attains the win with

probability greater than or equal to u∗
m. This result can be seen as a generalization of the e−1-law

for m = 1.
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