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Abstract. The debate about the possible smoothness of the Universe on
large scales as opposed to an unbounded fractal hierarchy has been the subject
of increasing interest in recent years. The controversy arises as a consequence of
different statistical analyses performed on surveys of galaxy redshifts. I review
the observational evidence supporting the idea that a gradual transition occurs
in the galaxy distribution: from a fractal regime at small scales to large scale
homogeneity.

1. Introduction

Already in the eighteenth century, Emmanuel Kant and Johann Lambert con-
ceived a hierarchical universe of stars clustered into larger systems, which today
we call galaxies, and which, in turn, were clustered into larger systems and so
on. This hierarchical view of the universe was proposed by John Herschel and
Richard Proctor in the nineteenth century as a solution to Olber's paradox and
was seriously defended by several astronomers at the beginning of this century:
Carl Charlier and Fournier d'Albe (for a historical approach to the hierarchi-
cal universe, see Harrison 1981). More recently, Gerard de Vaucouleurs (1970)
found observational evidences supporting this idea in the distribution of galaxies
in clusters and superclusters.

With the introduction of the fractal concept by Mandelbrot (1982), hier-
archical clustering has been reinterpreted in terms of a self-similar or scale-
invariant fractal distribution of galaxies. It seems clearly established that, at
small distances (r < 10h-1 Mpc), the galaxy clustering is fractal. If fractality
were to extend to larger scales, our cosmological models would be in trouble, be-
cause one of their fundamental tenets is the Cosmological Principle introduced
originally by Einstein (although the term was coined by E. A. Milne in 1933).

The Cosmological Principle is the assumption that the large-scale universe
is spatially homogeneous and isotropic, and according to it, the distribution
of galaxies should break scale invariance at a given distance, showing a clear
transition to homogeneity at large scales.

The strongest observational evidence supporting the validity of the Cosmo-
logical Principle is the isotropy of the Cosmic Microwave Background radiation.
Other observations supporting this hypothesis include the angular distribution
of radio sources, the analysis of the X-ray background and the distribution of
quasars and Lyman-a clouds (for a review, see Wu, Lahav & Rees 1999). The
distribution of 'Y-raybursts also supports the homogeneity picture (see the poster
by Meszaros et al. presented at this meeting). All these tests are essentially two-
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dimensional, because they analyse objects or radiation as seen on the celestial
sphere. An additional observational evidence of this kind comes from the analy-
sis of the angular correlation function for the Lick and the APM galaxy surveys.
It scales with magnitude as predicted for a homogeneous universe (Peebles 1993).

Although the three-dimensional distribution of galaxies provided by the
redshift catalogues show unambiguously a tendency to homogeneity at large
scales, a group of physicists and astronomers leaded by L. Pietronero have been
defending during the past 12 years that the Universe is fractal up to the largest
scales probed by the present generation of redshift surveys. In this contribution
I shall discuss some observational evidences ruling out this possibility.

2. A fractal universe

Several fractal constructions have been proposed so far as artificial universes
trying to mimic some properties of the real galaxy distribution. Mandelbrot
(1975) proposed a model based on a Rayleigh-Levy flight, where galaxies are
placed at the steps of a random walk. The direction of each jump is isotropically
chosen at random and its length follows a power-law probability distribution
function.

Soneira & Peebles (1978) introduced a model based on the superposition
of fractal clumps which was able to reproduce not only the appearance of the
projected distribution of galaxies as seen in the Lick maps (Seldner et al. 1977),
but also the angular two- and three- point correlation function. Each of this
fractal clumps is built as follows: in a sphere of radius R, we randomly place TJ
spheres of radius r / A, with A > 1. Within each of these spheres, we again place
TJ new spheres of radius R/A2 . The process is repeated L times and the last
generation of TJL centres are considered the galaxies of a clustering hierarchy or
a bounded fractal with dimension D == 10gTJ/ log A.

How does this fractal clump look like when projected onto the sky? Peebles
(1998) showed a series of projections of the particles lying in concentric shells
as seen from an observer situated in a given point close to the centre of the first
sphere. A similar set of equal-area Aitoff projections are shown in Figure 1.
This is a fractal clump with D == 2, (TJ == 2, A ~ 1.41 and L == 18). We have
scaled the fraction of particles plotted as a function of 1/r 2 , being r the distance
of a particle to the centre. The width of a given shell is always twice the width
of the previous one. It is remarkable the anisotropy of the point distribution
provided by this model. The inhomogeneity remains even in the larger shells far
away from the centre. Davis (1997) performed the same kind of projection for a
real flux-limited redshift survey, the IRAS 1.2Jy catalogue. On the right panels
of Figure 1, we show the IRAS galaxies lying in concentric shells of increasing
size projected onto the sky. The radial distribution of shells is the same as the
one shown for the Soneira & Peebles model (left panels in Figure 1), but it
is slightly different of the one shown in Davis (1997). We can appreciate that
for the more distant and larger shells the distribution looks more homogeneous.
This tendency to homogeneity detected visually in the redshift catalogues will
be quantified in next sections.

https://doi.org/10.1017/S0074180900216239 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900216239


170 Martinez

Figure 1. Left panels: equal-area Aitoff projection of a single Soneira &
Peebles fractal clump as seen from an observer situated in a point of the
model close to the centre of the first sphere. In each panel, from top to
bottom, we have projected the points lying in concentric shells of increasing
radius and width: 1.25 < r ~ 2.5, 2.5 < r ~ 5, 5 < r ~ 10, 10 < r ~ 20, in
arbitrary units. Right panel: The same projections but for the IRAS 1.2Jy
redshift survey. The division in shells is the same as before, but now the units
are thousands of km/s in the radial velocity of each galaxy.
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Figure 2. Volume-limited samples extracted from the CfA2 north. From
left to right and top to bottom the depth of the samples increases. The
size of the diagrams scales with the real volume of the sample. The number
of points in each one is, in the same order, 736, 1113, 1159, 1134 and 905.
The correlation length TO of each sample is shown together with the standard
deviation in the weighted log-log linear regression.

3. The correlation length

171

The probability that a galaxy is observed within an infinitesimal volume element
dV at a distance r from a given galaxy is dP = n(l + ~(r))dV, where n is the
mean number density of galaxies and ~(r) is the so-called two-point correlation
function. Therefore ~(r) measures the clustering in excess [~(r) > 0], or in defect
[~(r) < 0], in comparison with a homogeneous Poisson distribution [~(r) = 0].

The correlation length, ro, is defined as the scale at which the correlation
function reaches the value of 1, i.e., ~(ro) = 1. It is clear from the definition
of the correlation function that at a distance ro of a given galaxy the density
is, on average, twice the mean number density. The correlation length can
be interpreted as the scale at which the' density fluctuations change from the
strongly non-linear regime at short distances to the nearly linear regime at large
scales.

One of the strong predictions of a fractal universe is that the correlation
length must increase linearly with the radius of the sample (Pietronero 1987;
Guzzo 1997). This prediction has been tested over simple fractals as the one in-
troduced in the previous section (Martinez, Lopez-Marti & Pons-Borderfa 2001;
Paredes, Jones & Martinez 1995). We are going to see whether this prediction
is supported by the observed galaxy distribution (see Martinez et al. 2001 for
the details). The analysis have been performed on the CfA2 redshift catalogue
(Geller & Huchra 1989). From the CfA2 north survey, we have extracted five
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volume-limited samples enclosed within the angular limits: 8h ~ a ~ 16h and
8.5° ~ 8 <44.5°, and with increasing depth: 60,70,78,85 and 101 h-1 Mpc, cor-
responding respectively to absolute magnitude limits of -18.49, -18.85, -19.10,
-19.29 and -19.70 (omitting the term +5logh).

In Figure 2, we show the three-dimensional diagrams of these samples. We
have measured the correlation function of all these samples and estimated the
value of the correlation length of each one by fitting a power-law within the range
[3 - 10]h-1 Mpc, weighting with Poisson errors. The values of the correlation
length are given in the same Figure, (see also Table 1 in Martinez et al. 2001).
These numbers show that the expected behaviour for a fractal pattern is not
observed; on the contrary, all samples present rather similar values of ro, except
the closest and smallest one. The nearly constant value of ro ~ 6.7 h-1 Mpc in
redshift space argues strongly against the unbounded fractal interpretation of
galaxy clustering. A similar result was found by Cappi et al. (1998) analysing the
Southern Sky Redshift Survey 2. This result is also supported by the correlation
length obtained for the deepest available redshift surveys analysed up to now: the
Stromlo-APM, the Las Campanas redshift survey and the ESP redshift survey.
All of them provide a value ro ~ 6 h-1 Mpc in redshift space (Loveday et al.
1995; Tucker et al. 1997; Guzzo et al. 2000). Moreover, recent studies of other
deep samples have shown that the correlation length in real space is also very
stable with redshift (Gladders & Yee 2000; see also the contributions by R.
Carlberg and C. Frenk to this meeting).

4. The correlation dimension at large scales

The best available catalogues for the statistical analysis of the possible fractal
nature of the galaxy distribution at large scales are: the Stromlo-APM, the
Las Campanas, the ESP and the-IRAS PSCz redshift surveys. In Figure 3 (left
panel) we show the first slice of the CfA2 catalogue, together with the region en-
compassing three slices of the Las Campanas survey, which is four times deeper.
It is remarkable that the structures (clusters, filaments and voids) are of simi-
lar size in both samples. Moreover, the largest structures observed are clearly
much smaller than the size of the Las Campanas survey. In a fractal pattern
we should probably find larger voids and structures in the deepest sample. This
is illustrated in Figure 3 (right panel) where we show a slice of the Soneira &
Pebbles fractal introduced in section 2.

One of the most useful statistical measures to study the fractality at large
scales is the integral of the correlation function:

(1)

For a homogeneous Poisson process this function is just Kpois(r) == 47rr3/3. The
number of neighbours on average that a given galaxy has within a distance r is
then nK(r) == N( < r). A point pattern is said to be fractal with correlation
dimension D 2 when

(2)
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Figure 3. Left panel: The first slice of the CfA2 catalogue together with
the region of the Las Campanas redshift survey (LCRS), four times deeper,
in the south Galactic cap. The decrease of the number of galaxies at large
redshifts is a consequence the catalogues being flux limited. Right panel: A
slice of the Soneira & Peebles fractal model with D = 2. We can see that the
size of the structures and voids increases with the radius of the sample for the
fractal pattern, but this property is not sheared by the galaxy distribution,
which on the contrary, comes close to homogeneity on large scales.
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Other related integral quantities used in the literature are I'" (r) (Coleman &
Pietronero 1992) and g(r) (Amendola & Palladino 1999):

r*(r) = nK(r) = 3N(< r) = ng(r)
K Pois (r ) 41rr3

The correlation dimension is evaluated as:

D
2

= d(logN(< r)) = 3 + d(logg(r))
d(log r) d(log r)

(3)

(4)

The two-point correlation function for a fractal pattern should vary as 1+~(r) <X

rD 2- 3 . In Figure 4, we show the function 1+~(r) for several deep galaxy redshift
surveys (Martinez 1999). The fractal behaviour at small scales disappears at
larger distances, providing evidence for a gradual transition to homogeneity. It
is remarkable that the break of the scale-invariant power-law appears at the
same scale, approximately 10 - 15 h-1 Mpc, for the four samples.

Martinez et al. (1998) have studied the correlation dimension by means of
Equation 4 for the Stromlo-APM survey. They have found a scale dependent
behaviour of D 2 . This quantity reaches a value of 2.8 at the largest scales probed
by the sample. Similar results have been obtained by Hatton (1999) analysing
the same sample by means of f*(r). A scale dependent correlation dimension
was also found by Amendola & Palladino (1999) applying the function g(r) on
the Las Campanas survey. These authors have developed an interesting method
to reliably measure g(r) at large distances based on radial cells, reporting values
of D 2 around the homogeneity value 3 for the largest analysed scales. In a
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Figure 4. The function 1+~(r) for several redshift surveys (see the legend).
Two reference lines have been plotted, one corresponding to a fractal with
dimension D2 = 2 and the second one corresponding to an homogeneous dis-
tribution (D2 = 3). We can appreciate how all data show a gradual transition
from the fractal regime at short scales to a more homogeneous distribution at
large scales.

recent paper, Pan & Coles (2000) have studied the PSCz catalogue by means
of the multifractal algorithms. They have obtained a value of D 2 = 2.99 at
scales larger than 30 h-1 Mpc, while for r below rv 10 h-1 Mpc, they have got
D2 = 2.16, a value comparable with the one obtained by Martinez & Coles (1994)
for the QDOT-IRAS galaxy redshift survey. The transition to homogeneity is
also apparent in the plots of T" (r) obtained by the proponents of the unbounded
fractal universe. In Sylos-Labini, Montuori & Pietronero (1998), the plots of
r*(r) corresponding to samples such as the Stromlo-APM or the IRAS 2Jy
show an unambiguous deviation of the power-law at large scales. In spite of
the fact that the authors interpreted these results in a different way, they could
likely be just the fingerprint of the transition to homogeneity.

5. Estimators of the statistical quantities

Different estimators have been used in order to apply the statistical measures
described above to the real galaxy distribution. Although it might be not very
evident, the nub of the controversy lies in this matter. The problem arises be-
cause these estimates are affected by edge effects, which result from the inability
to count neighbours outside the sample boundaries. Pietronero and co-workers
avoid the edge correction by using the minus estimators, that can be applied
only up to the radius of the largest sphere enclosed within the sample volume.
These estimators do not include as centres for counting neighbours at a given
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(5)

scale r those galaxies lying at a distance less than r of the sample boundary.
The estimators used by most of the cosmologists assume implicitly that the point
process is homogeneous (invariant under translations) and isotropic (invariant
under rotations) and an edge correction is applied according to this assumption.
For example, Ripley's estimator for the K (r) function reads (Baddeley et al.
1993):

K(r) =~ t t O(r -IXi - Xj/)
N2 . 1 ' 1 WiJ'

~= J=
j=f:i

where V is the volume of the sample and N the total number of points. The
count of the number of neighbours that galaxy i have within a sphere of radius
r is weighted by an edge correction in the denominator Wij. This correction is
equal to the conditional probability that the jth point is observed given that it is
at a distance r from the ith point. For an homogeneous and isotropic process it
is rather straightforward to calculate this probability by geometrical methods.
Similar corrections are applied to estimators of the correlation function ~(r),
although typically, instead of geometrical corrections, the edge effects are taken
into account by normalizing the number of galaxy pairs at a given distance with
the corresponding quantities measured on Poisson samples. These samples are
generated within the same volumes as the real ones and mimic their selection
properties.

It has been shown, however, that on small scales all estimators provide
comparable results (Kerscher 1999, Pons-Borderfa et al. 1999), but at large
scales the minus estimator provides very poor performance (Kerscher, Szapudi
& Szalay 2000). Moreover, several authors (Martinez et al. 1990; Lemson &
Sanders 1991; Provenzale, Guzzo & Murante 1994) have simulated fractal point
distributions generated within finite boundaries mocking the shape of the real
galaxy catalogues. When applying the standard estimators for the correlation
function to these fractal sets, these authors recover the expected theoretical
power-law decaying behavior without finding the plateau observed in Figure 4.
This result indicates that the artificial homogenization supposedly introduced
by the estimators is not playing any important role. Although this is a good
test, strictly speaking, only implies that if the galaxy distribution resembles such
kind of fractals, Figure 4 should not present the observed flattening. Obviously,
this does not solve the issue unambiguously. Therefore, if we hope to reach
consensus about this matter, it seems necessary an agreement on the kind of
analysis to be performed on the forthcoming large redshift surveys.

6. Conclusions

Let us summarize the main results presented in this paper:

1. While the distribution of galaxies shows fractal patterns at small scales,
these disappear at larger scales. The deepest available galaxy samples show
"the end of greatness" (Kirshner 1996), because the structures observed in
these samples are of the same size as the ones observed in shallower galaxy
surveys.
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2. The correlation length does not increase linearly with the size of the sample
as should happen for a fractal.

3. The correlation function and the correlation integral show clearly a gradual
transition to homogeneity. In particular the correlation dimension, D 2 , is
a scale dependent quantity approaching 3 at large scales.

4. Statistical measures or estimators which implicitly assume isotropy and
homogeneity should be applied with caution (Lahav 1999) in order that
the results be meaningful.

5. It seems to me that the conclusions above are rather firm, but if some doubt
remains, the next generation of wide and deep redshift surveys (SDSS, 2dF)
will likely provide the final word to this issue.
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