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Abstract We observe that, in the eta-periodic motivic stable homotopy category, odd rank vector bundles
behave to some extent as if they had a nowhere vanishing section. We discuss some consequences
concerning SLc-orientations of motivic ring spectra and the étale classifying spaces of certain algebraic
groups. In particular, we compute the classifying spaces of diagonalisable groups in the eta-periodic
motivic stable homotopy category.

Introduction

Around 40 years ago, Arason computed the Witt groups of projective spaces [Ara80]. This

computation was later revisited by Gille [Gil01], Walter [Wal03] and Nenashev [Nen09]. It

exhibited Witt groups as a somewhat exotic cohomology theory, whose value on projective
spaces differs quite drastically from what is obtained in more classical cohomology theories

such as Chow groups or K -theory. It is now understood that this behaviour reflects the

lack of GL-orientation in Witt theory.

Ananyevskiy observed in [Ana16a] that the key property of Witt groups permitting to
perform these computations turns out to be the fact that the Hopf map

η : A2 \{0}→ P
1, (x : y) �→ [x : y]

induces by pullback an isomorphism of Witt groups W(P1)
∼−→ W(A2 \ {0}). He thus

extended in [Ana16a] the above-mentioned computations to arbitrary cohomology
theories in which η induces an isomorphism.
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2 O. Haution

Inverting the Hopf map η in the motivic stable homotopy category SH(S) over a base

scheme S yields its η-periodic version SH(S)[η−1], a category which has been studied in

details by Bachmann–Hopkins [BH20]. In this paper, we lift Ananyevskiy’s computations
of the cohomology of projective spaces to the η-periodic stable homotopy category: We

obtain for instance that a projective bundle of even relative dimension becomes an

isomorphism in SH(S)[η−1].
Another familiar feature of Witt groups is that twisting these groups by squares of line

bundles has no effect, which may be viewed as a manifestation of the SLc-orientability of

Witt groups (see below). We show that that property of Witt groups in fact follows from
their η-periodicity alone (see (4.3.2) for a more general statement).

Proposition. Let V → X be a vector bundle and L → X a line bundle. Then we have
an isomorphism of Thom spaces

ThX(V )� ThX(V ⊗L⊗2) ∈ SH(S)[η−1].

Panin and Walter introduced [PW18, §3] the notion of SLc-orientability for algebraic
cohomology theories, which consists of the data of Thom classes for vector bundles

equipped with a square root of their determinant and proved that Hermitian K -theory is

SLc-oriented. Ananyevskiy later showed [Ana20, Theorem 1.2] that a cohomology theory
is SLc-oriented as soon as it is a Zariski sheaf in bidegree (0,0) and pointed out [Ana20,

Theorem 1.1] the close relations between SLc-orientations and SL-orientations (the latter

consisting in the data of Thom classes for vector bundles with trivialised determinant).
We show in this paper that the two notions actually coincide in the η-periodic context.

Theorem. Every SL-orientation of an η-periodic motivic commutative ring spectrum is
induced by a unique SLc-orientation.

These results are obtained as consequences of the following observation.

Proposition. Let E be a vector bundle of odd rank over a smooth S-scheme X and E◦

the complement of the zero-section in E.

(i) The projection E◦ →X admits a section in SH(S)[η−1].

(ii) The diagram E◦ ×X E◦ ⇒ E◦ → X becomes a split coequaliser diagram in

SH(S)[η−1].

The first assertion may be viewed as a splitting principle, while the second permits

performing a form of descent. To some extent, this proposition allows us to assume

that odd rank vector bundles admit a nowhere-vanishing section (once η is inverted);
in particular that line bundles are trivial.

Finally, we provide applications to the computation in SH(S)[η−1] of the étale

classifying spaces of certain algebraic groups.

Theorem. For r ∈ N\{0}, there exist natural maps

S → BGm ; S → Bμ2r+1 ; Gm → Bμ2r

which become isomorphisms in SH(S)[η−1].
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Odd rank vector bundles in eta-periodic motivic homotopy theory 3

From this theorem, we deduce a computation in SH(S)[η−1] of the classifying space

of an arbitrary diagonalisable group. We obtain that all invariants of torsors under a
diagonalisable group with values in an η-periodic cohomology theory arise from a single

invariant of μ2-torsors. In the appendix, we present an explicit construction of that

invariant, exploiting the identification of the group μ2 with the orthogonal group O1.

Next, we obtain ‘relative’ computations in SH(S)[η−1] of certain étale classifying spaces
in terms of others.

Theorem. For n ∈ N\{0} and r ∈ N, the natural morphisms

BSLn → BSLc
n ; BGL2r → BGL2r+1 ; BSL2r+1 → BGL2r+1

become isomorphisms in SH(S)[η−1].

The first result can be viewed as a companion of the theorem on orientations stated

above and cements the idea that the groups SLc
n and SLn are the same in the eyes of

η-periodic stable homotopy theory. The second (resp. third) result expresses the fact that

odd-dimensional vector bundles behave as if they had a nowhere-vanishing section (resp.
trivial determinant) from the point of view of η-periodic stable homotopy theory.

The morphism BSL2r →BGL2r is not an isomorphism in SH(S)[η−1], but we show that

it admits a section, expressing the fact that every invariant (with values in an η-periodic
cohomology theory) of even-dimensional vector bundles is determined by its value on

those bundles having trivial determinant.

Finally, let us mention that the results of this paper serve as a starting point for the
paper [Hau22] on Pontryagin classes.

1. Notation and basic facts

1.1.

Throughout the paper, we work over a noetherian base scheme S of finite dimension.

The category of smooth separated S -schemes of finite type will be denoted by SmS . All

schemes will be implicitly assumed to belong to SmS , and the notation A
n,Pn,Gm will

refer to the corresponding S -schemes. We will denote by 1 the trivial line bundle over a
given scheme in SmS .

1.2.

We will use the A
1-homotopy theory introduced by Morel–Voevodsky [MV99]. We will

denote by Spc(S) the category of motivic spaces (i.e., simplicial presheaves on SmS), by

Spc•(S) its pointed version and by Spt(S) the category of T -spectra, where T = A
1/Gm.

We endow these with the motivic equivalences, resp. stable motivic equivalences, and

denote by H(S),H•(S), SH(S) the respective homotopy categories. We refer to, for

example, [PPR09, Appendix A] for more details.
We have an infinite suspension functor Σ∞ : Spc•(S) → Spt(S). Composing with

the functor Spc(S) → Spc•(S) adding an external base point, we obtain a functor

Σ∞
+ : Spc(S)→ Spt(S).
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4 O. Haution

The spheres are denoted as usual by Sp,q ∈ Spc•(S) for p,q ∈ N with p ≥ q (where

T � S2,1). The motivic sphere spectrum Σ∞
+ S will be denoted by 1S ∈ Spt(S). When A

is a motivic spectrum, we denote its (p,q)-th suspension by Σp,qA= Sp,q ∧A. This yields
functors Σp,q : SH(S)→ SH(S) for p,q ∈ Z.

1.3.

When E→X is a vector bundle with X ∈ SmS , we denote by E◦ =E \X the complement

of the zero section. The Thom space of E is the pointed motivic space ThX(E) =E/E◦.
We will write ThX(E) ∈ Spt(S) instead of Σ∞ThX(E), in order to lighten the notation.
When g : Y → X is a morphism in SmS , we will usually write ThY (E) instead of

ThY (g
∗E). Since E →X is a weak equivalence, we have a cofiber sequence in Spc•(S),

where p : E◦ →X is the projection,

(E◦)+
p+−−→X+ → ThX(E). (1.3.a)

If F → S is a vector bundle and f : X → S the structural morphism, we have by [MV99,
Proposition 3.2.17 (1)] a natural identification in Spc•(S)

ThX(E⊕f∗F ) = ThX(E)∧ThS(F ). (1.3.b)

When V → S is a vector bundle, we denote by ΣV : SH(S)→ SH(S) the derived functor

induced by A �→ A∧ThS(V ). It is an equivalence of categories, with inverse denoted by

Σ−V .

1.4.

Let i : Y → X be a closed immersion in SmS , with normal bundle N → Y , and open
complement u : U → X. The purity equivalence X/U � ThY (N) (see, e.g., [MV99,

Theorem 3.2.23]) yields a cofiber sequence in Spc•(S)

U+
u+−−→X+ → ThY (N). (1.4.a)

More generally, if V →X is a vector bundle, we have a cofiber sequence in Spc•(S)

ThU (V )→ ThX(V )→ ThY (N ⊕ i∗V ).

This may be deduced from equation (1.4.a) by first reducing to the case X = S using
the functor f� of (1.9) below and then applying the functor −∧ThX(V ) (both of which

preserve homotopy colimits), in view of equation (1.3.b).

1.5.

Let ϕ : E
∼−→ F be an isomorphism of vector bundles over X ∈ SmS . Then ϕ induces a

weak equivalence in Spc•(S) (and Spt(S))

Th(ϕ) : ThX(E)→ ThX(F ).

If ψ : F
∼−→G is an isomorphism of vector bundles over X, we have

Th(ψ ◦ϕ) = Th(ψ)◦Th(ϕ). (1.5.a)
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If X = S and f ∈ EndSH(S)(1S), then we have in SH(S)

(ΣF f)◦Th(ϕ) = Th(ϕ)◦ (ΣEf) : ThS(E)→ ThS(F ). (1.5.b)

(This follows from the fact that, as morphisms 1S ∧ThS(E)→ 1S ∧ThS(F )

(f ∧ idThS(F ))◦ (id1S
∧Th(ϕ)) = f ∧Th(ϕ) = (id1S

∧Th(ϕ))◦ (f ∧ idThS(E)).)

1.6.

(See [Mor04, Lemma 6.3.4].) Let X ∈ SmS and u ∈ H0(X,Gm). Consider the automor-

phism u id1 : 1→ 1 of the trivial line bundle over X, and set

〈u〉=Σ−2,−1Th(u id1) ∈AutSH(S)(Σ
∞
+ X).

It follows from equation (1.5.a) that

〈uv〉= 〈u〉 ◦ 〈v〉 for u,v ∈H0(X,Gm). (1.6.a)

When X = S and A ∈ SH(S), we will denote again by 〈u〉 ∈AutSH(S)(A) the morphism

A= 1S ∧A
〈u〉∧idA−−−−−→ 1S ∧A=A.

If f : A→B is a morphism in SH(S), then

f ◦ 〈u〉= 〈u〉 ◦f. (1.6.b)

1.7.

We denote by η : A2 \ {0} → P
1 in Spc•(S) the map (x,y) �→ [x : y], where A

2 \ {0} is

pointed by (1,1) and P
1 by [1 : 1].

1.8.

We will consider the categories Spc•(S)[η
−1] and Spt(S)[η−1] obtained by monoidally

inverting the map η of equation (1.7), which can be constructed as left Bousfield

localisations, as discussed in [Bac18, §6]. Their respective homotopy categories will be
denoted by H•(S)[η

−1] and SH(S)[η−1], and we will usually omit the mention of the

localisation functors.

A spectrum A ∈ Spt(S) is called η-periodic if the map

A∧Σ∞(A2 \{0}) id∧Σ∞η−−−−−→A∧Σ∞
P
1 (1.8.a)

is an isomorphism in SH(S). The full subcategory of such objects in Spt(S) can be

identified Spt(S)[η−1].

1.9.

Let X ∈ SmS with structural morphism f : X → S. Then there are Quillen adjunctions

f� : Spc•(X)� Spc•(S) : f
∗ ; f� : Spt(X)� Spt(S) : f∗.
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6 O. Haution

The functor f∗ is induced by base-change, while f� arises from viewing a smooth X -scheme
as a smooth S -scheme by composing with f. These induce Quillen adjunctions

f� : Spc•(S)[η
−1]� Spc•(S)[η

−1] : f∗ ; f� : Spt(X)[η−1]� Spt(S)[η−1] : f∗.

We will also use the notation f∗,f� for the derived functors on the respective homotopy
categories.

1.10.

(See, e.g., [DHI04].) Let V → X be a vector bundle with X ∈ SmS and Uα an open

covering of X. Then the map

hocolim
(
· · · →→→

∐
α,β

ThUα∩Uβ
(V |Uα∩Uβ

)⇒
∐
α

ThUα
(V |Uα

)
)
→ ThX(V )

is a weak equivalence.

2. Splitting Gm-torsors

2.1. Local splitting

In this section, we consider the schemes A
1,Gm,P1,A2 \ {0} as pointed motivic spaces,

respectively via 1,1,[1 : 1],(1,1). We recall that T = A
1/Gm. We have a chain of weak

equivalences

T = A
1/Gm

∼−→ P
1/A1 ∼←− P

1, (2.1.0.a)

where the first arrow is induced by the immersion A
1 → P

1,x �→ [x : 1], and the quotient
P
1/A1 is taken with respect to the immersion A

1 → P
1,y �→ [1 : y].

We first recall a well-known fact (see, e.g., [Ana20, Lemma 6.2] for a stable version):

2.1.1 Lemma. Let u ∈ H0(S,Gm). Then the morphism Th(u2 id1) : T → T (see (1.5))

coincides with the identity in H•(S).

Proof. The endomorphism ϕ : P1 → P
1 given by [x : y] �→ [u2x : y] = [ux : u−1y] is induced

by the matrix

A=

(
u 0

0 u−1

)
.

Since

A=

(
1 u
0 1

)(
1 0

−u−1 1

)(
1 u−1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)

is a product of transvections, the endomorphism ϕ induces the identity endomorphism of
P
1
+ in H•(S) (see, e.g., [Ana16a, Lemma 1]). The map ϕ stabilises the copies of A1 given

by x �→ [x : 1] and y �→ [1 : y] and restricts to u2 id1 on the former. Thus, the statement

follows from the isomorphism (2.1.0.a).
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2.1.2. Excision yields isomorphisms in H•(S)

(A2 \{0})/(Gm×A
1)

∼←− (A1×Gm)/(Gm×Gm)
∼−→ (A1/Gm)∧ (Gm)+ = T ∧ (Gm)+.

Composing with the quotient A2 \{0}→ (A2 \{0})/(A1×Gm), this yields a map

A
2 \{0}→ T ∧ (Gm)+. (2.1.5.a)

Lemma 2.1.3. The projection p : Gm → S induces a cofiber sequence in Spc•(S)

A
2 \{0} (2.1.2.a)−−−−−→ T ∧ (Gm)+

id∧p+−−−−→ T.

Proof. This follows from the consideration of the following commutative diagram in

Spc•(S), whose rows are cofiber sequences

A
2 \{0} �� (A2 \{0})/(Gm×A

1) �� S1,0∧ (Gm×A
1)

∼

��

A
1×Gm

��

��

��

(A1×Gm)/(Gm×Gm)

∼

��

∼
��

�� S1,0∧ (Gm×Gm)

��

��
A

1∧ (Gm)+ ��

id∧p+

��

(A1/Gm)∧ (Gm)+ ��

id∧p+

��

S1,0∧Gm∧ (Gm)+

id∧ id∧p+

��
A

1 �� A1/Gm
∼ �� S1,0∧Gm

and where the curved arrow is the weak equivalence induced by the projection

Gm×A
1 →Gm.

The next lemma is reminiscent of [Ana16b, Theorem 3.8]:

Lemma 2.1.4. The morphism η of (1.7) factors in H•(S) as

A
2 \{0} (2.1.2.a)−−−−−→ T ∧ (Gm)+

Th(t−1 id1)−−−−−−−→ T ∧ (Gm)+
id∧p+−−−−→ T

(2.1.0.a)−−−−−→ P
1,

where t ∈ H0(Gm,Gm) is the tautological section and p : Gm → S the projection (and

T ∧ (Gm)+ is identified with ThGm
(1)).

Proof. Consider the commutative diagram in SmS

A
1×Gm

��

μ

��

A
2 \{0}

η

��
A

1 �� P1,

where the upper horizontal arrow is the natural open immersion, the lower horizontal

arrow is given by x �→ [x : 1] and μ is given by (x,y) �→ xy−1. Excision yields the

isomorphisms in the commutative diagram in H•(S)
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8 O. Haution

(A1×Gm)/(Gm×Gm)
∼ ��

μ̃

��

(A2 \{0})/(Gm×A
1)

��

A
2 \{0}

η

��

��

A
1/Gm

∼ �� P1/A1
P
1,

∼��

where μ̃ is induced by μ, and the lower horizontal arrows are the morphisms of equation

(2.1.0.a). To conclude, observe that the morphism μ̃ factors as the upper horizontal
composite in the following commutative diagram in H•(S):

(A1×Gm)/(Gm×Gm)
(x,y) �→(xy−1,y) ��

∼
��

(A1×Gm)/(Gm×Gm)
(x,y) �→x ��

∼
��

A
1/Gm

=

��
T ∧ (Gm)+

Th(t−1 id1) �� T ∧ (Gm)+
id∧p+ �� T.

Proposition 2.1.5. Let p : Gm → S be the projection, and T = A
1/Gm = ThS(1).

Consider the composite (see (1.5))

π : T ∧ (Gm)+
Th(t id1)−−−−−→ T ∧ (Gm)+

id∧p+−−−−→ T.

Then the following square is homotopy co-Cartesian in Spc•(S)[η
−1]

T ∧ (Gm)+

id∧p+

��

π �� T

��
T �� ∗.

Proof. From (2.1.3), we deduce a commutative diagram

A
2 \{0} (2.1.2.a) ��

��

T ∧ (Gm)+

id∧p+

��

π �� T

��
∗ �� T �� ∗,

(2.1.5.a)

where the left inner square is homotopy co-Cartesian. Applying (2.1.1) over the base Gm

and using the functor p� of (1.9), we have in H•(S)

Th(t id1) = Th(t−1 id1) : T ∧ (Gm)+ → T ∧ (Gm)+.

It thus follows from (2.1.4) that the upper composite in the diagram (2.1.5.a) is an
isomorphism in H•(S)[η

−1], hence the exterior square in equation (2.1.5.a) is homotopy

co-Cartesian. We conclude that the right inner square is homotopy co-Cartesian (by

[Hir03, Proposition 13.3.15, Remark 7.1.10]).
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2.2. Global splitting

Definition 2.2.1. Let L → S be a line bundle. Denote by L◦ the complement of the

zero-section in L, and by p : L◦ → S the projection. Then the graph L◦ → L◦ ×S L of

the open immersion L◦ → L may be viewed as a nowhere-vanishing section of the line

bundle p∗L over L◦, which induces the tautological trivialisation τ : 1
∼−→ p∗L. We define

a morphism in H•(S) (recall that T =ThS(1), and see (1.5))

πL : T ∧ (L◦)+ =ThL◦(1)
Th(τ)−−−−→ ThL◦(p∗L)

p−→ ThS(L).

Example 2.2.2. Assume that L= 1. Then the tautological trivialisation τ : 1→ 1 of the

trivial line bundle over L◦ = Gm is given by multiplication by the tautological section

t ∈H0(Gm,Gm), hence π1 coincides with morphism π of (2.1.5).

2.2.3. Let L→ S be a line bundle. If f : R→ S is a scheme morphism, then the functor

f∗ : Spc•(S)→ Spc•(R) maps πL to πf∗L.

2.2.4. If ϕ : L
∼−→M is an isomorphism of line bundles over S, then the following diagram

commutes in H•(S)

T ∧ (L◦)+
πL ��

id∧(ϕ◦)+

��

ThS(L)

Th(ϕ)

��
T ∧ (M◦)+

πM �� ThS(M).

Proposition 2.2.5. Let L→ S be a line bundle. Then the following square is homotopy

co-Cartesian in Spc•(S)[η
−1]

T ∧ (L◦)+

id∧p+

��

πL �� ThS(L)

��
T �� ∗.

Proof. Let F be the homotopy colimit of the diagram ThS(L)
πL←−− T ∧ (L◦)+

id∧p+−−−−→ T .

By (1.10) and (1.9) (and in view of (2.2.3)), the fact that F � ∗ may be verified Zariski
locally on S. We may thus assume that L is trivial. By (2.2.4), we may further assume

that L= 1 so that L◦ =Gm. Then, in view of (2.2.2) the result follows from (2.1.5).

The next statement was initially inspired by [Lev19, Proof of Theorem 4.1].

Corollary 2.2.6. Let L→ S be a line bundle. Then in the notation of (2.2.1), we have
an isomorphism in SH(S)[η−1]

(Σ∞
+ p,Σ−2,−1Σ∞πL) : Σ

∞
+ L◦ ∼−→ 1S ⊕Σ−2,−1ThS(L).
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10 O. Haution

Proof. The square induced in Spt(S)[η−1] by the square of (2.2.5) is homotopy co-

Cartesian, hence also homotopy Cartesian (see, e.g., [Hov99, Remark 7.1.12]). This yields
an isomorphism

(Σ∞(id∧p+),Σ∞πL) : Σ
∞(T ∧ (L◦)+)

∼−→ Σ∞T ⊕ThS(L),

from which the result follows by applying the functor Σ−2,−1.

Corollary 2.2.7. Let L→ S be a line bundle and V → S a vector bundle.

(i) The natural map ThL◦(V ) → ThS(V ) extends to a natural isomorphism in
SH(S)[η−1]

ThL◦(V )� ThS(V )⊕Σ−2,−1ThS(V ⊕L).

(ii) Denote by p : L◦ → S and p1,p2 : L
◦×S L◦ → L◦ the projections. Then

ThL◦×SL◦(V )
p1

⇒
p2

ThL◦(V )
p−→ ThS(V )

is a split coequaliser diagram in SH(S)[η−1].

Proof. Statement (i) follows by applying the autoequivalence ΣV : SH(S)[η−1] →
SH(S)[η−1] to the decomposition of (2.2.6), in view of equation (1.3.b).

Certainly in the diagram of equation (ii), we have p◦p1 = p◦p2. The isomorphism (i)
yields a section s : ThS(V ) → ThL◦(V ) of p in SH(S)[η−1]. Then, in SH(S)[η−1], the

composite

t : ThL◦(V ) = (Σ∞
+ L◦)∧ThS(V )

id∧s−−−→ (Σ∞
+ L◦)∧ThL◦(V ) = ThL◦×SL◦(V )

is a section of

p1 : ThL◦×SL◦(V ) = (Σ∞
+ L◦)∧ThL◦(V )

id∧p−−−→ (Σ∞
+ L◦)∧ThS(V ) = ThL◦(V ).

On the other hand, in the commutative diagram in SH(S)[η−1],

ThL◦(V )

p

��

(Σ∞
+ L◦)∧ThS(V )

id∧s ��

p∧id

��

(Σ∞
+ L◦)∧ThL◦(V )

p∧id

��

ThL◦×SL◦(V )

p2

��
ThS(V ) 1S ∧ThS(V )

id∧s �� 1S ∧ThL◦(V ) ThL◦(V )

the upper composite is t, while the lower one is s. Therefore, p2◦t= s◦p as endomorphisms

of ThL◦(V ) in SH(S)[η−1], proving equation (ii).

Corollary 2.2.8. Let L→ S be a line bundle, and denote by p : L◦ → S the projection.

Then the functor p∗ : SH(S)[η−1]→ SH(L◦)[η−1] is faithful and conservative.

Proof. By the smooth projection formula and (2.2.6), the composite p�◦p∗ : SH(S)[η−1]→
SH(S)[η−1] decomposes as

p� ◦p∗ = id∧(Σ∞
+ L◦) = id∧(1S ⊕Σ−2,−1ThS(L)) = id⊕(Σ−2,−1 ◦ΣL),
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which is faithful, hence so is p∗. The above formula also shows that p� ◦p∗ reflects zero-
objects, hence so does p∗. Since p∗ is triangulated, it is conservative.

Remark 2.2.9. The results of this section on line bundles will be generalised to odd

rank vector bundles in §4.2.

3. Applications to twisted cohomology

3.1. Cohomology theories represented by ring spectra

3.1.1. Let A ∈ Spt(S) be a motivic spectrum. For a pointed motivic space X , we write

Ap,q(X ) = HomSH(S)(Σ
∞X ,Σp,qA),

and A∗,∗(X ) =
⊕

p,q∈Z
Ap,q(X ). When X is a smooth S -scheme, we will write A∗,∗(X)

instead of A∗,∗(X+). If E →X is a vector bundle of constant rank r, we write

Ap,q(X;E) =Ap+2r,q+r(ThX(E))

and extend this notation to arbitrary vector bundles in an obvious way. A morphism
f : Y → X of pointed motivic spaces (resp. of smooth S -schemes) induces a pullback

f∗ : A∗,∗(X )→A∗,∗(Y).

3.1.2. A commutative ring spectrum will mean a commutative monoid in (SH(S),∧,1S).

When A∈ SH(S) is a commutative ring spectrum and X ∈ SmS , then A∗,∗(X) is naturally
a ring, and A∗,∗(X;E) an A∗,∗(X)-module. When u ∈ H0(X,Gm), we will write 〈u〉 ∈
A0,0(X) instead of 〈u〉∗(1) (see (1.6)).

3.1.3. If A is an η-periodic motivic spectrum, for any pointed motivic space X , we have

natural isomorphisms for p,q ∈ Z

Ap,q(X ) = HomSH(S)[η−1](Σ
∞X ,Σp,qA).

Proposition 3.1.4. Let A be an η-periodic motivic spectrum. Let X ∈ SmS. Let L→X
be a line bundle and V →X a vector bundle.

(i) Denoting by p : L◦ →X the projection, we have a split short exact sequence

0→A∗,∗(X;V )
p∗

−→A∗,∗(L◦;V )→A∗,∗(X;V ⊕L)→ 0.

(ii) Denoting by p1,p2 : L
◦×X L◦ → L◦ the projections, we have an exact sequence

0→A∗,∗(X;V )
p∗

−→A∗,∗(L◦;V )
p∗
1−p∗

2−−−−→A∗,∗(L◦×X L◦;V ).
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Proof. This follows by applying (2.2.7) over the base X to the image of A under the

pullback Spt(S)→ Spt(X).

3.2. SL- and SLc-orientations

Definition 3.2.1. An SL-oriented vector bundle over a scheme X is a pair (E,δ), where
E →X is a vector bundle and δ : 1

∼−→ detE is an isomorphism of line bundles. We will

also say that δ is an SL-orientation of the vector bundle E →X. An isomorphism of SL-

oriented vector bundles (E,δ)
∼−→ (F,ε) is an isomorphism of vector bundles ϕ : E

∼−→ F
such that (detϕ)◦ δ = ε.

Definition 3.2.2 See [PW18, §3]. An SLc-oriented vector bundle over a scheme X is a
triple (E,L,λ), where E →X is a vector bundle and L→X a line bundle, and λ : L⊗2 ∼−→
detE is an isomorphism. We will also say that (L,λ) is an SLc-orientation of the vector

bundle E→X. An isomorphism of SLc-oriented vector bundles (E,L,λ)
∼−→ (F,M,μ) is an

isomorphism of vector bundles ϕ : E
∼−→F and an isomorphism of line bundles ψ : L

∼−→M

such that (detϕ)◦λ= μ◦ψ⊗2.

3.2.3. Observe that each SL-orientation δ of a vector bundle E induces an SLc-

orientation (L,λ) of E, where L= 1 and λ is the composite 1⊗2 � 1
δ−→ detE.

3.2.4. Let (E,L,λ) be an SLc-oriented vector bundle, and assume that the line bundle
L is trivial. Then every trivialisation α : 1

∼−→ L induces an SL-orientation of E given by

δα : 1� 1⊗2 α⊗2

−−→ L⊗2 λ−→ detE.

Observe that the SLc-oriented vector bundle induced (in the sense of (3.2.3)) by δα is

isomorphic to (E,L,λ).

3.2.5. Consider a commutative ring spectrum A ∈ SH(S). By a SL-, resp. SLc-,
orientation of A, we will mean a normalised orientation in the sense of [Ana20, Definition

3.3]. Such data consists in Thom classes th(E,δ) ∈A∗,∗(X;E) for each SL-oriented vector

bundle (E,δ) over X ∈ SmS , resp. th(E,L,λ) ∈ A∗,∗(X;E) for each SLc-oriented vector

bundle (E,L,λ) over X ∈ SmS , satisfying a series of axioms.

3.2.6. Let A ∈ SH(S) be a commutative ring spectrum. Then each SLc-orientation of A

induces an SL-orientation of A, by letting the Thom class of an SL-oriented vector bundle

be the Thom class of the induced SLc-oriented vector bundle, in the sense of (3.2.3).

Lemma 3.2.7. Let A∈ SH(S) be an SL-oriented commutative ring spectrum. Let (E,L,λ)

be an SLc-oriented vector bundle over X ∈ SmS, and assume that the line bundle L is
trivial. Then, in the notation of (3.2.4), the Thom class th(E,δα) ∈ A∗,∗(X;E) does not

depend on the choice of the trivialisation α of L.
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Proof. If α : 1
∼−→L is a trivialisation, then every trivialisation is of the form uα for some

u ∈H0(X,Gm). In the notation of (3.2.4), we then have δuα = u2δα. By [Ana20, Lemma

7.3], we have

th(E,δuα) = th(E,u2δα) = 〈u2〉th(E,δα) ∈A∗,∗(X;E).

Since 〈u2〉= 1 ∈A0,0(X) by (2.1.1) (or [Ana20, Lemma 6.2]), the statement follows.

Proposition 3.2.8. Let A ∈ SH(S) be an η-periodic commutative ring spectrum. Then
every SL-orientation of A is induced (in the sense of (3.2.6)) by a unique SLc-orientation.

Proof. We assume given an SL-orientation of A. Let (E,L,λ) be an SLc-oriented vector
bundle. Denoting by p : L◦ → X the projection, the line bundle p∗L over L◦ admits a

tautological trivialisation τ : 1
∼−→ p∗L. In view of (3.2.4), this yields an SL-orientation δτ

of p∗E.

First, assume given an SLc-orientation of A compatible with its SL-orientation. As
observed in (3.2.4), the SLc-oriented vector bundle (p∗E,p∗L,p∗λ) is isomorphic to the

one induced by the SL-oriented vector bundle (p∗E,δτ ). Thus, we must have

p∗ th(E,L,λ) = th(p∗E,p∗L,p∗λ) = th(p∗E,δτ ) ∈A∗,∗(L◦;p∗E).

Since p∗ : A∗,∗(X;E) → A∗,∗(L◦;p∗E) is injective by (3.1.4), we obtain the uniqueness

part of the statement.
We now construct an SLc-orientation of A from its SL-orientation. In the situation

considered at the beginning of the proof, let p1,p2 : L
◦×X L◦ → L◦ be the projections,

and set q= p◦p1 = p◦p2. The tautological trivialisation τ of p∗L yields two trivialisations
p∗1τ and p∗2τ of q∗L, and thus two SL-orientations α1 = δp∗

1τ
and α2 = δp∗

2τ
of E. However,

it follows from (3.2.7) that their Thom classes coincide so that (observe that αi = p∗i (δτ )
for i= 1,2)

p∗1 th(p∗E,δτ ) = th(E,α1) = th(E,α2) = p∗2 th(p∗E,δτ ) ∈A∗,∗(L◦×X L◦;q∗E).

Therefore, it follows from (3.1.4.ii) that the element th(p∗E,δτ ) ∈A∗,∗(L◦;E) is the image
of a unique element θ(E,L,λ) ∈A∗,∗(X;E).

From the fact that (E,δ) �→ th(E,δ) defines an SL-orientation of A, we deduce at once

that (E,L,λ) �→ θ(E,L,λ) defines an SLc-orientation of A: Indeed, each axiom of [Ana20,

Definition 3.3] can be verified after pulling back along p : L◦ →X since p∗ : A∗,∗(X;E)→
A∗,∗(L◦;p∗E) is injective by (3.1.4).

To conclude the proof, it remains to show the SLc-orientation (E,L,λ) �→ θ(E,L,λ)

induces the original SL-orientation of A. So let us assume that the SLc-oriented vector
bundle (E,L,λ) is induced by an SL-oriented vector bundle (E,δ), in the sense of

(3.2.3). In particular, L = 1. Then the tautological trivialisation τ : 1
∼−→ p∗L and the

trivialisation 1 = p∗1 = p∗L yield two SL-orientations of p∗E. Their Thom classes in
A∗,∗(L◦;p∗E) coincide by (3.2.7), and they are, respectively, p∗θ(E,L,λ) and p∗ th(E,δ).

Since p∗ : A∗,∗(X;E)→A∗,∗(L◦;p∗E) is injective by (3.1.4), we have θ(E,L,λ) = th(E,δ) ∈
A∗,∗(X;E), as required.
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Remark 3.2.9. Ananyevskiy constructed ‘Thom isomorphisms’ associated with SLc-

bundles in [Ana20, §4] when A is an arbitrary SL-oriented theory, but as explained in

[Ana20, Remark 4.4] it is not clear whether this yields an SLc-orientation, the problem
being the multiplicativity axiom. When A is η-periodic, our construction leads to the

same Thom isomorphisms for SLc-bundles (in fact, the proof of (3.2.8) shows that there

is at most one way to construct such functorial isomorphisms compatibly with the SL-

orientation). Thus, the Thom isomorphisms constructed by Ananyevskiy do give rise to
an SLc-orientation when A is η-periodic.

3.3. Twisting by doubles and squares of line bundles

Proposition 3.3.1. Let L be a line bundle over S.

(i) There exist an isomorphism Σ4,21S � ThS(L
⊕2) in SH(S)[η−1].

(ii) If s1,s2 ∈ Z are of the same parity, there exist an isomorphism

ThS(L
⊗s1)� ThS(L

⊗s2) in SH(S)[η−1].

Proof. Let us first assume that the line bundle L→ S admits a trivialisation α : 1
∼−→ L.

Then we have an isomorphism in SH(S) (see (1.5))

Th(α⊕2) : ThS(1
⊕2)

∼−→ ThS(L
⊕2). (3.3.1.a)

Every trivialisation of L is of the form uα with u ∈ H0(S,Gm). As automorphisms of

ThS(1
⊕2) in SH(S) we have,

Th((u id1)
⊕2) = Th((u2 id1)⊕ id1)◦Th((u−1 id1)⊕ (u id1)) = Th((u2 id1)⊕ id1)

because Th((u−1 id1)⊕ (u id1)) is the identity of ThS(1
⊕2), being given by a product

of transvections (see the proof of (2.1.1)). Now, by (2.1.1), under the identification

ThS(1
⊕2) = ThS(1)∧ThS(1) (see equation (1.3.b)), we have

Th((u2 id1)⊕ id1) = Th(u2 id1)∧ idThS(1) = idThS(1)∧ idThS(1) = idThS(1⊕2) .

Therefore, Th((u id1)
⊕2) is the identity of ThS(1

⊕2) in SH(S), hence

Th((uα)⊕2) = Th(α⊕2)◦Th((u id1)⊕2) = Th(α⊕2)

so that the isomorphism Th(α⊕2) in SH(S) considered in equation (3.3.1.a) is independent

of the choice of the trivialisation α.

Next, let us consider the case (ii). If α : 1
∼−→L is a trivialisation, we have an isomorphism

in SH(S)

Th(idL⊗s1 ⊗α⊗s2−s1) : ThS(L
⊗s1)

∼−→ ThS(L
⊗s2). (3.3.1.b)

(Here and below, for r ∈N, the notation α⊗−r refers to the morphism ((α∨)−1)⊗r.) Now

for u ∈H0(S,Gm), the composite in SH(S)

ThS(1)
Th(α⊗s1 )−−−−−−→ ThS(L

⊗s1)
Th(id

L⊗s1 ⊗(uα)⊗s2−s1 )
−−−−−−−−−−−−−−−−→ ThS(L

⊗s2)
Th(α⊗s2 )−1

−−−−−−−−→ ThS(1)
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coincides with Th(us2−s1 id1), which is the identity by (2.1.1) (recall that s2−s1 is even),

and in particular does not depend on u ∈H0(S,Gm). Since the left and right arrows in

the above composite are isomorphisms, we deduce that the middle arrow does not depend
on u ∈H0(S,Gm), which shows as above that the isomorphism (3.3.1.b) is independent

of the choice of the trivialisation α.

Let us come back to the general case, where L→ S is a possibly nontrivial line bundle.

Let p : L◦ → S be the projection, and consider the tautological trivialisation τ of the
line bundle p∗L over L◦. Let us consider the isomorphism ϕ : ThL◦(B)

∼−→ ThL◦(C) in

SH(S)[η−1], where

• B = 1⊕2,C = L⊕2,ϕ=Th(τ⊕2) in case (i).
• B = L⊗s1,C = L⊗s2,ϕ=Th(idL⊗s1 ⊗α⊗s2−s1) in case (ii).

Let p1,p2 : L
◦ ×S L◦ → L◦ be the projections, and set q = p ◦ p1 = p ◦ p2. For i ∈ {1,2},

the isomorphism p∗iϕ : ThL◦×SL◦(B) → ThL◦×SL◦(C) in SH(S)[η−1] is induced by the
trivialisation p∗i τ of the line bundle q∗L over L◦×S L◦, hence does not depend on i, by

the special case considered at the beginning of the proof. Thus, by (2.2.7.ii) there exists

a unique morphism f fitting into the commutative diagram in SH(S)[η−1]

ThL◦×SL◦(B)
p2

��
p1 ��

p∗
1ϕ=p∗

2ϕ

��

ThL◦(B) ��

ϕ

��

p �� ThS(B)

f

��
ThL◦×SL◦(C)

p2

��
p1 �� ThL◦(C)

p
�� ThS(C)

as well as a unique morphism g into the commutative diagram in SH(S)[η−1]

ThL◦×SL◦(C)
p2

��
p1 ��

p∗
1ϕ

−1=p∗
2ϕ

−1

��

ThL◦(C) ��

ϕ−1

��

p �� ThS(C)

g

��
ThL◦×SL◦(B)

p2

��
p1 �� ThL◦(B)

p
�� ThS(B).

As p : ThL◦(B)→ ThS(B) and p : ThL◦(C)→ ThS(C) are epimorphisms in SH(S)[η−1]

(see (2.2.7)), it follows that f and g are mutually inverse isomorphisms in SH(S)[η−1].

Remark 3.3.2. Proposition (3.3.1) will be improved in (4.3.2).

4. Nowhere-vanishing sections of odd rank bundles

4.1. Projective bundles

The results of this section are slight generalisations of those of [Ana16a, §4].

4.1.1. Let us consider the linear embeddings ik : P
k → P

k+1 given by the vanishing

of the last coordinate. Denote by ιk : S → P
k the S -point given by the composite

S = P
0 i0−→ P

1 i1−→ ·· · ik−1−−−→ P
k.
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4.1.2. Assume given a collection D= (d1, . . . ,dr) ∈ Z
r for some r ∈N. We will denote by

O(D) the vector bundle O(d1)⊕·· ·⊕O(dr) over P
k, for each k ∈N. When k = 0, we have

a canonical isomorphism O(D)� 1⊕r over P0 = S. This yields, for any k ∈N, a canonical
map in Spt(S)

Σ2r,r1S =ThS(1
⊕r)� ThP0(O(D))

ιk−→ ThPk(O(D)). (4.1.2.a)

Proposition 4.1.3. Let k,r ∈ N, and d1, . . . ,dr ∈ Z. Set D = (d1, . . . ,dr), and let
d= d1+ · · ·+dr. We use the notation O(D) described in (4.1.2).

(i) If k and d are odd, then ThPk(O(D)) = 0 in SH(S)[η−1].

(ii) If k and d are even, then equation (4.1.2.a) induces an isomorphism Σ2r,r1S �
ThPk(O(D)) in SH(S)[η−1].

(iii) If k is even and d is odd, then ThPk(O(D))� Σ2(k+r),k+r1S.

(iv) If k is odd and d is even, then ThPk(O(D))� Σ2(k+r),k+r1S ⊕Σ2r,r1S.

Proof. Let us first prove (i). Assume that k and d are odd. Consider a linear embedding

P
1 → P

k. Its normal bundle is O(1)⊕k−1, and its open complement is a vector bundle over
P
k−2. The corresponding zero-section P

k−2 → P
k \P1 induces an isomorphism in SH(S)

and is the restriction of a linear embedding P
k−2 → P

k. Thus, (1.4) yields a distinguished

triangle in SH(S)

ThPk−2(O(D))→ ThPk(O(D))→ ThP1(O(D)⊕O(1)⊕k−1)→ Σ1,0ThPk−2(O(D)).

Using induction on the odd integer k, we are reduced to assuming that k = 1. Now, by

(3.3.1.ii) we have in SH(S)[η−1]

ThP1(O(D))� Σ2s,s(ThP1(O(−1))∧r−s),

where s is the number of indices i ∈ {1, . . . ,r} such that di is even. Since d is odd, so is
r−s and using (3.3.1.i), we deduce that

ThP1(O(D))� Σ2(r−1),r−1ThP1(O(−1)) in SH(S)[η−1].

But ThP1(O(−1)) vanishes in SH(S)[η−1] because of the distinguished triangle (see

(1.3.a))

Σ∞
+ O(−1)◦ → Σ∞

+ P
1 → ThP1(O(−1))→ Σ1,0Σ∞

+ O(−1)◦

and the definition of the map η (recall that O(−1)◦ = A
2 \ {0}). We have proved

equation (i).

Let us come back to the situation when k and d are arbitrary. Consider a linear
embedding P

k−1 → P
k avoiding the S -point ιk : S → P

k (we write P
−1 = ∅). It is

a closed immersion defined by the vanishing of a regular section of O(1). Its open

complement is isomorphic to A
k, and the morphism jk : S → A

k induced by ιk induces
an isomorphism in SH(S). The canonical trivialisation of O(D) over P

0 = S is the

restriction along jk of a trivialisation of O(D)|Ak (induced by the trivialisation of O(1)|Ak

corresponding to the regular section of O(1) mentioned above). It follows that the map
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ThP0(O(D))→ThAk(O(D)) induced by jk induces an isomorphism in SH(S). Thus, (1.4)

yields a distinguished triangle in SH(S)

Σ2r,r1S
(4.1.2.a)−−−−−→ ThPk(O(D))→ ThPk−1(O(D)⊕O(1))→ Σ2r+1,r1S

so that equation (ii) follows from equation (i).

Consider now a linear embedding s : S = P
0 → P

k avoiding ik−1(P
k−1). Its open

complement U is a line bundle over P
k−1. The corresponding zero-section P

k−1 →
U induces an isomorphism in SH(S) and is the restriction of the linear embedding

ik−1 : P
k−1 → P

k. Since the vector bundle s∗O(D) and the normal bundle s∗O(1)⊕k to s

are both trivial, we have by (1.4) a distinguished triangle in SH(S)

ThPk−1(O(D))→ ThPk(O(D))→ Σ2(k+r),k+r1S → Σ1,0ThPk−1(O(D)). (4.1.3.a)

Therefore, equation (iii) follows from equation (i).

Finally, assume that k is odd and d is even. It follows from equation (ii) that

the composite ThPk−1(O(D)) → ThPk(O(D)) → ThPk+1(O(D)) is an isomorphism in

SH(S)[η−1], hence ThPk−1(O(D))→ ThPk(O(D)) admits a retraction, giving a splitting
of the triangle (4.1.3.a). In view of equation (ii), this proves equation (iv).

Corollary 4.1.4. If k ∈ N is even, the structural morphism P
k → S induces an

isomorphism Σ∞
+ P

k ∼−→ 1S in SH(S)[η−1].

Proof. The structural morphism is retraction of ιk, so the corollary follows from (4.1.3.ii)

applied with r = 0.

Proposition 4.1.5. Let E,V1, . . . ,Vn be vector bundles of constant rank over S, and

d1, . . . ,dn ∈ Z. Assume that rankE is even and that d1 rankV1 + · · ·+ dn rankVn is odd.
Then

ThP(E)((O(d1)⊗ q∗V1)⊕·· ·⊕ (O(dn)⊗ q∗Vn)) = 0 ∈ SH(S)[η−1],

where q : P(E)→ S is the projective bundle.

Proof. By (1.10) and (1.9), this may be verified Zariski locally on S, so we may assume

that E,V1, . . . ,Vn are all trivial. Then the statement follows from (4.1.3.i).

Proposition 4.1.6. Let E,V be vector bundles over S. Assume that E has constant

odd rank. Then ThP(E)(V ) → ThS(V ) is an isomorphism in SH(S)[η−1]. In particular,

Σ∞
+ P(E)

∼−→ 1S in SH(S)[η−1].

Proof. By (1.10) and (1.9), this may be verified Zariski locally on S, so we may assume
that E and V are both trivial. Then the statement follows after suspending (4.1.4).

4.2. Odd rank vector bundles

4.2.1. Let E→S be a vector bundle. The compositeO(−1)⊂E×SP(E)→E restricts to

an isomorphism O(−1)◦
∼−→E◦, which is Gm-equivariant. We thus obtain a commutative

diagram in Spt(S)
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Σ∞
+ O(−1)◦ ��

�
��

Σ∞
+ P(E)

��
Σ∞

+ E◦ �� 1S

(4.2.1.a)

which induces a morphism of the homotopy cofibers of the horizontal morphisms:

ThP(E)(O(−1))→ ThS(E) ∈ SH(S). (4.2.1.b)

Lemma 4.2.2. Let E → S be a vector bundle of constant odd rank. Then equation
(4.2.1.b) is an isomorphism ThP(E)(O(−1))

∼−→ ThS(E) in SH(S)[η−1].

Proof. It follows from (4.1.6) that both vertical arrows in the diagram (4.2.1.a) are

isomorphisms in SH(S)[η−1], hence so the induced map on homotopy cofibers.

Proposition 4.2.3. Let E → S be a vector bundle of constant odd rank. Then the pro-

jection E◦ → S admits a section in SH(S)[η−1], inducing a decomposition in SH(S)[η−1]

Σ∞
+ E◦ � 1S ⊕Σ−2,−1ThS(E).

Proof. By (2.2.6), we have a splitting in SH(S)[η−1]

Σ∞
+ O(−1)◦ � Σ∞

+ P(E)⊕Σ−2,−1ThP(E)(O(−1))

and the statement follows from (4.2.1), (4.1.6) and (4.2.2).

Remark 4.2.4. One may deduce that (2.2.7) and (2.2.8) remain valid when L is an
odd rank vector bundle instead of a line bundle, using exactly the same arguments but

substituting (4.2.3) for (2.2.6).

We deduce the following splitting principle.

Corollary 4.2.5. Let X ∈ SmS, and E → X be a vector bundle of constant odd rank.

Then there exists a morphism f : Y → X in SmS whose image in SH(S)[η−1] admits a
section, and a vector bundle F → Y such that f∗E � F ⊕1.

Proof. Applying the functor SH(X)[η−1] → SH(S)[η−1] of (1.9) we may assume that

X = S. Let us denote by p : (E∨)◦ → S the projection. Then p∗E∨ admits a nowhere
vanishing section s. Its dual s∨ : p∗E → 1 is surjective. Letting Q = kers∨, we have an

exact sequence of vector bundles over (E∨)◦

0→Q→ p∗E → 1→ 0. (4.2.5.a)

Then we may find an affine bundle g : Y → (E∨)◦ along which the pullback of the sequence

(4.2.5.a) splits (we may take for Y the scheme parametrising the sections of p∗E∨ →Q∨;
see, e.g., [Rio10, p.243]). Then Σ∞

+ g : Σ∞
+ Y → Σ∞

+ (E∨)◦ is an isomorphism in SH(S),

and Σ∞
+ p : Σ∞

+ (E∨)◦ → 1S admits a section in SH(S)[η−1] by (4.2.3). So we may set

f = p◦g.
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4.3. Thom spaces of tensor products by line bundles

We are now in position to slightly improve the result obtained in §3.3.

Lemma 4.3.1. Let E → S be a vector bundle and u ∈ H0(S,Gm). Assume that E has

constant rank r. Then in the notation of (1.5) and (1.6), we have in SH(S)[η−1]

Th(u idE) = 〈ur〉 : ThS(E)→ ThS(E).

Proof. Since, under the identification ThS(E ⊕ 1) = ThS(E) ∧ThS(1) (see equation

(1.3.b)) we have

Th(u idE⊕1) = Th(u idE)∧Th(u id1) = Th(u idE)∧〈u〉,

we may replace E with E ⊕ 1 if necessary and thus assume that r is odd. The Gm-

equivariant isomorphism E◦ �O(−1)◦ (see (4.2.1)) yields a commutative square in SH(S)

ThP(E)(O(−1))
Th(u idO(−1)) ��

��

ThP(E)(O(−1))

��
ThS(E)

Th(u idE) �� ThS(E)

where the vertical arrows coincide and are isomorphisms in SH(S)[η−1] by (4.2.2). In

view of equation (1.6.b), we may replace E → S with O(−1)→ P(E), and thus assume

that E is a line bundle. By (2.2.8), we may replace S with E◦, and thus assume that

the line bundle E → S admits a trivialisation α : 1
∼−→ E. Then we have a commutative

square of isomorphisms in SH(S)

ThS(E)
Th(u idE) �� ThS(E)

ThS(1)
Th(u id1) ��

Th(α)

��

ThS(1).

Th(α)

��

By definition Th(u id1) = 〈u〉, and we deduce using equation (1.6.b) that Th(u idE) =
〈u〉 ∈AutSH(S)(ThS(E)). Since 〈u2〉= id by (2.1.1) and r is odd, it follows that 〈u〉= 〈ur〉,
concluding the proof.

Proposition 4.3.2. Let L→ S be a line bundle, and V → S a vector bundle of constant
rank r. If s ∈ Z is such that rs is even, then there exists an isomorphism in SH(S)[η−1]

ThS(V )� ThS(V ⊗L⊗s).

Proof. Upon replacing V with V ⊗L⊗s, we may assume that s≥ 0. When α : 1
∼−→ L is

a trivialisation of the line bundle L over S we have an isomorphism in SH(S)

Th(idV ⊗α⊗s) : ThS(V )→ ThS(V ⊗L⊗s). (4.3.2.a)
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Any trivialisation of L is of the form uα for some u ∈ H0(S,Gm), and we have in

SH(S)[η−1], by (4.3.1) and (2.1.1)

Th(idV ⊗(uα)⊗s) = Th(idV ⊗α⊗s)◦Th(us idV ) = Th(idV ⊗α⊗s)◦ 〈urs〉=Th(idV ⊗α⊗s).

It follows that the image of the isomorphism (4.3.2.a) in SH(S)[η−1] is independent of

the choice of the trivialisation α, and we conclude as in the proof of (3.3.1).

5. Classifying spaces and characters

5.1. Models for étale classifying spaces

Here, we recall some facts concerning the geometric models of the étale classifying space

of a linear algebraic group given in [MV99, §4.2].

5.1.1. Let G be a linear algebraic group over S. Let (Vm,Um,fm), for m ∈ N \ {0}, be
an admissible gadget with a nice (right) G-action, in the sense of [MV99, Definition

4.2.1]. Here, Vm → S are G-equivariant vector bundles, and Um ⊂ Vm are G-invariant
open subschemes where the G-action is free. Set EmG= Um and BmG= (EmG)/G. Let

us define BG ∈ Spc(S) as the colimit of the motivic spaces BmG as m runs over N\{0}.
It is proved in [MV99, Proposition 4.2.6] that the weak-equivalence class of BG does
not depend on the choice of (Vm,Um,fm). More precisely if (Vm,Um,fm),(V ′

m,U ′
m,f

′
m) are

admissible gadgets with a nice G-action, and Um → U ′
m are G-equivariant morphisms

commuting with the morphisms fm,f ′
m, then the induced morphism of motivic spaces

colimm(Um/G)→ colimm(U ′
m/G) is a weak equivalence. In the sequel, we will refer to a

system (Vm,Um,fm) as above as a model for BG and use the notation EmG,BmG.

5.1.2. In the situation of (5.1.1), since B1G is cofibrant and each BmG → Bm+1G is

a cofibration (for the model structure of [MV99]), it follows that the colimit BG is

canonically weakly equivalent to the homotopy colimit of the motivic spaces BmG in

Spc(S) (see, e.g., [Hir03, Theorem 19.9.1]).

5.1.3. Let G be a linear algebraic group over S, and choose a model for BG. Since the

map colimmEmG→ S is a weak equivalence of motivic spaces [MV99, Proposition 4.2.3],
we obtain a canonical morphism S →BG in H(S). We say that the model is pointed if we

are given an S -point of E1G. This yields map S → BG in Spc(S), whose image in H(S)

is the canonical morphism described just above.

5.1.4. (See also [MV99, p.133].) Let us fix an integer n ∈ N and describe an explicit

model for BGLn. Fix an integer p≥ n (we will typically take p= n). For s ∈N, we denote
by Gr(n,s) the Grassmannian of rank n subbundles U ⊂ 1⊕s over S (for us a subbundle

is locally split, so 1⊕s/U is a vector bundle). For each m ∈N\{0}, consider the S -scheme

Vm,p parametrising the vector bundles maps 1⊕n → 1⊕pm; then Vm,p → S is a vector
bundle. Let Um,p the open subscheme of Vm,p parametrising those vector bundle maps

admitting Zariski locally a retraction (i.e., making 1⊕n a subbundle of 1⊕pm). Then the

natural left GLn-action on 1⊕n induces a right GLn-action on Um,p, which is free, and the
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quotient Um,p/GLn can be identified with the Grassmannian Gr(n,pm). The inclusion

1⊕m ⊂ 1⊕m+1 given by the vanishing of the last coordinate induces an inclusion

1⊕pm = (1⊕m)⊕p ⊂ (1⊕m+1)⊕p = 1⊕p(m+1),

which yields a GLn-equivariant morphism fm,p : Um,p → Um+1,p.
Then the family (Vm,p,Um,p,fm,p) is an admissible gadget with a nice GLn-action.

Indeed, the first condition of [MV99, Definition 4.2.1] is satisfied because U1,p possesses

an S -point, and the second condition is satisfied with j = 2i. The fact that the group
GLn is special implies the validity of condition (3) of [MV99, Definition 4.2.4]. We thus

obtained a model for BGLn. We have just seen that this model is pointed (in the sense

of (5.1.3)); a canonical pointing when p= n is induced by the identity of 1⊕n.

5.1.5. Let H ⊂G be an inclusion of linear algebraic groups over S. Then any admissible

gadget with a nice G-action is also one with a nice H -action (where the H -action is
given by restricting the G-action). Indeed, the only nonimmediate point is condition (3)

of [MV99, Definition 4.2.4]. So let F be a smooth S -scheme with a free right H -action.

Consider the quotient E = (F ×G)/H, where the right H -action on G is given by letting
h ∈H act via g �→ h−1g. Right multiplication in G induces a free right G-action on E.

For any U ∈ SmS with a right G-action, we have isomorphisms

(E×U)/G� ((F ×G)/H×U)/G� (F × (G×U)/G)/H � (F ×U)/H,

which are functorial in U and thus permit to identify the morphisms (E×U)/G→E/G

and (F ×U)/H → F/H. Since the former is an epimorphism in the Nisnevich topology
(as the group G is nice), so is the latter.

Thus, given a model for BG, we obtain a model for BH, where EmH =EmG with the

induced H -action. This yields morphisms

BmH = (EmH)/H = (EmG)/H → (EmG)/G=BmG

which are compatible with the transition maps as m varies and thus a map BH → BG.

5.1.6. (See also [MV99, Remark 4.2.7].) Assume that G is a linear algebraic group over

S, and fix an embedding G ⊂ GLn as a closed subgroup. By (5.1.5), every (pointed)

model for BGLn induces a (pointed) model for BG. Since BGLn admits a pointed model

by (5.1.4), so does BG.

5.2. Products

5.2.1. Let G,G′ be linear algebraic groups over S. Choose admissible gadgets

(Vm,Um,fm) with a nice G-action, and (V ′
m,U ′

m,f
′
m) with a nice G′-action (in the

sense of [MV99, Definition 4.2.1], recall from (5.1.6) that such exist). Then the family

(Vm×V ′
m,Um×U ′

m,fm×f ′
m) constitutes an admissible gadget with a nice G×G′-action.

Indeed, to check the last condition of [MV99, Definition 4.2.4], let T →X be a G×G′-
torsor in SmS . Then the projection (T × U × U ′)/(G×G′) → T/(G×G′) factors as

(T1×U ′)/G′ → T1/G
′
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where T1 = (T ×U)/G followed by

(T2×U)/G→ T2/G,

where T2 = T/G′. Each morphism is an epimorphism in the Nisnevich topology by

assumption, hence so is their composite.
Under this choice of a model for BG, we have

Bm(G×G′) =BmG×BmG′. (5.2.1.a)

Lemma 5.2.2. If G,G′ are linear algebraic groups over S, we have an isomorphism

B(G×G′)� BG×BG′ ∈H(S).

Proof. Since the product with a given motivic space commutes with homotopy colimits,

we have isomorphisms in H(S)

B(G×G′)� hocolimm(BmG×BmG′) by equation (5.2.1.a) and (5.1.2)

� hocolimmhocolimd(BmG×BdG
′) by a cofinality argument

� hocolimm(BmG×hocolimdBdG
′)

� (hocolimmBmG)× (hocolimdBdG
′)

� BG×BG′ by (5.1.2).

5.3. Characters

In this section, we discuss general facts relating the classifying space of a linear algebraic

group G to that of the kernel H of a character of G, which will be applied to explicit

situations in §6.

5.3.1. Let G be a linear algebraic group over S, and fix a model for BG (see (5.1.1)).

Assume given a character of G, that is a morphism of algebraic groups χ : G → Gm.

Considering the right G-action on A
1 given by letting g ∈ G act via λ �→ χ(g)−1λ, we

define for each m ∈ N\{0} a line bundle over BmG:

Cm(χ) = (EmG×A
1)/G. (5.3.1.a)

The assignment χ �→ Cm(χ) satisfies

Cm(χχ′) = Cm(χ)⊗Cm(χ′), (5.3.1.b)

yielding group morphisms

Homalg. groups(G,Gm)→ Pic(BmG) ; χ �→ Cm(χ).

Let nowH ⊂G be a closed subgroup, and consider the morphisms BmH →BmG defined

in (5.1.5). If χ|H denotes the restriction of the character χ to H, then

Cm(χ)×BmGBmH � Cm(χ|H). (5.3.1.c)
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If G′ is a linear algebraic group over S, letting χ̃ : G×G′ → G
χ−→ Gm be the induced

character of G×G′, we have

Cm(χ̃) = Cm(χ)×BmG′. (5.3.1.d)

5.3.2. Let G be a linear algebraic group over S and χ a surjective character of G. Letting

H = kerχ, we thus have an exact sequence of algebraic groups over S

1→H →G
χ−→Gm → 1. (5.3.2.a)

Let us fix a model for BG. As explained in (5.1.5), this yields a model for BH, and
morphisms pm : BmH → BmG for m ∈ N \ {0}. By (5.3.1), we also have a line bundle
Cm(χ) over BmG such that

Cm(χ)◦ = ((EmG×A
1)/G)◦ = (EmG×Gm)/G= ((EmG)/H×Gm)/Gm = (EmG)/H =BmH.

In view of (1.3.a), this yields a cofiber sequence in Spc•(S), for each m ∈ N\{0}

(BmH)+
pm+−−−→ (BmG)+ → ThBmG(Cm(χ)). (5.3.2.b)

More generally (as in (1.4)), if V →BmG is a vector bundle, we have a cofiber sequence

in Spc•(S),

ThBmH(V )→ ThBmG(V )→ ThBmG(Cm(χ)⊕V ). (5.3.2.c)

5.3.3. In the situation of (5.3.2), let us define

ThBG(C(χ)) = colimmThBmG(Cm(χ)) ∈ Spc•(S).

As in (5.1.2), this coincides with the homotopy colimit (the transition morphisms are again
monomorphisms, being directed colimits of such). We will also write ThBG(C(χ))∈ Spt(S)

instead of Σ∞ThBG(C(χ)). Taking the (homotopy) colimit of equation (5.3.2.b) yields a

cofiber sequence in Spc•(S)

(BH)+ → (BG)+ → ThBG(C(χ)). (5.3.3.a)

5.3.4. In the situation of (5.3.2), assume that the model for BG is pointed. Then we

have a commutative diagram of S -schemes with Cartesian squares

G
χ ��

e1

��

Gm

j1

��

�� S

i1

��
E1G �� B1H �� B1G,

(5.3.4.a)

where e1 is induced by the S -point and the G-action on E1G, and j1, resp. i1, is obtained

by taking the H -quotient, resp. G-quotient of e1. Composing i1 and j1 with the natural

maps B1G→BG and B1H →BH respectively, we obtain maps i : S →BG and j : Gm →
BH in Spc(S). Note that i is the map described in (5.1.3) and that the left-hand Cartesian

square in equation (5.3.4.a) shows that the map j : Gm → BH classifies the H -torsor

χ : G→Gm.
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The right-hand Cartesian square in equation (5.3.4.a) shows that the Gm-torsor B1H →
B1G pulls back to the trivial torsor along i1, which yields a trivialisation of the line bundle

i∗1C1(χ) over S and thus a morphism in Spc•(S)

t : T =ThS(1)→ ThB1G(C1(χ))→ ThBG(C(χ)).

We thus obtain a commutative diagram in Spc•(S), whose rows are cofiber sequences

(BH)+ �� (BG)+ �� ThBG(C(χ))

(Gm)+ ��

j+

��

S+

i+

��

�� T.

t

��
(5.3.4.b)

5.3.5. In the situation of (5.3.2), using (2.2.5) for the line bundle Cm(χ) → BmG,

and applying the functor Spc•(BmG)[η−1] → Spc•(S)[η
−1] of (1.9), we have homotopy

cocartesian squares in Spc•(S)[η
−1]

T ∧ (BmH)+

��

�� ThBmG(C(χm))

��
T ∧ (BmG)+ �� ∗,

which are compatible with the transition maps as m varies by (2.2.3). Taking the

homotopy colimit, and proceeding as in the proof of (2.2.6), we obtain an isomorphism

in SH(S)[η−1]

Σ∞
+ BH � Σ∞

+ BG⊕Σ−2,−1ThBG(C(χ)) ∈ SH(S)[η−1]. (5.3.5.a)

6. Computations of classifying spaces

6.1. Diagonalisable groups

Using the embeddings Pk ⊂ P
k+1 of (4.1.1) for k ∈ N, we define, for n ∈ Z

P
∞ = hocolimkP

k ∈ Spc(S) and ThP∞(O(n)) = hocolimkThPk(O(n)) ∈ Spc•(S),

and as usual write ThP∞(O(n)) ∈ Spt(S) instead of Σ∞ThP∞(O(n)). We have a natural

map ι∞ : S = P
0 → P

∞ in Spc(S). For each n ∈ Z, the line bundle O(n) over P0 admits a

canonical trivialisation so that equation (4.1.2.a) yields a canonical map in Spt(S)

Σ2,11S → ThP∞(O(n)). (6.1.0.a)

Proposition 6.1.1. Let n ∈ Z. The following hold in SH(S)[η−1]:

(i) The morphism ι∞ induces an isomorphism 1S � Σ∞
+ P

∞.

(ii) If n is odd, then ThP∞(O(n)) = 0.

(iii) If n is even, then equation (6.1.0.a) induces an isomorphism Σ2,11S �ThP∞(O(n)).

Proof. We apply (4.1.3) with D = (n), and so O(D) = O(n). We obtain that Σ2,11S →
ThPk(O(n)) is a weak equivalence in Spt(S)[η−1] when n,k are even. Taking the homotopy
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colimit over k yields a weak equivalence Σ2,11S →ThP∞(O(n)) in Spt(S)[η−1] when n is

even. This proves equation (iii). The other statements are deduced in a similar way from
(4.1.3).

6.1.2. Consider the model for BGm described in (5.1.4) with p = n = 1, under the

identification Gm = GL1. Then BmGm = P
m−1, and thus BGm = P

∞. Furthermore,
the line bundle Cm(idGm

) over BmG defined in equation (5.3.1.a) may be identified with

the tautological bundle O(−1) over Pm−1.

Theorem 6.1.3. Let n ∈ N\{0}. The following hold in SH(S)[η−1]:

(i) The natural morphism 1S → Σ∞
+ BGm is an isomorphism.

(ii) If n is odd, the natural morphism 1S → Σ∞
+ Bμn is an isomorphism.

(iii) If n is even, the morphism Gm → Bμn classifying the μn-torsor Gm → Gm given

by taking n-th powers induces an isomorphism Σ∞
+ Gm � Σ∞

+ Bμn.

Proof. Let us consider the model for BGm described in (6.1.2), where BmGm = P
m−1

and BGm = P
∞. Then the first statement follows from (6.1.1.i).

Next, consider the character n : Gm → Gm given by taking n-th powers. Its kernel is

μn, and the line bundle Cm(n) over BmGm (defined in equation (5.3.1.a)) corresponds

to the line bundle O(−n) over Pm−1 (this may be seen for instance by combining (6.1.2)
with equation (5.3.1.b)). So we are in the situation of (5.3.2) with G=Gm,χ= n,H = μn.

Thus, equation (5.3.3.a) yields a distinguished triangle in SH(S)

Σ∞
+ Bμn → Σ∞

+ BGm → ThP∞(O(−n))→ Σ1,0Σ∞
+ Bμn.

If n is odd, then ThP∞(O(−n)) = 0 in SH(S)[η−1] by (6.1.1.ii), and the above

distinguished triangle shows that the morphism Σ∞
+ Bμn → Σ∞

+ BGm is an isomorphism

in SH(S)[η−1]. Thus, the second statement follows from the first.
Assume that n is even. Then in the diagram (5.3.4.b) the maps i+ and t become

isomorphisms in SH(S)[η−1] by (6.1.1.i) and (6.1.1.iii), hence Σ∞
+ j : Σ∞

+ Gm →Σ∞
+ Bμn is

also one. As observed in (5.3.2), the latter is induced by the μn-torsor n : Gm →Gm.

Remark 6.1.4. Combining (6.1.3) with (5.2.2), we have thus obtained a ‘computation’ in

SH(S)[η−1] of the classifying space BG of every finitely generated diagonalisable group G.

6.2. SL versus SLc

Let n ∈ N\{0}. Consider the character

νn : GLn×Gm →Gm ; (M,t) �→ t−2detM.

By definition (see [PW18, §3]), we have SLc
n = kerνn. We view SLn as a subgroup of SLc

n

via the mapping M �→ (M,1).

Proposition 6.2.1. For n ∈ N\{0}, the inclusion SLn ⊂ SLc
n induces an isomorphism

Σ∞
+ BSLn

∼−→ Σ∞
+ BSLc

n in SH(S)[η−1].
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Proof. The character

δn : SL
c
n →Gm ; (M,t) �→ t

is surjective (recall that n≥ 1), and satisfies SLn = kerδn.

Set Pn =GLn×Gm, and denote by qn : Pn → Gm the second projection. Let us fix an

arbitrary model for BGLn, but choose the model for BGm described in (6.1.2) so that

BmGm = P
m−1. Recall from (5.2.1.a) that this yields a model for BPn such that

BmPn = (BmGLn)× (BmGm) = (BmGLn)×P
m−1.

Letting gn : Pn →GLn be the first projection, we have, as characters Pn →Gm

νn = g∗n(detn) · q∗n(idGm
)−2,

where detn : GLn → Gm denotes the determinant morphism. It follows from equations

(5.3.1.b) and (5.3.1.d) that, as line bundles over BmPn, we have in the notation of (5.3.1.a)

Cm(νn)� Cm(detn)�Cm(idGm
)⊗−2 ; Cm(qn)� 1�Cm(idGm

).

Recall from (6.1.2) that the line bundle Cm(idGm
) → BmGm corresponds to O(−1) →

P
m−1. Applying (4.1.5) to the projective bundle BmPn →BmGLn, for m even we have

ThBmPn
(Cm(νn)⊕Cm(qn)) = 0 = ThBmPn

(Cm(qn)) ∈ SH(S)[η−1]. (6.2.1.a)

Since the character δn is the restriction of qn : Pn → Gm, it follows from equation

(5.3.1.c) that the line bundle Cm(δn) over BmSLc
n is the pullback of Cm(qn) over BmPn.

By (5.3.2.c), we have a distinguished triangle in SH(S)

ThBm SLc
n
(Cm(δn))→ ThBmPn

(Cm(qn))→ThBmPn
(Cm(νn)⊕Cm(qn))

→ Σ1,0ThBm SLc
n
(Cm(δn))

so that, in view of equation (6.2.1.a)

ThBm SLc
n
(Cm(δn)) = 0 ∈ SH(S)[η−1] for m even.

Now, the distinguished triangle in SH(S) (see (5.3.2.b))

Σ∞
+ BmSLn → Σ∞

+ BmSLc
n → ThBm SLc

n
(Cm(δn))→ Σ1,0Σ∞

+ BmSLn

implies that, for m even, the natural map induces an isomorphism

Σ∞
+ BmSLn

∼−→ Σ∞
+ BmSLc

n in SH(S)[η−1].

The statement follows by taking the homotopy colimit.

Remark 6.2.2. Let A ∈ SH(S) be an η-periodic commutative ring spectrum, and

consider the corresponding cohomology theory A∗,∗(−) (see (3.1.1)). Then by (6.2.1),

we have a natural isomorphism

A∗,∗(BSLc
n)�A∗,∗(BSLn).
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If A is SL-oriented (see (3.2.5)) and S = Speck with k a field of characteristic not two,

Ananyevskiy computed in [Ana15, Theorem 10] that

A∗,∗(BSLn) =

{
A∗,∗(S)[[p1, . . . ,pr−1,e]]h if n= 2r with r ∈ N\{0}
A∗,∗(S)[[p1, . . . ,pr]]h if n= 2r+1 with r ∈ N,

where pi has degree (4i,2i) and e has degree (2r,r) (here, the notation R[[x1, . . . ,xm]]h
refers to the homogeneous power series ring in m variables over the graded ring R;
see [Ana15, Definition 27]). This computation remains valid (with exactly the same

arguments) when S is an arbitrary noetherian scheme of finite dimension under the

assumption that 2 is invertible in S. Removing that last assumption seems to require

a modification of the arguments of [Ana15], the problem being with [Ana15, Lemma 6]
(which is used to prove [Ana15, Theorem 9]).

6.3. GL and SL

In this section, we compare the classifying spaces BGL2r, BGL2r+1, BSL2r, BSL2r+1.

6.3.1. Recall that under the model for BGLn described in (5.1.4) for p = n, the

scheme BmGLn is identified with the Grassmannian Gr(n,nm). The closed immersion
Gr(n,nm)→Gr(n+1,(n+1)m) mapping a subbundle E⊂ (1⊕m)⊕n to E⊕1⊂ (1⊕m)⊕n⊕
1⊕m = (1⊕m)⊕n+1, where the inclusion 1⊂ 1⊕m is given by the vanishing of the last m−1

coordinates, induces a morphism fm : BmGLn →BmGLn+1 which is compatible with the

transition maps as m varies. This yields a morphism in Spc(S)

BGLn → BGLn+1 . (6.3.1.a)

6.3.2. For integers u,v,w ∈ N, we denote by Gr(u⊂ v,w) the flag variety of subbundles
P ⊂Q⊂ 1⊕w with rankP = u and rankQ= v. Let r,s ∈ N, and consider the morphisms

Gr(2r,s)
p←−Gr(2r ⊂ 2r+1,s)

q−→Gr(2r+1,s)

given by mapping a flag P ⊂Q to P, resp. Q.
For n ∈ {2r,2r+ 1}, let us denote by Un ⊂ 1⊕s the tautological rank n subbundle

over Gr(n,s), and write Qn = 1⊕s/Un. Then the morphism p may be identified with

the projective bundle P(Q2r), and the morphism q is the projective bundle P(U∨
2r+1).

Proposition 6.3.3. The map BGL2r → BGL2r+1 of equation (6.3.1.a) becomes an

isomorphism in SH(S)[η−1].

Proof. Let n= 2r. For m ∈ N\{0}, consider the commutative diagram in SmS

Gr(n,nm)

gm

������
����

����
��� fm

�����
����

����
����

�

jm

��
Gr(n,(n+1)m) Gr(n⊂ n+1,(n+1)m)

pm

��
qm

�� Gr(n+1,(n+1)m),

https://doi.org/10.1017/S1474748023000294 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000294


28 O. Haution

where the morphism jm is given by mapping E ⊂ (1⊕m)⊕n to

E ⊂ E⊕1⊂ (1⊕m)⊕n⊕1⊕m = (1⊕m)⊕n+1,

with the inclusion 1 ⊂ 1⊕m given by the vanishing of the m− 1 last coordinates. Here,

the morphisms pm,qm are the morphisms p,q described in (6.3.2) when s= (n+1)m. The

morphism fm is the one described in (6.3.1), and the morphism gm is induced by the
inclusion

(1⊕m)⊕n = (1⊕m)⊕n⊕0⊂ (1⊕m)⊕n⊕1⊕m = (1⊕m)⊕n+1. (6.3.3.a)

The morphisms of this diagram are compatible with the transition maps as m varies,

induced by the inclusions 1⊕m ⊂ 1⊕m+1 given by the vanishing of the last coordinate.
The morphism qm is a P

n-bundle, hence is an isomorphism in SH(S)[η−1] by (4.1.6)

(recall that n= 2r is even). The morphism pm is a P
(n+1)m−n−1-bundle, hence is also an

isomorphism in SH(S)[η−1] when m is odd by (4.1.6).
In the notation of (5.1.4), the morphism gm is the GLn-quotient of the morphism

Um,n → Um,n+1 induced by equation (6.3.3.a). Therefore, it follows from (5.1.1) that the

map colimm gm is a weak equivalence of motivic spaces.

Applying the functor Σ∞
+ : SmS → Spt(S)[η−1] to the above diagram and taking the

homotopy colimit over m, we thus obtain a commutative diagram in Spt(S)[η−1], where

all maps are weak equivalences. Since the map (6.3.1.a) is obtained as colimm fm, the

proposition follows.

6.3.4. Let n ∈ N \ {0}. The group SLn is the kernel of the determinant morphism

detn : GLn → Gm, which is surjective (as n ≥ 1). We are thus in the situation of (5.3.2)

so that we have by equation (5.3.5.a) a splitting

Σ∞
+ BSLn =Σ∞

+ BGLn⊕Σ−2,−1ThBGLn(C(detn)) ∈ SH(S)[η−1]. (6.3.4.a)

6.3.5. Using the model for BGLn described in (5.1.4) with p = n, the variety BmGLn

coincides with the Grassmannian Gr(n,nm). Observe that the tautological bundle Un over
this variety is isomorphic to the quotient (EmGLn×A

n)/GLn, where the right GLn-

action on A
n is given by letting ϕ ∈ GLn act via v �→ ϕ−1(v). The GLn-equivariant

isomorphism det(EmGLn×A
n)�EmGLn×A

1, where the right GLn-action on A
1 is given

by letting ϕ ∈ GLn act via λ �→ detn(ϕ
−1)λ, yields an isomorphism of line bundles over

BmGLn

detUn � Cm(detn). (6.3.5.a)

Proposition 6.3.6. Let r ∈ N. Then in SH(S)[η−1], the natural morphism BSL2r →
BGL2r acquires a section, and the natural morphism BSL2r+1 → BGL2r+1 becomes an

isomorphism.
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Proof. The first statement follows from (6.3.4.a). Let us prove the second. We use the

model for BGL2r+1 described in (5.1.4) with n= p= 2r+1 so that BmGL2r+1 =Gr(2r+

1,s) where s= (2r+1)m. We consider the situation of (6.3.2) and use the notation thereof.
We have an exact sequence of vector bundles over Ym =Gr(2r ⊂ 2r+1,s) = P(Q2r)

0→ p∗U2r → q∗U2r+1 →OP(Q2r)(−1)→ 0.

Taking determinants and using equation (6.3.5.a), we obtain an isomorphism of line

bundles

p∗(detU2r)⊗OP(Q2r)(−1)� q∗(detU2r+1)� q∗Cm(det2r+1). (6.3.6.a)

When m is even, the vector bundle Q2r = 1⊕s/U2r has even rank, hence it follows

from (4.1.5) and equation (6.3.6.a) that ThYm
(q∗Cm(det2r+1)) = 0 in SH(S)[η−1]. Since

q : Ym → Gr(2r+1,s) is a P
2r-bundle, it then follows from (4.1.6) (applied with V =

Cm(det2r+1)) that ThGr(2r+1,s)(Cm(det2r+1)) = 0 in SH(S)[η−1] for m even. Taking the
homotopy colimit over m, we deduce that ThBGL2r+1

(C(det2r+1)) = 0 in SH(S)[η−1], and

the second statement of the proposition follows from equation (6.3.4.a).

Remark 6.3.7. Let A∈ SH(S) be an η-periodic SL-oriented commutative ring spectrum

(see (3.2.5)), and consider the corresponding cohomology theory A∗,∗(−) (see (3.1.1)).

Assume that 2 is invertible in S. Combining (6.3.6) and (6.3.3) with Ananyevskiy’s
computation of A∗,∗(BSL2r+1) (see (6.2.2)), we recover Levine’s computation [Lev19,

Theorem 4.1]

A∗,∗(BGL2r) =A∗,∗(BGL2r+1) =A∗,∗(S)[[p1, . . . ,pr]]h.

(Note that this permits to remove some of the technical assumptions present in the

statement of [Lev19, Theorem 4.1].)

Appendix A. An invariant of μ2-torsors

We have proved in (6.1.3) that in SH(S)[η−1], for n ∈ N

Σ∞
+ Bμn =

{
1S if n= 0(i.e., μn =Gm) or n is odd,

Σ∞
+ Gm = 1S ⊕1S if n > 0 is even.

Thus, when n> 0 is even, there is essentially one nontrivial invariant of μn-torsors over S
in SH(S)[η−1], in the form of an element of EndSH(S)[η−1](1S). Moreover, it also follows

from (6.1.3) that the morphism Bμ2 → Bμ2r becomes an isomorphism in SH(S)[η−1] for

r > 0. Therefore, the above-mentioned invariant of μn-torsors is induced by an invariant of
μ2-torsors, which is, however, not really explicit from this description. In this section, we

provide an explicit construction of this invariant (the connection with the above discussion

is made in (A.9) below).
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A.1.

Let L → S be a line bundle. As observed by Ananyevskiy [Ana20, Lemma 4.1], the

isomorphism of S -schemes L◦ ∼−→ (L∨)◦, given locally by l �→ l∨, where l∨(l) = 1, induces

an isomorphism in H•(S)

σL : ThS(L)
∼−→ ThS(L

∨).

A.2.

If ϕ : L→M is an isomorphism of line bundles over X, we have (see (1.5))

σL =Th(ϕ∨)◦σM ◦Th(ϕ). (A.2.a)

Definition A.3. It will be convenient to think of a μ2-torsor over S as a pair (L,λ),

where L→ S is a line bundle, and λ : L
∼−→ L∨ is an isomorphism of line bundles over S.

Isomorphisms (L,λ)→ (L′,λ′) are given by isomorphisms of line bundles ϕ : L
∼−→ L′ such

that λ= ϕ∨ ◦λ′ ◦ϕ. The set of isomorphism classes of μ2-torsors is denoted H1
et(S,μ2); it

is endowed with a group structure induced by the tensor product of line bundles.

Definition A.4. Consider a μ2-torsor, given by a line bundle L→ S and an isomorphism

λ : L
∼−→ L∨. Let us consider the composite isomorphism in SH(S) (see (A.1) for the

definition of σL, and (1.5) for that of Th(λ))

ThS(L)
Th(λ)−−−−→ ThS(L

∨)
σ−1
L−−→ ThS(L).

This yields an element a(L,λ) =Σ−L(σ−1
L ◦Th(λ)) ∈AutSH(S)(1S). We define

α(L,λ) = (a(1, can))
−1 ◦a(L,λ) ∈AutSH(S)(1S),

where can: 1 → 1∨ is the canonical isomorphism of line bundles over S. (The element
a(1, can) corresponds to the element ε of [Mor04, §6.1].)

A.5.

This construction is compatible with pullbacks, in the sense that if f : R → S is a

morphism of noetherian schemes of finite dimension and (L,λ) a μ2-torsor, then the

composite in SH(R)

1R = f∗1S
f∗α(L,λ)−−−−−−→ f∗1S = 1R

is α(f∗L,f∗λ).

Example A.6. Consider a μ2-torsor (L,λ), where L= 1 is the trivial line bundle. Then

λ = ucan for some u ∈ H0(S,Gm), hence Th(λ) = Th(can) ◦Th(u id1). Therefore, (see
(1.6))

α(1,λ) = Σ−2,−1((σ−1
1 ◦Th(can))−1 ◦ (σ−1

1 ◦Th(λ))
= Σ−2,−1(Th(can)−1 ◦Th(λ))
= Σ−2,−1Th(u id1)

= 〈u〉.
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Proposition A.7. The assignment (L,λ) �→ α(L,λ) induces a morphism of pointed sets

α : H1
et(S,μ2)→AutSH(S)(1S).

Proof. By construction, we have α(1, can) = id. Consider an isomorphism of μ2-torsors

(L,λ)
∼−→ (M,μ) (see (A.3)), given by an isomorphism ϕ : L

∼−→M . Let us set aL = a(L,λ)
and aM = a(M,μ) (see (A.4)). Then, in AutSH(S)(ThS(L)),

ΣLaL = σ−1
L ◦Th(λ) = σ−1

L ◦Th(ϕ∨)◦Th(μ)◦Th(ϕ) (as λ= ϕ∨ ◦μ◦ϕ)
= Th(ϕ)−1 ◦σ−1

M ◦Th(μ)◦Th(ϕ) by equation (A.2.a)

= Th(ϕ)−1 ◦ (ΣMaM )◦Th(ϕ)
= Th(ϕ)−1 ◦Th(ϕ)◦ (ΣLaM ) (by equation (1.5.b))

= ΣLaM,

whence aL = aM , and α(L,λ) = α(M,μ).

Proposition A.8. The assignment (L,λ) �→ α(L,λ) induces a group morphism

α : H1
et(S,μ2)→AutSH(S)[η−1](1S).

Proof. Consider μ2-torsors given by line bundles L,M over S and isomorphisms L
∼−→

L∨ and M
∼−→M∨. As the functor f∗ : SH(S)[η−1]→ SH(L◦)[η−1] is faithful (2.2.8), by

functoriality (A.5) we may assume that the line bundle L is trivial. Similarly, we may
assume that M is also trivial. By (A.7), we may assume that L=M = 1. Then, in view

of (A.6), the statement follows from equation (1.6.a).

Remark A.9. Let ρ : Gm → Bμ2 be the map classifying the μ2-torsor (1,t id) over
Gm, where t ∈ H0(Gm,Gm) is the tautological section. Recall from (6.1.3.iii) that

Σ∞
+ ρ : Σ∞

+ Gm →Σ∞
+ Bμ2 is an isomorphism in SH(S)[η−1]. If a μ2-torsor (L,λ) is classified

by the map f : S → Bμ2, we claim that α(L,λ) is the composite in SH(S)[η−1] (the map
π1 was defined in (2.2.1))

1S

Σ∞
+ f

−−−→ Σ∞
+ Bμ2

(Σ∞
+ ρ)−1

−−−−−−→ Σ∞
+ Gm

Σ−2,−1Σ∞
+ π1−−−−−−−−→ 1S . (A.9.a)

Indeed, applying the functor SH(S)[η−1]→ SH(L◦)[η−1] which is faithful by (2.2.8) and

using (A.7), we may assume that L= 1. Then λ is given by multiplication by an element

u ∈H0(S,Gm), and the map f factors as S
u−→Gm

ρ−→Bμ2. Denoting by p : Gm → S is the

projection, the composite (A.9.a) is given by

1S

Σ∞
+ u

−−−→ Σ∞
+ Gm

〈t〉−−→ Σ∞
+ Gm

Σ∞
+ p

−−−→ 1S,

which coincides with 〈u〉 ∈AutSH(S)[η−1](S). Thus, the claim follows from (A.6).

Acknowledgments. I am grateful to the referee for his/her suggestions and in

particular for noticing that the coequaliser diagram of (2.2.7) is split.

https://doi.org/10.1017/S1474748023000294 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000294


32 O. Haution

This work was supported by the DFG research grant HA 7702/5-1 and Heisenberg grant

HA 7702/4-1.

Competing interests. The authors have no competing interest to declare.

References

[Ana15] A. Ananyevskiy, ‘The special linear version of the projective bundle theorem’,
Compos. Math. 151(3) (2015), 461–501.

[Ana16a] A. Ananyevskiy, ‘On the push-forwards for motivic cohomology theories with
invertible stable Hopf element’, Manuscripta Math. 150(1–2) (2016), 21–44.

[Ana16b] A. Ananyevskiy, ‘On the relation of special linear algebraic cobordism to Witt
groups’, Homology Homotopy Appl. 18(1) (2016), 204–230.

[Ana20] A. Ananyevskiy, ‘SL-oriented cohomology theories’, in Motivic Homotopy Theory
and Refined Enumerative Geometry, Contemp. Math., vol. 745 (Amer. Math. Soc.,
Providence, RI, 2020), 1–19.

[Ara80] J. K. Arason, ‘Der Wittring projektiver Räume’, Math. Ann. 253(3) (1980),
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