
Insulin-like growth factor 1 and muscle growth: implication for
satellite cell proliferation

Shuichi Machida1 and Frank W. Booth1,2*
1Department of Biomedical Sciences and 2Department of Medical Pharmacology and Physiology and

the Dalton Cardiovascular Center, University of Missouri-Columbia, E102 Veterinary Medical Building,

1600 East Rollins Road, Columbia, MO 65211, USA

Insulin-like growth factor 1 (IGF-1) has been shown to rescue the aging-related or inactivity-
induced loss of muscle mass through the activation of satellite cells. However, the signalling
pathways and the mechanism by which IGF-1 affects satellite cells have not been not
completely identified. The purpose of the present review is to provide current understanding of
the cellular and molecular events underlying IGF-1 induced proliferation of satellite cells.

Insulin-like growth factor 1: Satellite cells

During the early stage of skeletal muscle development
myoblasts fuse to form myotubes, which become inner-
vated and develop into muscle fibres. Thereafter, skeletal
muscle myonuclei are terminally post-mitotic and are
unable to divide (O’Neill & Stockdale, 1972). However,
during postnatal growth and muscle hypertrophy, addi-
tional myonuclei are acquired via satellite cell fusion to the
muscle fibre (Rosenblatt & Parry, 1992). Satellite cells are
small mononucleated cells that are located between the
basal lamina and sarcolemma of muscle fibres. In adult
skeletal muscles these cells are mitotically quiescent, but
are activated and then proliferate in response to a number
of stimuli, including mechanical loading, exercise and
damage (Hawke & Garry, 2001). Insulin-like growth factor
1 (IGF-1) is a potent mitogen, which is probably produced
locally during muscle hypertrophy and can induce pro-
liferation of satellite cells (Adams & Haddad, 1996;
Adams & McCue, 1998). IGF-1 and satellite cells have
been shown to play an essential role in the process of
muscle hypertrophy (Rosenblatt & Parry, 1992; Adams &
Haddad, 1996).

Mechanical loading and insulin-like growth factor 1

Mechanical loading, such as compensatory hypertrophy by
muscle ablation (DeVol et al. 1990; Adams & Haddad,
1996), stretch (Yang et al. 1997) and eccentric contraction
(Yan et al. 1993) induce production of IGF-1 within the

skeletal muscle. DeVol et al. (1990) have demonstrated a
3-fold increase in total IGF-1 mRNA levels in the rat
soleus and plantaris muscles after tenotomy-induced
hypertrophy. Bamman et al. (2001) have extended the
observation to human skeletal muscle, where 48 h after a
single resistance training bout muscle IGF-1 mRNA
increases. These reports suggest a relationship between
local stimulation of skeletal muscle growth and IGF-1
expression. Skeletal muscle hypertrophy is regulated by at
least three major molecular processes: (1) satellite cell
activity; (2) gene transcription; (3) protein translation.
IGF-1 can influence the activity of all these mechanisms,
including increases in satellite cell proliferation, skeletal
a-actin mRNA expression and protein synthesis (Florini
et al. 1996; Chakravarthy et al. 2000a). Thus, increased
IGF-1 expression plays an important role in mediating
muscle hypertrophy induced by mechanical loading
(Adams & Haddad, 1996; Adams & McCue, 1998).

Roles for insulin-like growth factor 1 and satellite
cells in load-induced muscle hypertrophy

Since myonuclei are post-mitotic, the hypertrophying
skeletal muscle must rely on an alternative source for
additional myonuclei (Rosenblatt & Parry, 1992). Satellite
cells have a tremendous proliferative capacity and are
thought to be tissue-specific progenitor cells that are
important in the hypertrophy and regeneration of skeletal
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muscle (Hawke & Garry, 2001). The necessity for satellite
cells for muscle hypertrophy was first demonstrated by
Rosenblatt & Parry (1992) in an experiment that prevented
satellite cell proliferation by exposing the muscle to low-
level g-irradiation, with a resultant failure to produce full
hypertrophy in response to functional overload. Thus,
satellite cell proliferation is believed to be necessary for
the full increase in skeletal muscle mass induced by
overload. During the process of load-induced muscle
hypertrophy, satellite cells are thought to proliferate,
differentiate and then fuse with existing myofibres (Schultz
& McCormick, 1994). IGF-1 has been shown to stimulate
these myogenic processes in skeletal muscles (Florini et al.
1996; Hawke & Garry, 2001). For example, Adams &
Haddad (1996) have reported a positive correlation
between muscle IGF-1 expression and the increase in
muscle nuclear DNA content in the overloaded muscle.
In addition, Adams & McCue (1998) have found that
localized infusion of IGF-1 into the skeletal muscles of rats
in vivo results in hypertrophy and that DNA:protein of the
hypertrophied muscles is unchanged from that of controls.
These results indicate that the elevated muscle IGF-1
induced by loading may be contributing to the hypertrophy
response, in part, by stimulating the proliferation of
satellite cells. Recent data suggest that a specific IGF-1
isoform is expressed in muscle during overload hyper-
trophy (McKoy et al. 1999). This isoform, termed ‘mechano
growth factor’ (i.e. IGF-1 Eb) by Geoffrey Goldspink, has
been shown to be markedly up regulated in response
to stretch and electrical stimulation, accompanied by an
up-regulation of the liver form of IGF-1 (i.e. IGF-1 Ea)
mRNA (McKoy et al. 1999). On the other hand, the same
group (Owino et al. 2001; Hameed et al. 2003) has
recently reported that mechanical overload and high-
resistance exercise induces the expression of mechano
growth factor mRNA, while no changes are observed in
the level of IGF-1 Ea mRNA.

Effect of physical exercise on satellite cell proliferation

An increased level of physical activity, such as running or
resistance training, can also stimulate satellite cell mitotic
activity (McCormick & Thomas, 1992) and result in
elevated satellite cell numbers (Kadi & Thornell, 2000).
Exercise training by progressive treadmill running results
in the activation of satellite cells, in conjunction with
morphological changes indicative of ongoing muscle fibre
injury and repair (McCormick & Thomas, 1992). Although
local production of IGF-1 in skeletal muscle has been
shown to increase after exercise (Hellsten et al. 1996), the
cellular mechanism(s) linking exercise to increased IGF-1
is unclear.

Insulin-like growth factor 1 can rescue sarcopenia

Sarcopenia is the involuntary loss of skeletal muscle mass
and strength that occurs with aging, resulting in physical
frailty. One reason for sarcopenia may be that older
skeletal muscles fail to respond to mechanical overload.
For example, the gastrocnemius muscle of old rats fails to

regrow after atrophy by limb immobilization (Chakra-
varthy et al. 2000b). Further, the mechanical loading-
induced up-regulation of mechano growth factor mRNA is
attenuated in old muscles of human subjects and rats
(Owino et al. 2001; Hameed et al. 2003). However,
Barton-Davis et al. (1998) have demonstrated that IGF
overexpression, using recombinant adeno-associated virus,
rescues age-related muscle loss between the ages of 23 and
27 months in mice. Chakravarthy et al. (2000b) have
extended the Barton-Davis et al. (1998) observation from
normal-aged muscle to aged muscle forced to atrophy.
They found that direct IGF-1 administration onto an
atrophied muscle promotes an enhancement of satellite
cell proliferation in culture and regrowth of skeletal
muscle from limb immobilization in 30-month-old rats.
These results suggest that satellite cells in skeletal muscle
of 30-month-old rats are in sufficient quantity, but inactive
as a result of lack of some endogenous growth factors,
possibly including IGF-1. Thus, IGF-1 rescues muscle
from sarcopenia, in part, through the proliferation of
satellite cells.

The mechanism by which insulin-like growth factor 1
stimulates satellite cell proliferation

Unlike other growth factors, IGF-1 stimulates both
myoblast proliferation and differentiation (Engert et al.
1996; Florini et al. 1996). In proliferating myoblasts IGF-1
increases the expression of the cell-cycle progression
factors (Engert et al. 1996). After withdrawal of myoblasts
from the cell cycle IGF-1 promotes muscle differentiation
by inducing the expression or activity of myogenic
regulatory factors (Musaro & Rosenthal, 1999). The
proliferative v. the differentiating functions of IGF-1
appear to be mediated by distinct intracellular signalling
pathways (Coolican et al. 1997). Previous studies using
immortalized myogenic cell lines such as L6A1 (Coolican
et al. 1997), MM14 (Jones et al. 2001) and L8 (Tamir &
Bengal, 2000) have suggested that the mitogen-activated
protein kinase mediates cellular proliferation, whereas the
phosphatidylinositol 3-kinase (PI3K) pathway is activated
during differentiation. However, although it is not clear
what role the PI3K pathway plays in differentiation, recent
evidence demonstrates a key role for the PI3K pathway in
primary satellite cell proliferation (Chakravarthy et al.
2000a; Machida et al. 2003). Chakravarthy et al. (2000a)
have demonstrated that IGF-I-stimulated proliferation of
primary satellite cells isolated from transgenic mice over-
expressing IGF-1 is associated with the activation of the
PI3K/Akt signalling pathway, the up-regulation of a
cyclin-dependent kinase 2 kinase activity and the down-
regulation of the cell-cycle inhibitor p27Kip1 (Chakravarthy
et al. 2000a). Ectopic expression of p27Kip1 has been
shown to block the IGF-I-induced increase in satellite cell
proliferation (Chakravarthy et al. 2000a). Thus, p27Kip1

has been proposed to be a key regulatory factor, particu-
larly in its ability to regulate satellite cell cycle progression.
Machida et al. (2003) have recently reported that IGF-1
represses p27Kip1 transcriptional activity through phospho-
rylation of Akt and forkhead transcription factor FOXO1,
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implying that FOXO1 may be an intermediary signal
between Akt phosphorylation and p27Kip1 promoter activ-
ity in primary satellite cells of skeletal muscle.

The other signal pathways contributing to insulin-like
growth factor 1-induced satellite cell proliferation

IGF-1 stimulates primary satellite cells to proliferate by
increasing the phosphorylation of Akt/protein kinase B and
FOXO1, down regulating p27Kip1, which in turn releases
inhibition of cyclin-dependent kinase 2, increasing phos-
phorylation of pRb, allowing the cell cycle past the
restriction point into the S phase (Chakravarthy et al.
2000a; Machida, 2003). IGF-1 also signals the janus
kinase/signal transducers and activators of transcription
pathway, but not the mitogen-activated protein kinase
pathway in primary satellite cells (S Machida and FW
Booth, unpublished results).

Summary

There is now an increasingly aged population. IGF-1 has
been shown to be able to rescue aging-related or inactivity-
induced loss of muscle mass through the activation of
satellite cells. The present review has compiled the current
knowledge relating to the cellular and molecular events
underlying IGF-1-induced proliferation of satellite cells.
IGF-1 enhances satellite cell proliferation by decreasing
the cell-cycle inhibitor p27Kip1 protein through the
PI3K/Akt pathway (Fig. 1). Thus, p27Kip1 has been
proposed to be a key regulatory factor, particularly in its
ability to regulate satellite cell cycle progression.
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of the IGF-1 signalling pathway. PI3K, phosphatidylinositol 3-

kinase; Akt/PKB, Akt/protein kinase B; JAK, janus kinase; STAT,

signal transducers and activators of transcription.
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