THE STABLE HOMEOMORPHISM CONJECTURE IN DIMENSION FOUR-AN EQUIVALENT CONJECTURE

BJORN FRIBERG

1. Introduction. The stable homeomorphism conjecture in dimension n, SHC (n), says that every orientation preserving homeomorphism of S^{n} is stable, i.c. can be written as the composition of homeomorphisms, each of which are the identity on some open set. This is equivalent to the homeomorphism being isotopic to the identity [6]. Call a homeomorphism k-stable if it is isotopic to a homeomorphism which is the identity on $S^{k} \subset S^{n}$. The main results are:
1) $\operatorname{SCH}(n)$ for $n \leqq 3$ has long been known.
2) Cernavskii $[\mathbf{1}]$ showed that every homeomorphism of S^{n} is $(n-3)$-stable.
3) Cernavskii [2] showed that for $n>4$, every homeomorphism of S^{n} which is $(n-2)$-stable is stable if it preserves orientation.
4) Kirby [6] showed that $\operatorname{SHC}(n)$ is true for all $n>4$.
5) This author [4] showed that orientation preserving homeomorphisms of S^{n} which are $(n-2)$-stable are stable, for all n.

Thus the remaining question is whether every homeomorphism of S^{4} is 2 -stable, i.e., is isotopic to a homeomorphism which is fixed on S^{2}, or equivalently using standard techniques, fixed on a 2 -disk $D^{2} \subset S^{4}$.

The object of this paper is to show that it is sufficient to consider a weaker problem. We prove that $S C H(4)$ is equivalent to what we call the pseudoisotopy conjecture in dimension 4, PIC (4), which states that every homeomorphism of S^{4} which is fixed on S^{1} is pseudo-isotopic to a homeomorphism of $S^{4} \backslash D^{2}$, fixed on S^{1}, the boundary of D^{2}. By pseudo-isotopy we mean an (almost) isotopy which fails to be a homeomorphism (of the whole domain) at the last stage. We do not make the usual requirement that the last stage define a map of the whole domain.
2. Preliminaries and notation. $H(X)$ will denote the space of homeomorphisms of the manifold X, with the compact-cpen topology. For $h \in H(X)$, an isotopy of h will be a path in $H(X)$ starting at h, or equivalently, a level preserving map $X \times I \rightarrow X \times I$ such that each level gives a homeomorphism of X, with the 0 -level giving h. A pseudo-isotopy of h will be a half open path in $H(X)$, starting at h, such that the limit converges to a homeomorphism of a subset of X.

[^0]We denote the k-sphere by S^{k}, and we regard S^{4} as $S^{1} * S^{2}$, i.e., the image of the identification map: $S^{1} \times[-\infty, \infty] \times S^{2} \rightarrow S^{1} * S^{2}$ with $\{s\} \times\{-\infty\} \times S^{2}$ identified with $\{s\} \in S^{1}$, and $S^{1} \times\{\infty\} \times\{z\}$ identified with $z \in S^{2}$. Let π denote projection of S^{4} on $[-\infty, \infty]$, induced by projection of $S^{1} \times[-\infty, \infty]$ $\times S^{2}$ on $[-\infty, \infty]$ under the identification. Let D^{2} be a 2 -disk in S^{4} given by $S^{1} *\left\{z_{0}\right\}$, for some $z_{0} \in S^{2}$. We consider subspaces of S^{4} as follows: $S^{4} \backslash\left(D^{2} \cup S^{2}\right)$ $\subset S^{4} \backslash \dot{D}^{2} \subset S^{4}$. We note that $S^{4} \backslash\left(D^{2} \cup S^{2}\right)$ is homeomorphic to $S^{1} \times R^{3}$ by a homeomorphism $\rho: S^{4} \backslash\left(D^{2} \cup S^{2}\right) \rightarrow S^{1} \times R^{3}$. Now $S^{1} \times R^{3}$ embeds in R^{4} in a natural way, i.e., by the embedding $j: S^{1} \times R^{3} \rightarrow R^{4} \backslash R^{2}=\left(R^{2} \backslash\{0\}\right) \times R^{2}$ defined by $j(s, r, z)=((\eta(r), s), z), s \in S^{1}, r \in R, z \in R^{2}$, where $\eta: R \rightarrow(0, \infty)$ is a homeomorphism and $(\eta(r), s)$ are polar coordinates in $R^{2} \backslash\{0\}$.
3. The main diagram. We will consider a diagram of homeomorphisms as follows:

Constructing h_{1} : Let h be an orientation preserving homeomorphism of S^{4} fixed on S^{1}. Let $h_{1}{ }^{\prime}$ be the homeomorphism given by PIC(4), assuming it true. For t_{0} close to $1, h_{t_{0}}$ will be close to $h_{1}{ }^{\prime}$ on a compact neighborhood in $S^{4} \backslash D^{2}$. By local contractability [3], $h_{1}{ }^{\prime}$ can be isotoped to agree with $h_{t_{0}}$ on an open set $U_{1} \subset S^{4} \backslash D^{2}$. Call the resulting homeomorphism h_{1}.

Constructing h_{2} : Let $T_{r}=\left\{S^{4} \backslash \dot{D}^{2}\right\} \cap\left\{\pi^{-1}[-\infty, r]\right\}$, where $\pi: S^{4} \rightarrow[-\infty$, $\infty]$ denotes projection. Let $\left\{r_{i}\right\} i=0,1,2, \ldots$ be defined so that $r_{0}=0$, $1+r_{i+1} \leqq r_{i}$, and

$$
T_{r_{2 i+2}} \subset h_{1}\left(T_{r_{2 i+1}}\right) \subset T_{r_{2 i}}
$$

The existence of the r_{i} follows immediately from the continuity of $h_{1}\left(h_{1}^{-1}\right)$ and the fact that every neighborhood of S^{1} in $S^{4} \backslash D^{2}$ contains some T_{r}.

Let Φ_{t} be an isotopy (of the identity) of $S^{4}=S^{1} * S^{2}$ such that Φ_{t} is fixed on S^{1} and off T_{0}, commutes with projections on S^{1} and S^{2}, and $\Phi_{1}\left(T_{-i}\right)=T_{T_{i}}$ $i=0,1,2, \ldots$ Note that Φ_{t} restricts to $S^{4} \backslash D^{2}$. Then $h_{1+t}=\Phi_{2 t} t^{-1} \circ h_{1} \circ \Phi_{2 t}$ defines an isotopy of h_{1} to $h_{3 / 2}$ satisfying

$$
(* *) T_{2 n-2} \subset h_{3 / 2}\left(T_{2 n-1}\right) \subset T_{2 n}
$$

for all $n \leqq 0$. Now, using standard techniques, we can define $h_{t}, 3 / 2 \leqq t<2$ so that $\lim _{t \rightarrow 2} h_{t}$ exists as a homeomorphism h_{2} of $\left(S^{4} \backslash{ }^{\circ} D^{2}\right) \backslash S^{2}$ and that (**) holds for all n. For details see [3 p. 85] or [4, p. 400]. Basically the image (under $h_{3 / 2}$) of some $\dot{T}_{2 n-1}\left(S^{4} \backslash D^{2} \cap \pi^{-1}\{2 n-1\}\right)$ is slid, first along the "natural" rays and then along the "curved" rays provided by an appropriate coordinate system until the images of two of the $\dot{T}_{2 n-1}$ agree, i.e. commutes with the corresponding translation along the "natural" rays. It is then easy to continue the isotopy until the images of all the $\dot{T}_{2_{n-1}} n>0$ agree, and (**) holds for all n.

We restrict h_{2} to $S^{4} \backslash\left(D^{2} \cup S^{2}\right)$ and remark that the above pseudo-isotopy can easily be modified to insure that $h_{2}=h_{1}$ on an open subset U_{2} of $S^{4} \backslash\left(D^{2} \cup\right.$ S^{2}) and $h_{2}\left(x_{0}\right)=x_{0}$ for some x_{0}, losing perhaps the inclusion (**) for a finite number of n. In any case we have that $\left|\pi \circ h_{2}(x)-\pi(x)\right| \leqq M$, for some M and all $x \in S^{4} \backslash\left(D^{2} \cup S^{2}\right)$.

Constructing h_{3} and h_{4}. Let $h_{3}=\rho \circ h_{2} \circ \rho^{-1}$, where ρ is the natural homeomorphism from $S^{4} \backslash\left(D^{2} \cup S^{2}\right)$ to $S^{1} \times R^{3}$ induced by the inclusion of $S^{1} \times$ $R \times\left(S^{2} \backslash\left\{z_{0}\right\}\right)$ in $S^{1} \times[-\infty, \infty] \times S^{2}$ after identifying R^{2} with $S^{2} \backslash\left\{z_{0}\right\}$. Note that $h_{3}\left(\rho\left(x_{0}\right)\right)=\rho\left(x_{0}\right)$ and $\left|\pi^{\prime} \circ h_{3}(x)-\pi^{\prime}(x)\right| \leqq M$, all $x \in S^{1} \times R^{3}$. Here π^{\prime} denotes projection of $S^{1} \times R^{3}$ on the first R factor. The construction of h_{4} from h_{3} is standard. Let $\Gamma: R^{4} \rightarrow S^{1} \times R^{3}$ be a covering map such that:

1) $\Gamma=e \times$ id $\left.\right|_{R^{3}}$ off a compact neighborhood of $\rho\left(x_{0}\right)$, where $e: R \rightarrow S^{1}$ is an ∞ cyclic cover.
2) $\Gamma \circ j=\mathrm{id}$ on a neighborhood N of $\rho\left(x_{0}\right)$. Let $h_{4}: R^{4} \rightarrow R^{4}$ be the unique homeomorphism satisfying $h_{4}\left(j \circ \rho\left(x_{0}\right)\right)=j \circ \rho\left(x_{0}\right)$. We note that $h_{4} \circ j=$ $j \circ h_{3}$ on a neighborhood U_{3} of $\rho\left(x_{0}\right)$, and that $\left|\pi^{\prime \prime} \circ h_{4}(x)-\pi^{\prime \prime}(x)\right| \leqq M^{\prime}$ for some M^{\prime}, all $x \in R^{4}$, where $\pi^{\prime \prime}: R^{4} \rightarrow R$ denotes projection on the second R factor of R^{4}.
4. Bounded homeomorphisms. We call a homeomorphism $h: R^{n}-R^{n}$ k-bounded (by M) if $\left|\pi_{k} \circ h(x)-\pi_{k}(x)\right| \leqq M$, for all x, where $\pi_{k}: R^{n} \rightarrow R^{k}$
denotes projection on $R^{k} \subset R^{n}$. We recall that in the previous section, h_{4} was was 1 -bounded (with respect to the second R factor). In [5] it is shown that ($n-2$)-bounded orientation preserving homeomorphisms of R^{n} are isotopic to the identity. We sketch the proof here. Suppose $h\left(z_{1}, z_{2}\right)=\left(z_{1}{ }^{\prime}, z_{2}{ }^{\prime}\right)$, with $\left\|z_{2}{ }^{\prime}-z_{2}\right\| \leqq M$ for all $\left(z_{1}, z_{2}\right) \in R^{2} \times R^{n-2}$. For a continuous function $\beta: R^{n-2} \rightarrow[0, \infty)$, set $C_{\beta}=\left\{\left(z_{1}, z_{2}\right) \mid z_{1} \leqq \beta\left(z_{2}\right)\right\}$. If β is the constant function $\beta(z)=r$, we write C_{r}. Using the $(n-2)$-boundedness of h, one defines β_{i}, for $i=0,1,2, \ldots$ so that $\beta_{0}=0,1+\beta_{i}(z) \leqq \beta_{i+1}(z)$, and

$$
C_{\beta_{2 i}} \subset h\left(C_{\beta_{2 i+1}}\right) \subset C_{\beta_{2 i+2}} .
$$

Let θ_{t} be an isotopy (of the identity) of $R^{2} \times R^{n-2}$ which commutes with projection on R^{n-2} and for which $\theta_{1}\left(C_{i}\right)=C_{\beta_{i}}$. The isotopy $h_{t}=\theta_{t}^{-1} \circ h \circ \theta_{t}$ then satisfies

$$
C_{2 i} \subset h_{1}\left(C_{2 \uparrow+1}\right) \subset C_{2 \uparrow+2}
$$

Next, using standard techniques, one defines a pseudo-isotopy $h_{t}, 1 \leqq t<2$ so that $\lim _{t \rightarrow 2} h_{t}=h_{2}$ exists as a homeomorphism on $\left(R^{2} \backslash\{0\}\right) \times R^{n-2}$; and h_{2} is bounded with respect to the radial factor of R^{2} (regarded as R instead of $(0, \infty)$). Adjusting h_{2} to fix some point and taking an infinite cyclic cover (as in the construction of h_{4} in the main diagram), one obtains an $(n-1)$-bounded homeomorphism g which agrees with h_{1} (and h) on an open set. Thus h is isotopic to g, while orientation preserving ($n-1$)-bounded homeomorphisms of R^{n} are easily seen to be isotopic to the identity [4]. The same method as in Lemma 1 gives an isotopy of g to a bounded homeomorphism of R^{n}. The well known Alexander isotopy now completes the isotopy to the identity.

Lemma 1. h_{4} (in the main diagram) is isolopic to the identity.
Proof. By the above remarks, it suffices to give an isotopy of h_{4} to a 2 bounded homeomorphism of R^{4}. We introduce the following notation: if $\alpha: R^{3} \rightarrow R$ is continuous, set

$$
A_{\alpha}=\left\{(r, z) \in R \times R^{3} \mid r \leqq \alpha(z)\right\} ;
$$

if α is the constant map : $z \rightarrow r$, we write A_{r}. Set $\alpha_{0} \equiv 0$, and define $\alpha_{i}: R^{3} \rightarrow R$ so that $1+\alpha_{i}(z) \leqq \alpha_{i+1}(z)$ and

$$
A_{\alpha_{2 i-1}} \subset h_{4}\left(A_{\alpha_{2 i}}\right) \subset A_{\alpha_{2 i} i} \text { for all } i
$$

The existence of the functions α_{i} is a simple exercise in elementary topology. Let Ψ_{t} be an isotopy (of the identity) of $R^{1} \times R^{3}$ commuting with projection on R^{3} so that $\Psi_{1}(i, z)=\left(\alpha_{i}(z), z\right)$. Then $h_{4+t}=\Psi_{t}^{-1} \circ h_{4} \circ \Psi_{t}$ defines an isotopy of h_{4} so that $A_{2 i-1} \subset h_{5}\left(A_{2 i}\right) \subset A_{2 i+1}$ and h_{5} is bounded with respect to the first two R factors, i.e., h_{5} is 2 -bounded.
5. The main theorem. We first prove the following:

Lemma 2. (Common domain) Let A be a sub-manifold of S^{4}. Let $h: S^{4} \rightarrow S^{4}$
and $g: A \rightarrow A$ be homeomorphisms which agree on a Euclidean neighborhood $N_{1} \subset A$. Let N_{2} be another Euclidean neighborhood in A. Then there exists an isotopy h_{t} of h to h_{1} such that h_{1} and g agree on N_{2}.

Proof. Without loss of generality, assume N_{1} and N_{2} are disjoint. Choose a Euclidean neighborhood U containing both N_{1} and N_{2} in A. Let ϕ_{t} be an isotopy (of the identity) of U with compact support and so that $\phi_{1}\left(N_{2}\right)=N_{1}$. Define isotopies (of the identity) of S^{4} by:

$$
\alpha_{t}=\left\{\begin{array}{l}
h \circ \phi_{t} \circ h^{-1} \quad \text { on } U \\
\text { id off } U
\end{array}\right.
$$

and

$$
\beta_{t}=\left\{\begin{array}{l}
g \circ \phi_{t}^{-1} \circ g^{-1} \text { on } U \\
\text { id off } U .
\end{array}\right.
$$

One easily verifies that the isotopy of h defined by $h_{t}=\beta_{t} \circ \alpha_{t} \circ h$ satisfies the conclusion of the lemma.

Theorem 3. SHC(4) is equivalent to PIC(4).
Proof. $S H C(4) \Rightarrow P I C(4)$ is trivial. Assume $P I C(4)$. Let h be an orientation preserving homeomorphism of S^{4}, fixed on S^{1}. Construct the main diagram. By Lemma $1, h_{4}$ is isotopic to the identity; hence so is h_{5}, the one point compactification of h_{4}. Applying Lemma 2 twice (to $h_{t_{0}}$ and h_{5}) we get that h (since $h_{t_{0}}$ is) is isotopic to g_{1} with $g_{1}=h_{2}$ on U_{2}; and that h_{5} is isotopic to g_{2} with $g_{2} \circ j=j \circ h_{3}$ on $\rho\left(U_{2}\right)$. Let $f: S^{4} \rightarrow S^{4}$ be a homeomorphism such that $f=j \circ \rho$ on $S^{4} \backslash\left(D^{2} \cup S^{2}\right)$. For example, f could be induced by identifying D^{2} to $\{\infty\} \in S^{4}$. Then $f^{-1} \circ g_{2} \circ f=g_{1}$ on U_{2}. Since g_{2} is isotopic to the identity, so is $f^{-1} \circ g_{2} \circ f$. Composing the inverse of this isotopy with g_{1} gives an isotopy of g_{1} (hence of h) to a homeomorphism which is the identity on U_{2}. But then h is stable.

References

1. A. V. Cernavskii, Homeomorphisms of R^{n} are k-stable for $k \leqq n-3$, Mat. Sb. YO (112) (1966); Amer. Math. Soc. Transl. (2) 78 (1968) 605-606.
2. -_The k-stability of homeomorphisms and the union of cells, Soviet Math. Dokl. 9 (1968), 729-732.
3. R. D. Edwards and R. C. Kirby, Deformations of spaces of embeddings, Ann. of Math. 93 (1971), 63-88.
4. B. Friberg, Canonical isotopies in Euclidean space, Israel J. Math. 16 (1973), 398-403.
5. -Bounded homeomorphisms in Euclidean space, to appear.
6. R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969), 575-582.
7. P. Wright, A uniform generalized Schoenflies theorem. Ann. of Math. 89 (1969), 292-304.

University of Saskatchewan, Saskatoon, Saskatchewan

[^0]: Received July 12, 1976 and in revised form, June 14, 1977. This research was supported in part by N.R.C. Grant A8735.

