THE STABLE HOMEOMORPHISM CONJECTURE IN DIMENSION FOUR—AN EQUIVALENT CONJECTURE

BJORN FRIBERG

1. Introduction. The stable homeomorphism conjecture in dimension n, SHC (n), says that every orientation preserving homeomorphism of S^n is stable, i.e. can be written as the composition of homeomorphisms, each of which are the identity on some open set. This is equivalent to the homeomorphism being isotopic to the identity [**6**]. Call a homeomorphism k-stable if it is isotopic to a homeomorphism which is the identity on $S^k \subset S^n$. The main results are:

1) SCH(n) for $n \leq 3$ has long been known.

2) Cernavskii [1] showed that every homeomorphism of S^n is (n-3)-stable. 3) Cernavskii [2] showed that for n > 4, every homeomorphism of S^n which is (n-2)-stable is stable if it preserves orientation.

4) Kirby [6] showed that SHC(n) is true for all n > 4.

5) This author [4] showed that orientation preserving homeomorphisms of S^n which are (n-2)-stable are stable, for all n.

Thus the remaining question is whether every homeomorphism of S^4 is 2-stable, i.e., is isotopic to a homeomorphism which is fixed on S^2 , or equivalently using standard techniques, fixed on a 2-disk $D^2 \subset S^4$.

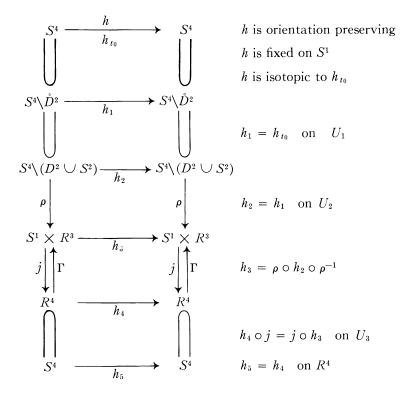
The object of this paper is to show that it is sufficient to consider a weaker problem. We prove that SCH(4) is equivalent to what we call the *pseudoisotopy conjecture* in dimension 4, PIC(4), which states that every homeomorphism of S^4 which is fixed on S^1 is pseudo-*isotopic* to a homeomorphism of $S^4 \setminus D^2$, fixed on S^1 , the boundary of D^2 . By *pseudo-isotopy* we mean an (almost) isotopy which fails to be a homeomorphism (of the whole domain) at the last stage. We do not make the usual requirement that the last stage define a map of the whole domain.

2. Preliminaries and notation. H(X) will denote the space of homeomorphisms of the manifold X, with the compact-open topology. For $h \in H(X)$, an isotopy of h will be a path in H(X) starting at h, or equivalently, a level preserving map $X \times I \to X \times I$ such that each level gives a homeomorphism of X, with the 0-level giving h. A pseudo-isotopy of h will be a half open path in H(X), starting at h, such that the limit converges to a homeomorphism of a subset of X.

Received July 12, 1976 and in revised form, June 14, 1977. This research was supported in part by N.R.C. Grant A8735.

We denote the k-sphere by S^k , and we regard S^4 as $S^1 * S^2$, i.e., the image of the identification map: $S^1 \times [-\infty, \infty] \times S^2 \to S^1 * S^2$ with $\{s\} \times \{-\infty\} \times S^2$ identified with $\{s\} \in S^1$, and $S^1 \times \{\infty\} \times \{z\}$ identified with $z \in S^2$. Let π denote projection of S^4 on $[-\infty, \infty]$, induced by projection of $S^1 \times [-\infty, \infty]$ $\times S^2$ on $[-\infty, \infty]$ under the identification. Let D^2 be a 2-disk in S^4 given by $S^1 * \{z_0\}$, for some $z_0 \in S^2$. We consider subspaces of S^4 as follows: $S^4 \setminus (D^2 \cup S^2)$ $\subset S^4 \setminus \mathring{D}^2 \subset S^4$. We note that $S^4 \setminus (D^2 \cup S^2)$ is homeomorphic to $S^1 \times R^3$ by a homeomorphism $\rho : S^4 \setminus (D^2 \cup S^2) \to S^1 \times R^3$. Now $S^1 \times R^3$ embeds in R^4 in a natural way, i.e., by the embedding $j : S^1 \times R^3 \to R^4 \setminus R^2 = (R^2 \setminus \{0\}) \times R^2$ defined by $j(s, r, z) = ((\eta(r), s), z), s \in S^1, r \in R, z \in R^2$, where $\eta : R \to (0, \infty)$ is a homeomorphism and $(\eta(r), s)$ are polar coordinates in $R^2 \setminus \{0\}$.

3. The main diagram. We will consider a diagram of homeomorphisms as follows:



Constructing h_1 : Let h be an orientation preserving homeomorphism of S^4 fixed on S^1 . Let h_1' be the homeomorphism given by PIC(4), assuming it true. For t_0 close to 1, h_{t_0} will be close to h_1' on a compact neighborhood in $S^4 \setminus D^2$. By local contractability [3], h_1' can be isotoped to agree with h_{t_0} on an open set $U_1 \subset S^4 \setminus D^2$. Call the resulting homeomorphism h_1 . Constructing h_2 : Let $T_r = \{S^4 \setminus \mathring{D}^2\} \cap \{\pi^{-1}[-\infty, r]\}$, where $\pi : S^4 \to [-\infty, \infty]$ denotes projection. Let $\{r_i\}$ $i = 0, 1, 2, \ldots$ be defined so that $r_0 = 0, 1 + r_{i+1} \leq r_i$, and

 $T_{\tau_{2i+2}} \subset h_1(T_{\tau_{2i+1}}) \subset T_{\tau_{2i}}.$

The existence of the r_i follows immediately from the continuity of $h_1(h_1^{-1})$ and the fact that every neighborhood of S^1 in $S^4 \setminus \hat{D}^2$ contains some T_r .

Let Φ_t be an isotopy (of the identity) of $S^4 = S^1 * S^2$ such that Φ_t is fixed on S^1 and off T_0 , commutes with projections on S^1 and S^2 , and $\Phi_1(T_{-i}) = T_{r_i}$ $i = 0, 1, 2, \ldots$. Note that Φ_t restricts to $S^4 \setminus \mathring{D}^2$. Then $h_{1+t} = \Phi_{2t}^{-1} \circ h_1 \circ \Phi_{2t}$ defines an isotopy of h_1 to $h_{3/2}$ satisfying

$$(**) T_{2n-2} \subset h_{3/2} (T_{2n-1}) \subset T_{2n}$$

for all $n \leq 0$. Now, using standard techniques, we can define h_t , $3/2 \leq t < 2$ so that $\lim_{t\to 2} h_t$ exists as a homeomorphism h_2 of $(S^4 \backslash D^2) \backslash S^2$ and that (**) holds for all n. For details see [3 p. 85] or [4, p. 400]. Basically the image (under $h_{3/2}$) of some \dot{T}_{2n-1} ($S^4 \backslash D^2 \cap \pi^{-1} \{2n-1\}$) is slid, first along the "natural" rays and then along the "curved" rays provided by an appropriate coordinate system until the images of two of the \dot{T}_{2n-1} agree, i.e. commutes with the corresponding translation along the "natural" rays. It is then easy to continue the isotopy until the images of all the $\dot{T}_{2n-1} n > 0$ agree, and (**) holds for all n.

We restrict h_2 to $S^4 \setminus (D^2 \cup S^2)$ and remark that the above pseudo-isotopy can easily be modified to insure that $h_2 = h_1$ on an open subset U_2 of $S^4 \setminus (D^2 \cup S^2)$ and $h_2(x_0) = x_0$ for some x_0 , losing perhaps the inclusion (**) for a finite number of *n*. In any case we have that $|\pi \circ h_2(x) - \pi(x)| \leq M$, for some *M* and all $x \in S^4 \setminus (D^2 \cup S^2)$.

Constructing h_3 and h_4 . Let $h_3 = \rho \circ h_2 \circ \rho^{-1}$, where ρ is the natural homeomorphism from $S^4 \setminus (D^2 \cup S^2)$ to $S^1 \times R^3$ induced by the inclusion of $S^1 \times R \times (S^2 \setminus \{z_0\})$ in $S^1 \times [-\infty, \infty] \times S^2$ after identifying R^2 with $S^2 \setminus \{z_0\}$. Note that $h_3(\rho(x_0)) = \rho(x_0)$ and $|\pi' \circ h_3(x) - \pi'(x)| \leq M$, all $x \in S^1 \times R^3$. Here π' denotes projection of $S^1 \times R^3$ on the first R factor. The construction of h_4 from h_3 is standard. Let $\Gamma : R^4 \to S^1 \times R^3$ be a covering map such that:

1) $\Gamma = e \times id |_{R^3}$ off a compact neighborhood of $\rho(x_0)$, where $e: R \to S^1$ is an ∞ cyclic cover.

2) $\Gamma \circ j = \text{id}$ on a neighborhood N of $\rho(x_0)$. Let $h_4: \mathbb{R}^4 \to \mathbb{R}^4$ be the unique homeomorphism satisfying $h_4(j \circ \rho(x_0)) = j \circ \rho(x_0)$. We note that $h_4 \circ j = j \circ h_3$ on a neighborhood U_3 of $\rho(x_0)$, and that $|\pi'' \circ h_4(x) - \pi''(x)| \leq M'$ for some M', all $x \in \mathbb{R}^4$, where $\pi'': \mathbb{R}^4 \to \mathbb{R}$ denotes projection on the second \mathbb{R} factor of \mathbb{R}^4 .

4. Bounded homeomorphisms. We call a homeomorphism $h : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ *k-bounded* (by *M*) if $|\pi_k \circ h(x) - \pi_k(x)| \leq M$, for all *x*, where $\pi_k : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ denotes projection on $\mathbb{R}^k \subset \mathbb{R}^n$. We recall that in the previous section, h_4 was was 1-bounded (with respect to the second \mathbb{R} factor). In [5] it is shown that (n-2)-bounded orientation preserving homeomorphisms of \mathbb{R}^n are isotopic to the identity. We sketch the proof here. Suppose $h(z_1, z_2) = (z_1', z_2')$, with $||z_2' - z_2|| \leq M$ for all $(z_1, z_2) \in \mathbb{R}^2 \times \mathbb{R}^{n-2}$. For a continuous function $\beta: \mathbb{R}^{n-2} \to [0, \infty)$, set $C_\beta = \{(z_1, z_2)|z_1 \leq \beta(z_2)\}$. If β is the constant function $\beta(z) = r$, we write C_r . Using the (n-2)-boundedness of h, one defines β_i , for $i = 0, 1, 2, \ldots$ so that $\beta_0 = 0, 1 + \beta_i(z) \leq \beta_{i+1}(z)$, and

$$C_{\beta_{2i}} \subset h(C_{\beta_{2i+1}}) \subset C_{\beta_{2i+2}}$$

Let θ_t be an isotopy (of the identity) of $R^2 \times R^{n-2}$ which commutes with projection on R^{n-2} and for which $\theta_1(C_t) = C_{\beta_i}$. The isotopy $h_t = \theta_t^{-1} \circ h \circ \theta_t$ then satisfies

$$C_{2i} \subset h_1(C_{2i+1}) \subset C_{2i+2}.$$

Next, using standard techniques, one defines a pseudo-isotopy h_t , $1 \leq t < 2$ so that $\lim_{t\to 2} h_t = h_2$ exists as a homeomorphism on $(R^2 \setminus \{0\}) \times R^{n-2}$; and h_2 is bounded with respect to the radial factor of R^2 (regarded as R instead of $(0, \infty)$). Adjusting h_2 to fix some point and taking an infinite cyclic cover (as in the construction of h_4 in the main diagram), one obtains an (n - 1)-bounded homeomorphism g which agrees with h_1 (and h) on an open set. Thus h is isotopic to g, while orientation preserving (n - 1)-bounded homeomorphisms of R^n are easily seen to be isotopic to the identity [4]. The same method as in Lemma 1 gives an isotopy of g to a bounded homeomorphism of R^n . The well known Alexander isotopy now completes the isotopy to the identity.

LEMMA 1. h_4 (in the main diagram) is isotopic to the identity.

Proof. By the above remarks, it suffices to give an isotopy of h_4 to a 2-bounded homeomorphism of R^4 . We introduce the following notation: if $\alpha : R^3 \to R$ is continuous, set

$$A_{\alpha} = \{ (r, z) \in R \times R^3 | r \leq \alpha(z) \};$$

if α is the constant map $:z \to r$, we write A_r . Set $\alpha_0 \equiv 0$, and define $\alpha_t : \mathbb{R}^3 \to \mathbb{R}$ so that $1 + \alpha_t(z) \leq \alpha_{t+1}(z)$ and

$$A_{\alpha_{2i-1}} \subset h_4(A_{\alpha_{2i}}) \subset A_{\alpha_{2i+1}}$$
 for all *i*.

The existence of the functions α_i is a simple exercise in elementary topology. Let Ψ_t be an isotopy (of the identity) of $\mathbb{R}^1 \times \mathbb{R}^3$ commuting with projection on \mathbb{R}^3 so that $\Psi_1(i, z) = (\alpha_i(z), z)$. Then $h_{4+i} = \Psi_i^{-1} \circ h_4 \circ \Psi_t$ defines an isotopy of h_4 so that $A_{2i-1} \subset h_5(A_{2i}) \subset A_{2i+1}$ and h_5 is bounded with respect to the first two \mathbb{R} factors, i.e., h_5 is 2-bounded.

5. The main theorem. We first prove the following:

LEMMA 2. (Common domain) Let A be a sub-manifold of S^4 . Let $h: S^4 \to S^4$

and $g: A \to A$ be homeomorphisms which agree on a Euclidean neighborhood $N_1 \subset A$. Let N_2 be another Euclidean neighborhood in A. Then there exists an isotopy h_i of h to h_1 such that h_1 and g agree on N_2 .

Proof. Without loss of generality, assume N_1 and N_2 are disjoint. Choose a Euclidean neighborhood U containing both N_1 and N_2 in A. Let ϕ_i be an isotopy (of the identity) of U with compact support and so that $\phi_1(N_2) = N_1$. Define isotopies (of the identity) of S^4 by:

$$\alpha_t = \begin{cases} h \circ \phi_t \circ h^{-1} & \text{on } U \\ \text{id} & \text{off } U \end{cases}$$

and

$$\beta_t = \begin{cases} g \circ \phi_t^{-1} \circ g^{-1} & \text{on } U \\ \text{id} & \text{off } U. \end{cases}$$

One easily verifies that the isotopy of h defined by $h_t = \beta_t \circ \alpha_t \circ h$ satisfies the conclusion of the lemma.

THEOREM 3. SHC(4) is equivalent to PIC(4).

Proof. $SHC(4) \Rightarrow PIC(4)$ is trivial. Assume PIC(4). Let h be an orientation preserving homeomorphism of S^4 , fixed on S^1 . Construct the main diagram. By Lemma 1, h_4 is isotopic to the identity; hence so is h_5 , the one point compactification of h_4 . Applying Lemma 2 twice (to h_{t_0} and h_5) we get that h (since h_{t_0} is) is isotopic to g_1 with $g_1 = h_2$ on U_2 ; and that h_5 is isotopic to g_2 with $g_2 \circ j = j \circ h_3$ on $\rho(U_2)$. Let $f: S^4 \to S^4$ be a homeomorphism such that $f = j \circ \rho$ on $S^4 \setminus (D^2 \cup S^2)$. For example, f could be induced by identifying D^2 to $\{\infty\} \in S^4$. Then $f^{-1} \circ g_2 \circ f = g_1$ on U_2 . Since g_2 is isotopic to the identity, so is $f^{-1} \circ g_2 \circ f$. Composing the inverse of this isotopy with g_1 gives an isotopy of g_1 (hence of h) to a homeomorphism which is the identity on U_2 . But then h is stable.

References

- **1.** A. V. Cernavskii, Homeomorphisms of \mathbb{R}^n are k-stable for $k \leq n 3$, Mat. Sb. 70 (112) (1966); Amer. Math. Soc. Transl. (2) 78 (1968) 605–606.
- The k-stability of homeomorphisms and the union of cells, Soviet Math. Dokl. 9 (1968), 729–732.
- R. D. Edwards and R. C. Kirby, Deformations of spaces of embeddings, Ann. of Math. 93 (1971), 63-88.

4. B. Friberg, Canonical isotopies in Euclidean space, Israel J. Math. 16 (1973), 398-403.

5. —— Bounded homeomorphisms in Euclidean space, to appear.

- R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969), 575–582.
- 7. P. Wright, A uniform generalized Schoenflies theorem, Ann. of Math. 89 (1969), 292-304.

University of Saskatchewan, Saskatoon, Saskatchewan

242