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The rupture of soap films is traditionally described by a law accounting for a balance
between momentum and surface tension forces, derived independently by Taylor and
Culick in the 1960s. This law is highly relevant to the dynamics of thin liquid films
of jets when viscous effects are negligible. However, the minute amounts of surfactant
molecules present in soap films play a major role in interfacial rheology, and may
result in complex behaviour. Petit et al. (J. Fluid Mech., vol. 774, 2015, R3) challenge
standard thin film dynamics via intriguing experiments conducted with highly elastic
surfactants. Unexpected structures reminiscent of faults are observed.
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1. Introduction: all is but soap bubbles

As an elegant conclusion to his Nobel Lecture on soft matter, de Gennes (1997)
quoted the text from an engraving of a lady blowing soap bubbles, after a painting by
François Boucher. The engraving illustrates the fragility of worldly ambition, but the
properties of ephemeral soap bubbles have fascinated scientists for centuries. Standard
expressions such as ‘Newton black films’ or ‘Plateau borders’ reference classical
works on optical interferences or on the intersection of soap films, respectively. Soap
bubbles are also a great subject for popular science, as beautifully illustrated by Boys
(1958). The rupture of soap films intrigued Marangoni, Stefanelli & Liceo (1872), who
pioneered quantitative experiments despite a lack of sophisticated imaging technology.
Indeed, the first recording of the rupture of a soap bubble was later achieved by
Jules-Étienne Marey and Lucien Bull, who ingeniously converted a machine gun
into a fast camera. The seminal work by Mysels (1959) later provided the basis for
modern studies of soap films. Broad scientific activity in the field was then motivated
by numerous applications involving foams (Cantat et al. 2013), the production of
spray over the oceans (Bird et al. 2010; Lhuissier & Villermaux 2012), beautiful
convective plumes (Couder, Chomaz & Rabaud 1989), two-dimensional water tunnels
(Zhang et al. 2000), and even laboratory models of hurricanes (Meuel et al. 2013).
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FIGURE 1. As well as decreasing the surface tension of water by an amount related to
their surface concentration, surfactant molecules induce other important effects. (a) The
repulsion between facing hydrophilic heads (e.g. due to electrostatic effects) tends to limit
the thinning of the film. (b) Gradients in surface concentration result in gradients in
surface tension that can compensate for the weight of the film of liquid. (c) A sudden
increase in the interfacial area reduces the surface concentration, which results in an
increase in surface tension referred to as surface elasticity. In the common case of soluble
surfactants, molecules diffuse from the bulk to the interface and eventually compensate for
the initial depletion. Surface viscosity can be inferred from the corresponding time scale.

2. Overview: bursting dynamics

Children discover with frustration how soap bubbles tend to disintegrate when
touched. Surprisingly, projectiles may nevertheless pass through soap films, or even
bounce back without much damage (Le Goff et al. 2008; Gilet & Bush 2009).
However, once a hole of the scale of the thickness of the film is nucleated, the
film is doomed. As a first approximation, a soap film may be described as a thin
liquid sheet of constant surface tension. Within this limit, we expect the dynamics to
follow the same rules as the water sheets or bells studied by Savart, Boussinesq and
Rayleigh. A balance between surface tension forces and the inertia of the displaced
liquid leads to a constant Taylor–Culick velocity, Vc =

√
2γ /ρh0, where γ and ρ are

the surface tension and the density of the liquid, respectively, and h0 is the thickness
of the film (Rio & Biance 2014).

Our childhood experience teaches us that the addition of minute quantities of
soap provides fragile bubbles with some stability. The added surfactant molecules
have antagonist extremities: one end is hydrophilic (e.g. an ionic head), while the
other is hydrophobic (e.g. a hydrocarbon chain). Due to their amphiphilic properties,
these molecules tend to be absorbed by water/oil or water/air interfaces. Once at the
interface, they behave like a two-dimensional gas, which results in surface pressure.
As a consequence, the measured surface tension decreases. Typically, accounting
for the modification in surface tension is sufficient to describe the rupture of soap
films. However, the effects of surfactant molecules are far more subtle than a simple
change in surface tension. As illustrated in figure 1, the presence of surfactant limits
the thinning of the film and provides a pulling force that balances the weight of the
liquid. In addition, surfactant molecules induce spring-like behaviour in the interface.
If the interfacial area is stretched, the surface concentration of surfactant molecules
decreases and the surface tension rises (conversely, the surface tension decreases if
the interface is compressed). This effect is rationalized in terms of surface elasticity,
E = 1/A(∂γ /∂A). If the surfactant molecules are soluble, they progressively diffuse
towards (or away from) the interface, and the surface tension eventually recovers
its initial value γeq after a step deformation, depending on their solubilities and
associated time scales. Surfactants thus induce a complex and nonlinear interfacial
rheology with an important impact in foam processing (Fuller & Vermant 2012).
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FIGURE 2. (a) Image sequence of the rupture of an elastic soap film. The interval between
images is 15 ms. Circular patterns reminiscent of faults appear beyond a critical radius
of the hole. (b) The radius of the hole as a function of time. The opening velocity
u0 (blue line) is initially constant but significantly deviates from Taylor–Culick velocity
Vc (red line). (c) In Taylor and Culick’s description, the liquid removed from the hole
accumulates in a rim of circular section. Conversely, an aureole shape is observed in the
present situation. The circular patterns appear as the front of the aureole reaches the frame
supporting the film. From Petit, Le Merrer & Biance (2015).

In their recent experiments using solutions with strong surface elasticity, Petit et al.
(2015) explored the role of surface rheology in the bursting dynamics of soap films.
In the typical experiment presented in figure 2, the opening velocity u0 is initially
constant, as expected but its amplitude is significantly lower than predicted by Taylor
& Culick. Following Frankel & Mysels (1969), the authors interpret this deviation as
an effect of surface elasticity and show that their experimental data can be represented
in a universal plot u0/Vc = f (E0/γeq), which is determined numerically. As well as
the dynamics, the profile of the opening rim is also very peculiar. Contrary to Taylor
and Culick’s description, where the liquid from the opening hole is collected in a
circular rim, ‘aureole’ patterns are observed in the present experiments. Surfactant
molecules accumulate in the inner part of the rim and induce a gradient of surface
tension along the rim. Consequently, the profile of the rim becomes more elongated
as the hole propagates. Intriguing circular patterns are finally observed when the front
of the aureole reaches the rigid frame holding the film. Are they cracks, faults or
buckles? While their exact nature remains a mystery, their origin probably relies on
radial compressive strains of the soap film.
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3. Future: towards interfacial rheology?

The intriguing patterns observed in the recent study by Petit et al. should motivate
further investigations combining traditional fluid mechanics with the tools from thin
sheet mechanics. These patterns may indeed be reminiscent of the localized folds
observed in floating sheets under compression by Pocivavsek et al. (2008). As well
as exciting physics, this study also opens up interesting applications in interfacial
rheology. Indeed, the short time scales involved in the rupture of a soap film (typically
a few milliseconds) promote elastic effects under high strains. The simple observation
of bursting soap films may thus lead to innovative video-rheology techniques, as has
been proposed for liquid droplets impacting small targets (Rozhkov, Prunet-Foch &
Vignes-Adler 2010). As a recent very interesting example, Timounay, Lorenceau &
Rouyer (2015) have studied the opening of soap films laden with solid particles.
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