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Abstract
Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-
point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs.
We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the
nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural
differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.

Notation

For reference, we list some of the most recurrent notation of the paper.

Measures

Let A denote a generic set.

• B(A): Borel subsets of A.
• M(A): Radon measures on A.
• M+(A): nonnegative Radon measures on A.
• Given ν ∈M(Rd) and letting A ∈B(Rd), we denote by ν+(A) := supB∈B(A) ν(B) and ν−(A) :=

− infB∈B(A) ν(B) the upper and lower variation measures of ν; the total variation measure of ν is
|ν|(A) := ν+(A) + ν−(A), and its total variation norm is ‖ν‖TV := |ν|(Rd).

• MTV(A): Radon measures on A with finite total variation.
• M+

TV(A) := M+(A) ∩MTV(A).
• P(A): Borel probability measures on A.

Graph
• R

2d
�

:= {(x, y) ∈R
d ×R

d : x �= y} is the off-diagonal of Rd ×R
d.

• μ sets the underlying geometry of the state space; it belongs to M+(Rd) and is sometimes referred
to as base measure.

• η is the edge weight function; it maps R2d
�

to [0, ∞).
• G is the set of edges; that is, G = {(x, y) ∈R

2d
�

: η(x, y) > 0}.
• V as(G) := {v : G →R : v(x, y) = −v(y, x)} denotes the set of antisymmetric vector fields on G.
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Others

• T is a positive, finite final time.
• ACT := AC([0, T]; MTV(Rd)) is the space of absolutely continuous curves with respect to ‖·‖TV from

[0, T] to MTV(Rd).
• Given a ∈R, a+ := max{0, a} and a− := (−a)+ are its positive and negative parts, respectively.

1. Introduction

In this manuscript, we resume the analysis of partial differential equations (PDEs) on graphs started in
our previous work [13], focusing on a larger class of nonlocal continuity equations (NCE), including
different dynamics. The main motivation for this study comes from data science, as graphs represent a
relevant ambient space for data representation and classification [4, 15, 16, 22, 23, 28]. However, most of
the results obtained so far in the literature are concerned with static problems rather than time-dependent
ones.

In [13], we studied the dynamics driven by nonlocal interaction energies on graphs, whose vertices
are the random sample of a given underlying distribution. We interpreted the corresponding PDEs as
gradient flows of the nonlocal interaction energies in the space of probability measures, equipped with
a quasi-metric obtained from the dynamical transportation cost, following Benamou–Brenier [5]. In the
recent papers [19, 20], the analysis is extended to nonlocal cross-interaction systems on graphs with a
nonlinear mobility, in the context of nonquadratic Finslerian gradient flows. In [9], dynamics on graphs
are shown to be useful for data clustering; indeed, the authors connect the mean shift algorithm with
spectral clustering at discrete and continuum levels via Fokker–Planck equations on data graphs.

The study of equations on graphs represents a natural link with the discretisation of continuous PDEs,
gradient flows and optimal transport-related problems. We start mentioning structure preserving numer-
ical schemes for evolution equations of gradient flow form (see e.g., [2, 3, 7, 8, 29] and references
therein); the use of upwind and similar interpolations showed also beneficial in preserving the second
law of thermodynamics, that is the entropy decay. Inspired by the theory of numerical schemes for local
conservation laws, in [11] a new class of monotonicity-preserving nonlocal nonlinear conservation laws
was proposed, in one space dimension. The latter work might be indeed interpreted as an equation on
graphs, under some suitable assumptions on the kernel considered. In this regard, it may be interesting
to further investigate on the extension of the present manuscript to other nonlocal conservation laws
(NCL).

Another related question concerns the convergence of discrete optimal transport distances to its con-
tinuous counterpart, cf. [14, 17, 18]. Similarly, the variational convergence of discretisation for evolution
problems is investigated in [21]. Here the discrete systems obtained can be also seen as special cases
of the type of the evolution equations investigated in the current manuscript. On a different note, we
mention [26], where a direct gradient flow formulation of jump processes is recently established – the
authors consider driving energy functional containing entropies. The kinetic relations used there are
symmetric, hence excluding for instance the upwind interpolation, which is our main example. A char-
acterisation of not necessarily symmetric kinetic relations was recently obtained for jump processes on
finite state spaces in [27, Section 6.5]. Furthermore, in [12], the authors recently introduced a local-
nonlocal gradient structure for the aggregation equation motivated by the inelastic Boltzmann equation
– this might have interesting generalisations to the graph setting.

In this work, we consider continuity equations driven by a wide class of velocity fields, including
those depending on the unknown itself, and prove existence and uniqueness of measure-valued, as well as
Lp-valued, solutions by means a fixed-point theorem. This is a slightly different concept of solution than
that used in [13], where we established a Finslerian gradient flow framework for interaction energies. As
it becomes clear in the following, the geometry of the ambient space influences the analysis and requires
novel considerations.
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For ease of presentation, we describe the problem first on finite, undirected graphs. Let X :=
{x1, . . . , xn} ⊂R

d be the set of vertices and consider the edge weights wx,y ≥ 0, satisfying wx,y = wy,x

for all x, y ∈ X. For simplicity, we impose that wx,x = 0. We consider a mass distribution ρ : X → [0, ∞)
with

∑
x∈X ρx = 1. An example of Ordinary Differential Equations (ODEs) on such a graph preserving

the total mass takes the form
dρx

dt
= −1

2

∑
y∈X

(
jx,y − jy,x

)
wx,y, (1.1)

The time variation of the mass at a vertex x is triggered by the outgoing and ingoing fluxes, described
by the function j. We will be interested in the situation where the flux is obtained by a vector field
v : X × X →R, along which the mass density ρ is advected. The vector field might itself depend also
on the mass density in a local or nonlocal as well as linear or nonlinear way. On graphs, the fluxes and
velocities j, v : X × X →R are defined on the edges, whereas the mass on the single vertices. For this
reason, the relation between flux and velocity strongly depends on the chosen mass interpolation on
vertex pairs. We consider a general interpolation function � : R3 →R to better understand its role for
the dynamics. Hence, the continuity equation in flux-form (1.1) is complemented by the constitutive
equation relating the velocity to the flux

jx,y = �

(
1

n
ρx,

1

n
ρy, vx,y

)
.

The weights 1/n are relevant in the discrete-to-continuum limit. In [13], we also considered the case
of graphs with infinite vertices, namely the PDEs resulting from letting n to ∞. Thus, we introduced a
unified setup entailing both discrete and continuum interpretations.

The vertices are points in R
d, and the edges are determined by a nonnegative symmetric weight

function η : R2d
�

→ [0, ∞), namely we define the set of edges as G := {(x, y) ∈R
2d
�

: η(x, y) > 0}, where
R

2d
�

= {(x, y) ∈R
d ×R

d : x �= y}. From the discrete setting, the set of vertices is replaced by a general
measure on R

d, denoted by μ; a discrete graph with vertices X := {x1, . . . , xn} ⊂R
d corresponds then to

μ being the empirical measure of X, that is, μ = 1
n

∑n
i=1 δxi . This generalisation is natural in applications

to machine learning, since data have the form of a point cloud randomly sampled from some measure
in Euclidean space. With this notation, the PDEs we study have the form

∂tρ + ∇ · j = 0, (1.2a)

j = F�(μ; ρ, v), (1.2b)

where ∇ and ∇· are the nonlocal gradient and divergence, respectively (cf. Definition 2.1 below), and
F� is an interpolation-dependent flux.

In [13], we considered the upwind interpolation between vertices, as it is a reasonable choice for
both the dynamics and the gradient flow structure. More precisely, we fixed �(a, b, v) = av+ − bv− and
introduced the following NCE:

∂tρt(x) +
∫
Rd

(ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−) η(x, y) dμ(y) = 0,

for μ-a.e. x ∈R
d. Note that we let here ρ � μ for ease of presentation, although it is not necessary, and,

by abuse of notation, we denote by ρ both measure and density. We focused on the specific case of the
nonlocal interaction equation, that is,

∂tρt(x) = −
∫
Rd

jt(x, y)η(x, y) dμ(y) =: − (∇ · jt)(x),

jt(x, y) = ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−, (NL2IE)
vt(x, y) = − (K ∗ ρt(y) − K ∗ ρt(x) + P(y) − P(x)) .

The equation above is actually a particular case of a NCL, as the velocity field depends on the con-
figuration itself. The theory of generalised Wasserstein gradient flows was shown to be useful to prove
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existence of weak solutions to (NL2IE) and to provide information on the underlying geometric structure
of the configuration space, which is the set of probability measures with finite second-order moments.
The latter, equipped with quasi-metric introduced in [13], has Finsler structure, rather than Riemannian.
Among others, open problems include the contractivity of the quasi-distance (cf. [24, 25]), the stability
and uniqueness of weak solutions.

Based on the above considerations, in this paper, we obtain existence and uniqueness of measure
and Lp solutions for the class of PDEs (1.2a) by means of a classical Banach fixed-point argument.
This complements the analysis started in [13], as it concerns general flux interpolations as well as a
larger class of velocity fields. The structure of the graph influences the analysis of the equations in this
setting. Indeed, some analogous properties in the Euclidean case are not easily derived, depending on
the interpolation chosen. Therefore, as a by-product of our study, we provide properties of the dynamics
in relation to the interpolation considered, such as positivity preservation and Lp regularity. To the best
of our knowledge, this is the first result in these directions.

The paper is structured as follows. We introduce preliminary notions in Section 2 to explain the
setup. Section 3 is devoted to the NCE and emphasises the fundamental role of the flux interpolation.
From there, we prove basic properties of the NCE, highlighting analogies with and differences from the
more standard Euclidean setting. In Section 4, we prove the main result of the manuscript, namely the
existence and uniqueness of measure solutions for the NCE. We include velocity fields depending on
the solution itself, in which case we also refer to the NCE as a NCL. Section 5 is focused on Lp solutions
and positivity preservation, only proven for the upwind interpolation.

2. Setup

Nonlocal graph structure. Let us fix a measure μ ∈M+(Rd) and a measurable function η : R2d
�

→
[0, ∞), and set G := {(x, y) ∈R

2d
�

: η(x, y) > 0}. We always assume the following:

η is continuous, bounded and symmetric on G. (η)

We often refer to μ as the base measure and to η as the weight function. In this sense, (μ, η) defines a
possibly uncountable, weighted, undirected graph. A finite graph would correspond to the base measure
μn = 1

n

∑
i δxi for a set of points {x1, x2, . . . , xn}.

Total variation distance. For two measures ρ1, ρ2 ∈MTV(Rd), we define their total variation
distance by

‖ρ1 − ρ2‖TV = 2 sup
A∈B(Rd )

|ρ1[A] − ρ2[A]|.

The factor 2 is present only for convenience since we restrict to measures with finite and equal total
variation, so that ‖ρ1 − ρ2‖TV = |ρ1 − ρ2|(Rd). We equip the sets MTV(Rd) and P(Rd) with the total
variation distance.

Gradients and divergences. We recall here the notions of nonlocal gradient and divergence on G.

Definition 2.1 (Nonlocal gradient and divergence). For any φ : Rd →R, we define its nonlocal gradient
∇φ : G →R by

∇φ(x, y) = φ(y) − φ(x) for all (x, y) ∈ G.

For any Radon measure j ∈M(G), its nonlocal divergence ∇ · j ∈M(Rd) is defined as the adjoint of ∇
with respect to η, that is, for any φ : Rd →R continuous and vanishing at infinity, there holds∫

Rd

φd∇ · j = −1

2

∫∫
G

∇φ(x, y)η(x, y) dj(x, y)

= 1

2

∫
Rd

φ(x)
∫
Rd\{x}

η(x, y) (dj(x, y) − dj(y, x)) .
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In particular, for j antisymmetric, that is, j ∈M(G) and dj(x, y) = −dj(y, x), denoted by j ∈Mas(G), we
have ∫

Rd

φd∇ · j =
∫∫

G

φ(x)η(x, y) dj(x, y).

With this notion of divergence, we can consider a NCE (cf. Definition 3.1 below) defined on a suitable
subclass of absolutely continuous curves denoted by ACT = AC([0, T]; MTV(Rd)). More precisely, ACT

is the set of curves from [0, T] to MTV(Rd) such that there exists m ∈ L1([0, T]) with

‖ρs − ρt‖TV ≤
∫ t

s

m(r) dr, for all 0 ≤ s < t ≤ T .

3. Nonlocal Continuity Equation (NCE)

In this section, we study the NCE on the graph defined by (μ, η). First, we define the concept of measure-
valued solution.

Definition 3.1. (Measure-valued solution for the NCE). A measurable pair (ρ, j) : [0, T] →MTV(Rd) ×
M(G) is a measure-valued (or simply measure) solution to the NCE, denoted as

∂tρ + ∇ · j = 0, (NCE)

provided that, for any A ∈B(Rd), it holds that

(i) ρ ∈ACT ;
(ii) (jt)t∈[0,T] is Borel measurable and

(
t �→ ∇ · jt[A]

) ∈ L1([0, T]);
(iii) (ρ, j) satisfies,

ρt[A] +
∫ t

0

∇ · js[A]ds = ρ0[A] for a.e. t ∈ [0, T];

in this case, we write (ρ, j) ∈ CE([0, T]).

In the above definition, the absolute continuity of a measure solution ρ is ensured by the integrability
of the flux divergence. Moreover, ρ does not need to be nonnegative, that is, so that ρt ≥ 0 for a.e.
t ∈ [0, T], for the definition to make sense; in fact, positivity preservation is analysed in Section 5.

3.1. Flux interpolations

We provide a class of flux interpolations generalising our work in [13], where we only studied the upwind
interpolation. We consider a minimal set of assumptions on the interpolation to achieve well-posedness.

Definition 3.2 (Admissible flux interpolation). A measurable function � : R3 →R is called an admis-
sible flux interpolation provided that the following conditions hold:

(i) � satisfies

�(0, 0; v) = �(a, b; 0) = 0, for all a, b, v ∈R; (3.1)

(ii) � is argument-wise Lipschitz in the sense that, for some L� > 0, any a, b, c, d, v, w ∈R, it holds

|�(a, b; w) − �(a, b; v)| ≤ L�(|a| + |b|)|w − v|; (3.2a)

|�(a, b; v) − �(c, d; v)| ≤ L�(|a − c| + |b − d|)|v|; (3.2b)
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(iii) � is positively one-homogeneous in its first and second argument, that is, for all α > 0 and
(a, b, w) ∈R

3, it holds

�(αa, αb; w) = α�(a, b; w).

Example 3.3. Here follow examples of admissible flux interpolations � according to Definition 3.2.

• Upwind interpolation. One important case is given by the upwind interpolation �upwind defined as

�upwind(a, b; w) = aw+ − bw− for (a, b, w) ∈R
3. (3.3)

• Mean multipliers. Another case is product interpolation �prod, which is of the form

�prod(a, b; w) = φ(a, b)w for (a, b, w) ∈R
3,

with φ : R2 →R any measurable function satisfying, for some L� > 0,

|φ(a, b)| ≤ L� max{|a|, |b|},
|φ(a, b) − φ(c, d)| ≤ L�(|a − c| + |b − d|),
φ(αa, αb) = αφ(a, b),

φ(a, b) = φ(b, a),

for all α ≥ 0 and a, b, c, d ∈R. Common choices for φ are as below:

– Arithmetic mean. φAM(a, b) := a+b
2

;
– Minimal mean. φmin(a, b) := min{a, b};
– Maximal mean. φmax(a, b) := max{a, b}.

We note that some common choices, such as the geometric mean and the logarithmic mean, do not
satisfy the Lipschitz condition stated above, which is essential for the fixed-point argument we use
later to establish well-posedness. This situation may be remedied by a suitable regularisation of
those examples, although we do not explore this possibility in the present paper.

Definition 3.4 (Admissible flux). Let � be an admissible flux interpolation, and let ρ ∈MTV(Rd)
and w ∈ V as(G) := {v : G →R : v(x, y) = −v(y, x)}. Furthermore, take λ ∈M+(R2d) such that ρ ⊗
μ, μ ⊗ ρ � λ (e.g., λ = |ρ| ⊗ μ + μ ⊗ |ρ|). Then, the admissible flux F�[μ; ρ, w] ∈M(G) at (ρ, w) is
defined by

dF�[μ; ρ, w] = �

(
d(ρ ⊗ μ)

dλ
,

d(μ ⊗ ρ)

dλ
; w

)
dλ. (3.4)

Note that because of the one-homogeneity of �, the expression in (3.4) is independent of the choice
of λ. The NCE of Definition 2.1 with the notation of Definition 3.4 reads

∂tρ + ∇ · F�[μ; ρt, vt] = 0, (NCE)

with integral form, for all A ∈B(Rd), given by

ρt[A] +
∫ t

0

∇ · F�[μ; ρs, vs][A]ds = ρ0[A], for a.e. t ∈ [0, T], (3.5)

where v : [0, T] → V as(G).
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3.2. Basic properties

We highlight some properties of (NCE) analogous to those in Euclidean setting, though intrinsically
different due to the underlying graph structure. The well-posedness is treated in Section 4, where we
consider a more general scenario, in particular including (NCE).

Proposition 3.5 (Integrability, support and mass preservation for the NCE). Let ρ0 ∈MTV(Rd) and let
v : [0, T] → Vas(G) satisfy, for some Cv > 0,∫ T

0

sup
x∈Rd

∫
Rd\{x}

|vt(x, y)|η(x, y) dμ(y) ≤ Cv. (3.6)

Let also � be an admissible flux interpolation and ρ : [0, T] →MTV(Rd) be MTV(Rd) be such that (3.5)
is satisfied. Then, the following properties hold:

• t �→ ∇ · F�[ρt, vt][A] ∈ L1([0, T]) (flux integrability);
• ρ ∈ L∞([0, T]; MTV(Rd)) (time boundedness);
• ρt[Rd] = ρ0[Rd] for all t ∈ [0, T] (mass preservation);
• ρ ∈ACT (absolute continuity);
• if supp ρ0 ⊆ supp μ, then supp ρt ⊆ supp μ for a.e. t ∈ [0, T] (support inclusion).

Proof. We split the proof according to each item above.
Flux integrability – For all A ∈B(Rd) and t ∈ [0, T], we have

∇ · F�[μ; ρt, vt][A] = −1

2

∫∫
G

∇χA(x, y)η(x, y) dF�[μ; ρt, vt](x, y)

= −1

2

∫∫
G

∇χA�

(
d(ρt ⊗ μ)

dλ
,

d(μ ⊗ ρt)

dλ
; vt

)
ηdλ.

Next, using (3.1) and (3.2a) with w = 0, symmetry of η, antisymmetry of v, and (3.6), we estimate, for
any t ∈ [0, T], that∫ t

0

|∇ · F�[μ; ρs, vs][A]| ds ≤ L�

2

∫ t

0

∫∫
G

|vs|η
(

d|ρs| ⊗ μ

dλ
+μ ⊗ |ρs|

dλ

)
dλds

≤ L�

∫ t

0

∫∫
G

|vs(x, y)|η(x, y) dμ(y) d|ρs|(x) ds

≤ L�

∫ t

0

vs |ρs|[Rd]ds, (3.7)

where vs := supx∈Rd

∫
Rd\{x} |vt(x, y)|η(x, y) dμ(y).

Time boundedness – For a.e. t ∈ [0, T], the integral form (3.5) entails

|ρt|[Rd] ≤ |ρ0|[Rd] + L�

∫ t

0

vs|ρs|[Rd] ds.

Then, Gronwall’s inequality provides, for a.e. t ∈ [0, T], the a priori bound |ρt|[Rd] ≤ |ρ0|[Rd]eL�Cv < ∞.
Hence, ρ ∈ L∞([0, T]; MTV(Rd)).

Mass preservation – This is a simple consequence of ∇χRd = 0, which yields ∇ · F�[ρt, vt][Rd] = 0 for
all t ∈ [0, T]. Hence, (3.5) implies that ρ is mass preserving. We also infer the integrability of the flux
from (3.7).

Absolute continuity – For any A ∈B(Rd), we have t �→ |∇ · F�[μ; ρt, vt][A]| belongs to L1([0, T]). Hence,
ρ ∈ACT .
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Support inclusion – Note that for A =R
d \ supp μ and a.e. t ∈ [0, T], the solution ρ satisfies

ρt[A] = ρ0[A] − 1

2

∫ t

0

∫∫
G∩A×supp μ

�

(
d(ρs ⊗ μ)

dλ
, 0; vs

)
dλ(x, y) ds

+ 1

2

∫ t

0

∫∫
G∩supp μ×A

�

(
0,

d(μ ⊗ ρs)

dλ
; vs

)
dλ(x, y) ds;

thus, we get the estimate

|ρt|[A] ≤ |ρ0|[A] + L�

∫ t

0

|ρs|[A]vsds,

and, by Gronwall’s inequality, we also get |ρt|[A] ≤ eCvL� |ρ0|[A]. We conclude by noting that |ρ0|[A] = 0
by assumption.

Remark 3.6. Condition (3.6) is the analogue of the weak-compressibility assumption classically used
for the continuity equation ∂tρt + ∇ · (vtρt) = 0, with vector field v : [0, T] ×R

d →R
d (see, e.g., [1, 10]).

More precisely, in the Euclidean setting, the assumption in (3.6) takes the form ∇ · v ∈ L1([0, T]; L∞(Rd))
and is used to control of ‖ρ‖L∞([0,T]; Lp(Rd )), for any p ∈ [1, ∞) (cf. [10, Prop II.1.]). In our setting, the struc-
tural properties of the graph, encoded in (μ, η) and the flux interpolation �, require a refined analysis
involving a careful regularisation argument when treating Lp solutions; we refer the reader to Section 5,
where those questions are studied for solutions possessing a density.

4. Nonlocal Conservation Law (NCL)

We focus here on the general case where the velocity field depends on the solution itself. More precisely,
we provide well-posedness to (NCE) for a vector field of the form

vt(x, y) = Vt[ρt](x, y) for all t ∈ [0, T],

for some V : [0, T] ×MTV(Rd) → V as(G). For the reader’s convenience, we write the following straight-
forward generalisation of Definition 3.1 to what we refer to as NCL.

Definition 4.1 (Measure-valued solution to the NCL). Given an admissible flux interpolation � and a
measurable map V : [0, T] ×MTV(Rd) → V as(G), a curve ρ : [0, T] →MTV(Rd) is said to be a measure-
valued (or simply measure) solution to the NCL, denoted as

∂tρ + ∇ · F�[μ; ρ, Vt(ρ)] = 0, (NCL)

provided that, for any A ∈B(Rd), it holds that

(i) ρ ∈ACT ;
(ii) t �→ ∇ · F�[μ; ρt, Vt(ρt)][A] ∈ L1([0, T]);
(iii) ρ satisfies

ρt[A] +
∫ t

0

∇ · F�[μ; ρs, Vs(ρs)][A] ds = ρ0[A] for a.e. t ∈ [0, T]. (4.1)

Example 4.2. An important example of a map V in Definition 4.1 is that stemming from the convo-
lution with an interaction kernel (or potential) K : Rd ×R

d →R, which yields the Nonlocal Nonlocal
Interaction Equation (NL2IE), to which we can add an external potential P : Rd →R. Namely, in this
case, for ρ : [0, T] →MTV(Rd), t ∈ [0, T] and (x, y) ∈ G, the vector field V is given by

Vt[ρt](x, y) = −∇(K ∗ ρt)(x, y) − ∇P(x, y).

When the interpolation is chosen to be the upwind one (3.3), we get the equation studied in the optimal
transport, weak-measure setting of [13].
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Our well-posedness proof of (NCL), and thus (NCE), is based on a fixed-point argument and only
applies to measures with fixed total variation, which is consistent with the mass preservation property
from Proposition 3.5. For all M > 0, we introduce the notation

ACM
T = AC([0, T]; MM

TV(Rd)), MM
TV(Rd) = {ρ ∈MTV : |ρ|[Rd] = M}.

Note that, for any ρ0, ρ1 ∈MM
TV(Rd), we have the identity

‖ρ1 − ρ2‖TV = 2 sup
A∈B(Rd )

|ρ1[A] − ρ2[A]| = |ρ1 − ρ2|(Rd).

Throughout this section, we fix M ≥ 0, ρ0 ∈MM
TV(Rd) and � an admissible flux interpolation (cf.

Definition 3.2). With any V : [0, T] ×MM
TV(Rd) → V as(G) such that, for some CV > 0,

sup
t∈[0,T]

sup
ρ∈MM

TV(Rd )

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dμ(y) dt ≤ CV , (4.2)

we associate the solution map SV
T : ACM

T →ACM
T , defined, for t ∈ [0, T] and A ∈B(Rd), by

SV
T (ρ)(t)[A] := ρ0[A] −

∫ t

0

∇ · F�[μ; ρs, Vs(ρs)][A] ds.

Note that (4.2) is an L∞(L∞)-type of bound for the nonlocal divergence; it is thus slightly stronger than
the similar (3.6) of L1(L∞)-type under which we have boundedness of solutions in Proposition 3.5.

We establish well-posedness under a Lipschitz assumption on ρ �→ V[ρ] on the space ACT , which
we endow with the distance dACT defined by

dACT (ρ, σ )=‖ρ − σ‖L∞([0,T]; MTV(Rd ))= sup
t∈[0,T]

‖ρt − σt‖TV for all ρ, σ ∈ACT .

Lemma 4.3. Let V : [0, T] ×MM
TV(Rd) → Vas(G) satisfy the uniform-compressibility assumption (4.2)

for some CV ∈ (0, ∞) and suppose that there exists a constant LV ≥ 0 such that, for all t ∈ [0, T] and all
ρ, σ ∈MM

TV(Rd),

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y) − Vt[σ ](x, y)|η(x, y) dμ(y) dt ≤ LV‖ρ − σ‖TV . (4.3)

Then, for all ρ, σ ∈ACM
T , the contraction estimate

dACT (SV
T (ρ), SV

T (σ )) ≤ αTdACT (ρ, σ ),

holds for α := L�(MLV + CV), where L� is as in (3.2).
In particular, for T > 0 such that T < 1/α, there exists a unique measure solution ρ to (NCL) on

[0, T] such that ρ0 = ρ0.

Proof. Let ρ, σ ∈ACM
T and let t ∈ [0, T]. We rewrite, for s ∈ [0, T],

∇ · F�[μ; ρs, Vs(ρs)][A] − ∇ · F�[μ; σs, Vs(σs)][A] = Is + IIs, (4.4)

where

Is = 1

2

∫∫
G

∇χA(x, y)

[
�

(
d(σs ⊗ μ)

dλ
,

d(μ ⊗ σs)

dλ
;Vs[σs]

)

− �

(
d(σs ⊗ μ)

dλ
,

d(μ ⊗ σs)

dλ
; Vs[ρs]

)]
ηdλ,

IIs = 1

2

∫∫
G

∇χA(x, y)

[
�

(
d(σs ⊗ μ)

dλ
,

d(μ ⊗ σs)

dλ
; Vs[ρs]

)

− �

(
d(ρs ⊗ μ)

dλ
,

d(μ ⊗ ρs)

dλ
; Vs[ρs]

)]
ηdλ.
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For the first term, we apply the Lipschitz assumptions (3.2a) on � and (4.3) on V and use the
antisymmetry of Vt(ρt) and Vt(σt) and the symmetry of η (cf. η) to obtain∫ t

0

|Is|ds ≤ L�

2

∫ t

0

∫∫
G

|Vs[σs] − Vt[ρs]| η(d(|σs| ⊗ μ) + d(μ ⊗ |σs|)) ds

≤ L�

∫ t

0

∫∫
G

∣∣Vs[σs] − Vt[ρs]
∣∣(x, y)η(x, y) d(|σs| ⊗ μ)(x, y) ds

≤ L� sup
s∈[0,t]

|σs|[Rd]
∫ t

0

sup
x∈Rd

∫
Rd\{x}

∣∣Vs[σs]−Vt[ρs]
∣∣(x, y)η(x, y) dμ(y) ds

≤ L�LVMT dACT (ρ, σ ).

As for IIs, we use the Lipschitz assumption (3.2b) on �, again the antisymmetry of Vt(ρt) and the
symmetry of η (recall η), and apply the compressibility of V given in (4.2) to get∫ t

0

|IIs|ds ≤ L�

2

∫ t

0

∫∫
G

|Vs[ρs]|(x, y)

(∣∣∣∣d(σs ⊗ μ)

dλ
(x, y) − d(ρs ⊗ μ)

dλ
(x, y)

∣∣∣∣
+

∣∣∣∣d(μ ⊗ σs)

dλ
(x, y) − d(μ ⊗ ρs)

dλ
(x, y)

∣∣∣∣) η(x, y) dλ(x, y) ds

≤ L�

2

∫ t

0

∫∫
G

|Vs[ρs]|η(d(|σs − ρs| ⊗ μ) + d(μ ⊗ |σs − ρs|)) ds

≤ L�CVTdACT (ρ, σ ).

All in all, taking the suprema over Borel sets and over time in (4.4) gives

dACT

(
SV

T (ρ), SV
T (σ )

) ≤ L�(MLV + CV) TdACT (ρ, σ ) =: αTdACT (ρ, σ ).

The existence and uniqueness when T < 1/α is a direct consequence of the Banach fixed-point
theorem in the metric space ACM

T applied to SV
T .

Remark 4.4. For (NCE), one has to control only the term IIs, and so the condition in (4.2) is enough to
get the contraction estimate and well-posedness.

Theorem 4.5 (Well-posedness for (NCL)). Let V : [0, T] ×MM
TV(Rd) → Vas(G) and suppose there are

constants CV , LV > 0 so that, for all t ∈ [0, T] and all ρ, σ ∈MM
TV(Rd),

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dμ(y) ≤ CV ,

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y) − Vt[σ ](x, y)|η(x, y) dμ(y) ≤ LV‖ρ − σ‖TV .

Then, there exists a unique measure solution ρ to (NCL) such that ρ0 = ρ0.

Proof. Let α be as in Lemma 4.3 and let a = αT . If a < 1, then the result is direct by applying the
well-posedness from Lemma 4.3.

Suppose now a ≥ 1, write k the integer part of a and let τ = 1/(2α). Then, by Lemma 4.3, we know
there exists a unique measure solution to (NCL) on [0, τ ]; let us call this solution ρ1 and observe that
ρ1 ∈AC0,τ , where AC0,τ = AC([0, τ ]; MM

TV(Rd)). Again, applying Lemma 4.3 yields the existence and
uniqueness of ρ2 ∈ACτ ,2τ , the solution to (NCL) on [τ , 2τ ]. By proceeding iteratively, we construct a
sequence of solutions

ρ i ∈AC(i−1)τ ,iτ for all i ∈ {1, . . . , k}, ρk+1 ∈ACkτ ,T .
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We now define the curve ρ ∈AC0,T =ACT by{
ρt = ρ i

t for all t ∈ [(i − 1)τ , iτ ) and i ∈ {1, . . . , k},
ρt = ρk+1

t for all t ∈ [kτ , T],

which, by construction, is the unique measure solution to (NCL).

We now apply Theorem 4.5 to the nonlocal interaction equation studied in [13], that is, to the velocity
field v as in Example 4.2, but for a more general admissible flux interpolation �. This provides existence
and uniqueness of measure solutions to (NL2IE).

Corollary 4.6 (Well-posedness for (NL2IE)). Assume that η satisfies

sup
x∈Rd

∫
Rd

f (x, y)η(x, y) dμ(y) < ∞ (4.5)

for some nonnegative measurable function f : Rd ×R
d →R. Let K : Rd ×R

d →R and P : Rd →R be
such that there exist constants LK , LP > 0 for which

|K(y, z) − K(x, z)| ≤ LKf (x, y), |P(y) − P(x)| ≤ LPf (x, y), (4.6)

for all x, y, z ∈R
d. Then, (NL2IE), whose velocity V : [0, T] ×MM

TV(Rd) → Vas(G) we recall is defined
for t ∈ [0, T] and σ ∈MM

TV(Rd) by

Vt[σ ](x, y) = −∇K ∗ σ (x, y) − ∇P(x, y) for all (x, y) ∈ G, (4.7)

has a unique measure solution ρ such that ρ0 = ρ0.

Proof. We first check that, indeed, V as given in (4.7) satisfies (4.2).

|Vt[ρ](x, y)| = |∇(K ∗ ρ + P)(x, y)| = |K ∗ ρ(y) + P(y) − K ∗ ρ(x) − P(x)|

≤
∫
Rd

|K(y, z) − K(x, z)| d|ρ|(z) + |P(y) − P(x)|

≤ LK

∫
Rd

f (x, y)d|ρ|(z) + LPf (x, y) = (MLK + LP)f (x, y);

hence we obtain

sup
t∈[0,T]

sup
ρ∈MM

TV(Rd )

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dμ(y)

≤ (MLK + LP) sup
x∈Rd

∫
Rd\{x}

f (x, y)η(x, y) dμ(y) < ∞,

which is (4.2). Then, we are only left with showing (4.3). For all ρ, σ ∈MM
TV(Rd), t ∈ [0, T] and (x, y) ∈

G, we have

|Vt[ρ](x, y) − Vt[σ ](x, y)| = |∇(K ∗ ρt − K ∗ σt)(x, y)|

≤
∫
Rd

|K(y, z) − K(x, z)|d|ρt(z) − σt(z)|

≤ LK‖ρt − σt‖TV f (x, y),

which yields (4.3) and ends the proof.

Note that choosing the function f in the above corollary to be

f (x, y) = |x − y| ∨ |x − y|2 for all x, y ∈R
d

shows that [13, Assumption (K3)], needed for the existence result on weak solutions to (NL2IE) in [13,
Theorem 3.15], is stronger than that in (4.6) on K. On the other hand, the condition (4.5), resulting

https://doi.org/10.1017/S0956792523000128 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000128


120 A. Esposito et al.

from this choice of f , is a stronger assumption on η near the diagonal than [13, Assumption (A1)],
again needed in Theorem [13, Theorem 3.15]. Our well-posedness result in Corollary 4.6 thus holds for
more general interaction potentials but less general weight functions than our weak existence result in
Theorem [13, Theorem 3.15]. Another interesting example of f which can be chosen in Corollary 4.6 is
a constant function, which only imposes K to be a bounded function; in this case, the resulting condition
(4.5) on η is even more restrictive, albeit still reasonable.

Remark 4.7 (The case when μ is atomic). Let I ⊆N be not necessarily finite. Consider {xi}i∈I ⊂R
d,

{mi}i∈I ⊂ [0, ∞) and μ ∈M+(Rd) such that

μ =
∑

i∈I

miδxi .

Let V : [0, T] ×MM
TV(Rd) → V as(G) satisfy the hypotheses of Theorem 4.5; that is, there exist there exist

CV , LV > 0 such that, for all t ∈ [0, T] and all ρ, σ ∈M+
TV(Rd), we have

sup
t∈[0,T]

sup
ρ∈MM

TV(Rd )

sup
x∈Rd

n∑
j∈I

xj �=x

mj|Vt[ρ](x, xj)|η(x, xj) ≤ CV ,

sup
x∈Rd

n∑
j∈I:xk �=x

mj|Vt[ρ](x, xj) − Vt[σ ](x, xj)|η(x, xj) ≤ LV‖ρ − σ‖TV .

In this case, we know from Theorem 4.5 that a unique solution ρ exists on [0, T] such that ρ0 = ρ0. If
supp ρ0 ⊆ supp μ, then Proposition 3.5 entails that the solution stays supported in supp μ, in particular,
ρt � μ for a.e. t ∈ [0, T]. If moreover � is jointly antisymmetric, that is, �(a, b; − v) = −�(b, a; v) for
any a, b, v ∈R, then (4.1) rewrites, for any A ∈B(Rd) and a.e. t ∈ [0, T], as

ρt[A] = ρ0[A] −
∑
i �=j

∫ t

0

�
(
ri(t)mj, mirj(t), Vs[ρs](xi, xj)

)
η(xi, xj) ds.

5. Lp solutions and positivity preservation

Let ρ0 ∈MM
TV(Rd) be such that ρ0 � μ. In this section, we consider curves in AC([0, T]; L1

μ
(Rd)) and

equip it with the distance

‖ρ1 − ρ2‖L∞([0,T]; L1
μ(Rd )) = sup

t∈[0,T]

∫
Rd

|ρ1(x) − ρ2(x)| dμ(x) for all ρ1, ρ2 ∈ L1
μ
(Rd).

The advantage of the L1
μ

setting is that we are able to show positivity preservation of solutions when
� = �Upwind, as well as Lp

μ
regularity with p ∈ (1, ∞).

In this setting, we choose λ = μ ⊗ μ so that the admissible flux from Definition 3.2 is given by

dF�[μ; ρ, w](x, y) = �(ρ(x), ρ(y); w(x, y)) d(μ ⊗ μ)(x, y),

for any ρ ∈ L1
μ
(Rd), w ∈ V as(G) and (x, y) ∈ G. Assuming that � is jointly antisymmetric, that is,

�(a, b; −v) = −�(b, a; v) for any a, b, v ∈R, the nonlocal divergence of F�[μ; ρ, v] is given by

∇ · F[μ; ρ, v](x) =
∫
Rd\{x}

�(ρ(x), ρ(y); v(x, y)) η(x, y) dμ(y) for μ-a.e. x ∈R
d;

properties stated in Proposition 3.5 still hold. As in Section 4, the velocity field may depend on the
configuration itself:

vt(x, y) = Vt[ρt](x, y) for all t ∈ [0, T] and (x, y) ∈ G,
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for some V : [0, T] × L1
μ
(Rd) → V as(G). The solution map is, for μ-a.e. x ∈R

d, given by

ρt(x) = ρ0(x) −
∫ t

0

∇ · F[μ; ρs, Vs[ρs]](x) ds. (5.1)

Fix ρ0 ∈ L1
μ,M(Rd). The procedure followed in Section 4 provides a well-posedness result, where, for

M > 0 fixed, we set L1
μ,M(Rd) := {

ρ ∈ L1
μ
(Rd) :

∫
Rd |ρ(x)|dμ(x) = M

}
:

Theorem 5.1 (Well-posedness for (NCL)). Let V : [0, T] × L1
μ,M(Rd) → Vas(G) and suppose there are

constants CV , LV > 0 so that, for all t ∈ [0, T] and all ρ, σ ∈ L1
μ,M(Rd),

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dμ(y) ≤ CV ,

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y) − Vt[σ ](x, y)|η(x, y) dμ(y) ≤ LV‖ρ − σ‖L1
μ(Rd ).

Then, there exists a unique measure solution ρ to (NCL) satisfying (5.1) such that ρ0 = ρ0.

As we now work with densities (with respect to μ), we are able to prove positivity preservation for
(NCE) in the case of the upwind flux interpolation; the proof of the result follows the strategy used
in [6].

Proposition 5.2 (Positivity preservation for (NCE)). Let ρ0 be nonnegative everywhere and let the
assumptions in Theorem 5.1 hold. Furthermore, assume that � ≡ �Upwind. Then, the solution ρ to (NCE)
is nonnegative a.e., that is, ρt(x) ≥ 0 for a.e. t ∈ [0, T] and μ-a.e. x ∈R

d.

Proof. As ρ is absolutely continuous in time, for a.e. t ∈ [0, T] and μ-a.e. x ∈R
d, it holds

∂tρt(x) = −∇ · F�[μ; ρt, vt](x)

= −
∫
Rd\{x}

vt(x, y)+η(x, y)ρt(x) dμ(y)

+
∫
Rd\{x}

vt(x, y)−η(x, y)ρt(y) dμ(y).

We denote by a, A : [0, T] →R the maps defined by

a(t) := sup
x∈Rd

∫
Rd\{x}

|vt(x, y)−|η(x, y) dμ(y), A(t) := exp

(
−

∫ t

0

a(s) ds

)
,

and we set ρ̃t(x) = A(t)ρt(x) for a.e. t ∈ [0, T] and μ-a.e. ∈R
d. In turn, by using v+ = v + v−, we obtain,

for μ-a.e. x ∈R
d,

∂tρ̃t(x) = A′(t)ρt(x) + A(t)∂tρt(x)

= −A(t)a(t)ρt(x) − A(t)∇ · F�[μ; ρt, vt](x)

= −a(t)ρ̃t(x) − A(t)
∫
Rd\{x}

vt(x, y)+η(x, y)ρt(x) dμ(y)

+ A(t)
∫
Rd\{x}

vt(x, y)−η(x, y)ρt(y) dμ(y)
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= − a(t)ρ̃t(x) −
∫
Rd\{x}

vt(x, y)η(x, y)ρ̃t(x) dμ(y)

−
∫
Rd\{x}

vt(x, y)−η(x, y)ρ̃t(x) dμ(y)

+
∫
Rd\{x}

vt(x, y)−η(x, y)ρ̃t(y) dμ(y);

reordering the terms, we get

∂tρ̃t(x) +
∫
Rd\{x}

vt(x, y)− (ρ̃t(x) − ρ̃t(y)) η(x, y) dμ(y)

+ ρ̃t(x)

(
a(t) +

∫
Rd\{x}

vt(x, y)η(x, y) dμ(y)

)
= 0. (5.2)

In addition, note that, by definition of a, we have

a(t) +
∫
Rd\{x}

v(x, y)η(x, y) dμ(y) ≥ 0.

Let us prove that any supersolution of (5.2) is a.e. nonnegative. Indeed, if this were true, then we would
have that the supersolution ρε

t := ρ̃t + εt = a(t)ρt + εt ≥ 0 μ-a.e., for any ε > 0 and a.e. t ∈ [0, T], and,
letting ε → 0, we then would obtain ρt ≥ 0 for a.e. t ∈ [0, T]. By contradiction, we thus assume that a
supersolution to (5.2), still denoted by ρ̃, is such that there exists τ ∈ (0, T] with

inf
y∈Rd

ρ̃τ (y) < 0. (5.3)

Let (τk)k ⊂ (0, T] be defined as τk = τ + 1/k for all k > 0 large enough. By the time continuity of ρ̃ from
[0, T] to L1

μ
(Rd), we know that, up to a subsequence, ρ̃τk → ρ̃τ pointwise as k → ∞. Furthermore, let

(xt
n)n be a minimising sequence for ρ̃t for all t ∈ [0, T]. Then,

ρ̃τk (x
τ

n) −−→
k→∞

ρ̃τ (xτ

n) −−→
n→∞

inf
y∈Rd

ρ̃τ (y),

and similarly, whenever τ > 0, for the sequence (τ ′
k)k ⊂ (0, T] defined by τ ′

k = τ − 1/k for all k > 0 large
enough. Hence, the set � ⊂ (0, ∞), given by

� = {δ > 0 : ∀ t ∈ [0, T] ∩ (τ − δ, τ + δ), inf
y∈Rd

ρ̃t(y) < 0},

is nonempty, open, and δ∗ := sup � > 0. Moreover, δ∗ ≤ τ since, by assumption, ρ̃0 ≥ 0. Setting τ∗ :=
τ − δ∗ ≥ 0 and τ ∗ := min{T , τ + δ∗}, we have

inf
y∈Rd

ρ̃τ∗ (y) ≥ 0 and inf
y∈Rd

ρ̃t(y) < 0 for all t ∈ (τ∗, τ ∗).

As consequence, for all h > 0 such that τ∗ + h < τ ∗, we have

lim
n→∞

ρ̃τ∗+h

(
xτ∗+h

n

)
< 0 ≤ lim

n→∞
ρ̃τ∗ (xτ∗

n ) ≤ lim inf
n→∞

ρ̃τ∗
(
xτ∗+h

n

)
,

since xτ∗+h
n is minimising for ρ̃τ∗+h but not necessarily for ρ̃τ∗ , and so

lim sup
n→∞

(
ρ̃τ∗+h

(
xτ∗+h

n

) − ρ̃τ∗
(
xτ∗+h

n

)) ≤ 0. (5.4)

We find that, for t∗ = τ∗ + h,

lim sup
n→∞

∫ τ∗+h

τ∗

∫
Rd\{xt∗

n }
vt∗

(
xt∗

n , y
)

−
(
ρ̃t∗

(
xt∗

n

) − ρ̃t∗ (y)
)
η
(
xt∗

n , y
)

dμ(y) dt ≤ 0,

lim sup
n→∞

∫ τ∗+h

τ∗
ρ̃t∗

(
xt∗

n

) (
a(t∗) +

∫
vt∗

(
xt∗

n , y
)
η
(
xt∗

n , y
)

dμ(y)

)
dt ≤ 0.
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Integrating (5.2) between (τ∗, τ∗ + h) at x = xτ∗+h
n and taking the lim inf as n → ∞, we arrive at

lim inf
n→∞

(
ρ̃τ∗+h

(
xτ∗+h

n

) − ρ̃τ∗
(
xτ∗+h

n

)) ≥ 0,

which contradicts (5.4). Hence, the existence of τ such that (5.3) holds is false and every supersolution
to (5.2) must be a.e. nonnegative, which concludes the proof.

We are also able to prove Lp regularity of solutions for (NCE):

Proposition 5.3 (Lp regularity for (NCE)). Suppose that dμ

dx
∈ L∞(Rd) and ρ0 is nonnegative everywhere

with ρ0 ∈ Lp(Rd) for some p ∈ (1, ∞). Consider any measurable pair (ρ, v) : [0, T] → L1
μ,M(Rd) × Vas(G)

satisfying (5.1), with � ≡ �Upwind. Assume that η is translation invariant, that is,

η(x + h, y + w) = η(x, y), for any (x, y), (x + h, y + w) ∈ G. (5.5)

Assume there exists a constant Cv > 0 such that v : [0, T] → Vas(G) satisfies the following uniform
translational bound:

lim sup
ε→0

∫ T

0

sup
y∈Rd

∫
Rd

sup
h,w∈Bε (0)

(vt(x + h, y + w)− η(x, y))p dy ≤ Cv. (5.6)

Let ρ be the solution to (NCE). Then, ρt is a density with respect to the Lebesgue measure and ρt ∈
L1

μ,M(Rd) ∩ Lp(Rd) for all t ∈ [0, T]. Furthermore, for all t ∈ [0, T], it holds

sup
t∈[0,T]

‖ρt‖p
Lp(Rd ) ≤

(
‖ρ0‖p

Lp(Rd ) + C̃vT
)

exp

(
T

q

)
, (5.7)

with C̃v = Cv
p

(
pM‖ dμ

dx
‖L∞

)p.

Proof. Let ν be a standard mollifier, that is, a nonnegative and even function in C∞
c (Rd) (the set of

smooth, compactly supported functions defined on R
d) such that

∫
Rd νdx = 1 and suppν = B1(0) := {x ∈

R
d : ‖x‖ = 1}. Fix ε > 0 and write νε = ε−dν(·/ε). Also, for any z ∈R

d, define the translation operator
τ z : Rd →R

d by τ z(h) := h − z. In particular, set the translated measures ρz
t := τ z

#ρt and μz := τ z
#μ,

where # stands for the measure-theoretic pushforward. We use the following interplay between transla-
tion and convolution: for any f ∈ Cb(Rd) (the set of continuous and bounded functions defined on R

d),
we have f ∗ νε ∈ C∞

b (Rd), that is, f ∗ νε ∈ Cb(Rd) and f ∗ νε is smooth, and∫∫
Rd×Rd

f (h)νε(z) dρz
t (h) dz =

∫∫
Rd×Rd

f (h − z)νε(z) dρt(h) dz

=
∫
Rd

(νε ∗ f )(h) dρt(h)

=
∫∫

Rd×Rd

νε(h − z)f (z) dz dρt(h)

=
∫∫

Rd×Rd

f (z)νε(z − h) dρt(h) dz

=
∫
Rd

f (z)ρε

t (z) dz.

Let ρε = ρ ∗ νε be the smoothed solution satisfying

∂tρ
ε

t + (∇ · F�
) ∗ νε = 0,
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where ((∇ · F�) ∗ νε)(x) = ∫
Rd νε(x − z) d∇ · F�(z) for all x ∈R

d. We can compute the time derivative of
the Lp norm of ρε: for a.e. t ∈ [0, T], use (5.5) to get

d
dt

∫
Rd

|ρε

t |pdx = p
∫
Rd

ρε

t (x)p−1∂tρ
ε

t (x) dx

= −p
∫
Rd

ρε

t (x)p−1
(
νε ∗ ∇ · F�

)
(x) dx

= p

2

∫∫
G

∇(ρε

t )p−1 ∗ νε� (ρt(x), ρt(y); vt) ηdμ(x) dμ(y)

= p

2

∫
Rd

∫∫
G

∇(ρε

t )p−1(x − z, y − z)νε(z)vt(x, y)+η(x, y) dρt(x) dμ(y) dz

− p

2

∫
Rd

∫∫
G

∇(ρε

t )p−1(x − z, y − z)νε(z)vt(x, y)−η(x, y) dμ(x) dρt(y) dz

= −p
∫
Rd

∫∫
G

∇(ρε

t )p−1(x − z, y − z)νε(z)vt(x, y)−η(x, y) dμ(x) dρt(y) dz

= −p
∫
Rd

∫∫
G

∇(ρε

t )p−1(h, w)νε(z)vt(z + h, z + w)−η(h, w) dμz(h) dρz
t (w) dz

≤ p
∫
Rd

∫∫
G

(ρε

t )p−1(h)νε(z)vt(z + h, z + w)−η(h, w) dμz(h) dρz
t (w) dz = : I.

To estimate I, we use the following variant of Young’s inequality: for p ∈ (1, ∞) and a, b ∈ (0, ∞), there
holds

ap−1b ≤ ap

q
+ bp

p
, where q = p

p − 1
. (5.8)

Due to (5.6), for some ε0 > 0 sufficiently small, for all ε ∈ (0, ε0) and a.e. t ∈ [0, T], the function
vε

t : G →R, defined as

vε

t (x, y) := sup
h,w∈Bε (0)

(vt(x + h, y + w))− ,

satisfies, for some Cε0
v > 0, the bound

sup
ε∈(0,ε0)

∫ T

0

sup
x∈Rd

∫
Rd\{x}

(
vε

t (x, y)η(x, y)
)p dy ≤ Cε0

v .

Using the notation above, Hölder’s inequality and (5.8), we get, for a.e. t ∈ [0, T],

I ≤ p
∥∥∥dμ

dx

∥∥∥
L∞

∫
Rd

(ρε

t )p−1(h)
∫
Rd\{h}

∫
Rd

νε(z)vε

t (h, w)η(h, w) dρz
t (w) dz dh

≤ p
∥∥∥dμ

dx

∥∥∥
L∞

[(∫
Rd

|ρε

t (h)|pdh

) p−1
p

×

×
(∫

Rd

∣∣∣∣∫
Rd\{h}

∫
Rd

νε(z)vε

t (h, w)η(h, w) dρz
t (w) dz

∣∣∣∣p

dh

) 1
p
]

≤ p
∥∥∥dμ

dx

∥∥∥
L∞

‖ρε

t ‖p−1
Lp

(∫
Rd

∣∣∣∣sup
w∈Rd

vε

t (h, w)η(h, w)
∫
Rd\{h}

∫
Rd

νε(z) dρz
t (w) dz

∣∣∣∣p

dh

) 1
p

≤ 1

q

∥∥∥ρε

t

∥∥∥p

Lp
+ 1

p

(
p
∥∥∥dμ

dx

∥∥∥
L∞

ρ0[R
d]

)p

sup
w∈Rd

∫
Rd

|vε

t (h, w)η(h, w)|pdh.

In turn, we infer

sup
t∈[0,T]

‖ρε

t ‖p
Lp ≤

(
‖ρ0‖p

Lp(Rd ) + C̃vT
)

exp

(
T

q

)
,
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where C̃v = C
ε0
v
p

(
p‖ dμ

dx
‖L∞ρ0[Rd]

)p. The above inequality ends the proof since, up to a subsequence, we
deduce ρε

t ⇀ ρt in Lp(Rd) for any t ∈ [0, T], and the stability estimate (5.7) follows by sending ε to 0
above.

Remark 5.4. It is common in applications to data science to consider η(x, y) = η(x − y) instead of (5.5),
which is a reformulation of translation invariance. For this reason, since the graph is translation invariant,
we can think of the assumption in 5.6 as an Lp control for the velocity field over connected vertices,
uniformly with respect to translations.
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