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We present a numerical study of the dynamics of an elastic fibre in a shear flow at low
Reynolds number, and seek to understand several aspects of the fibre’s motion using
the equations for slender-body theory coupled to the elastica. The numerical simulations
are performed in the bead-spring framework including hydrodynamic interactions in two
theoretical schemes: the generalized Rotne–Prager–Yamakawa model and a multipole
expansion corrected for lubrication forces. In general, the two schemes yield similar
results, including for the dominant scaling features of the shape that we identify. In
particular, we focus on the evolution of an initially straight fibre oriented in the flow
direction and show that the time scales of fibre bending, curling and rotation, which depend
on its length and stiffness, determine the overall motion and evolution of the shapes. We
document several characteristic time scales and curvatures representative of the shape that
vary as power laws of the bending stiffness and fibre length. The numerical results are
further supported by an interpretation using an elastica model.
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1. Introduction

Physical systems that contain flexible fibres in flow are common in the processing needed
to manufacture various textiles, which highlights the properties of fibrous suspensions,
in biophysics and cell biology where flagella and cilia are responsible for motion and
stirring of fluids and biopolymers constitute the matrix of the structural materials around
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cells, and in proposed microfabricated sensing technologies, among others. Three recent
reviews describe the present state of the field (Lindner & Shelley 2015; du Roure et al.
2019; Witten & Diamant 2020). These kinds of problems pose challenges since the fluid
motion is dictated, at least in part, by the shape of the filament, but the filament shape is
itself determined by the flow. Here, we study a viscosity dominated, low-Reynolds-number
flow where a flexible filament is confined to a plane. We document the response in a shear
flow, where we focus on large deformations and quantify dominant features of the fibre
shape as a function of its effective elasticity.

Typically, fibres experience flow during both synthesis and application processes, and
Poiseuille and shear flows are important and ubiquitous. Single fibre dynamics in shear and
Poiseuille flows has been studied theoretically, numerically and experimentally and many
different features have been elucidated in depth. In particular, there is a large literature
on the hydrodynamics of individual rigid particles in shear flow starting with periodic
motion of spheroids, analysed by Jeffery (1922) and later extended for periodic and chaotic
dynamics of more complex shapes by, for example, Bretherton (1962), Hinch & Leal
(1979), Yarin, Gottlieb & Roisman (1997), Wang et al. (2012) and Thorp & Lister (2019).

The dynamics of rigid elongated particles changes significantly if an elastic deformation
is included. In shear flows, the buckling process has been analysed, e.g. by Forgacs &
Mason (1959a), Hinch (1976) and Becker & Shelley (2001), typical evolution of shapes has
been investigated, e.g. by Smith, Babcock & Chu (1999), Harasim et al. (2013), Nguyen &
Fauci (2014), Słowicka, Wajnryb & Ekiel-Jeżewska (2015), Liu et al. (2018) and LaGrone
et al. (2019), including knotted fibres (Matthews, Louis & Yeomans 2010; Kuei et al.
2015; Narsimhan, Klotz & Doyle 2017; Soh, Klotz & Doyle 2018) and also deviations
from Jeffery orbits have been studied, e.g. by Forgacs & Mason (1959b), Skjetne, Ross &
Klingenberg (1997), LeDuc et al. (1999), Joung, Phan-Thien & Fan (2001), Wang et al.
(2012), Zhang, Lam & Graham (2019), Zhang & Graham (2020) and Słowicka, Stone &
Ekiel-Jeżewska (2020).

In the Poiseuille flow, migration and accumulation of flexible fibres have been observed
and studied, e.g. by Jendrejack et al. (2004), Ma & Graham (2005), Khare, Graham &
de Pablo (2006), Słowicka et al. (2012), Słowicka, Wajnryb & Ekiel-Jeżewska (2013)
and Farutin et al. (2016). Also, the influence of other types of flow (extensional, cellular,
compressional) and bending stiffness on the shapes of deformed fibres have been studied
(Young & Shelley 2007; Wandersman et al. 2010; Kantsler & Goldstein 2012; Chakrabarti
et al. 2020). Related interesting research is on the rheology of non-spherical particles
(Batchelor 1970b; Cichocki, Ekiel-Jezewska & Wajnryb 2012; Zuk, Cichocki & Szymczak
2017), which is of importance in bio-sciences (de la Torre & Bloomfield 1978; Harding
1997; Zuk, Cichocki & Szymczak 2018) and also includes new features caused by
flexibility (Switzer III & Klingenberg 2003). In general, few have focused on typical time
scales characteristic of the bending process of a single fibre in low-Reynolds-number flow,
which is the focus of our work in the context of the shear flow.

Słowicka et al. (2020) demonstrated that in the shear flow, for a wide range of values of
the bending stiffness ratio A, elastic fibres often tend to the flow–gradient plane if initially
located out of it. More precisely, in Słowicka et al. (2020), fibres were initially straight,
and hundreds of their three-dimensional (3-D) initial orientations spanned the whole range
of 3-D directions. It turned out that, in most cases, fibres perform effective time-dependent
Jeffery orbits and are (exponentially in time) attracted to spinning along the vorticity
direction or tumbling motion in the flow–gradient plane. The typical relaxation times
are very long. In a certain range of A, there exists also an attracting 3-D dynamical
periodic mode. For larger values of A, the tumbling motion in the flow–gradient plane
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Fibres in shear flow

is the attractor for the majority of initial orientations. Therefore, in this paper, we focus on
the analysis of fibres that perform their motion entirely in the flow–gradient plane.

We use a numerical bead-spring model and the theoretical elastica model to study
a single elastic fibre in a low-Reynolds-number shear flow. In particular, we perform
extensive bead-spring simulations with the number of beads (fibre aspect ratio) n =
20–300 and two different models of the constitutive relations that determine the resistance
of the fibre to bending, i.e. the bead–bead elastic potential energy, and two different models
of hydrodynamic interactions. The parameters allow for high aspect ratio, highly flexible
fibres. In addition to these bead-spring simulations, we use the elastica and slender-body
descriptions of the flexible fibre deformation to rationalize the dynamics.

We characterize the dynamics evaluated numerically from the bead-spring model by
identifying typical time scales of the shape deformation and the maximum curvatures that
represent the flexible fibre. As one example, we identify a bending time scale intrinsic to
the end of a fibre that begins to slowly bend from a straight configuration aligned with
the flow direction. The displacement is caused by a transverse force at the end induced by
hydrodynamic interactions caused by the rate of strain of the flow. Then, due to this small
displacement, in the shear flow a tensile force builds up in the tip region, and eventually a
rapid buckling of the tip takes place.

The tumbling motions of a flexible fibre initially aligned with the flow have been
analysed in many previous publications, numerically and experimentally, e.g. by Forgacs
& Mason (1959a), Yamamoto & Matsuoka (1993) and Skjetne et al. (1997), Lindström &
Uesaka (2007), Słowicka et al. (2012, 2013, 2015, 2020), Harasim et al. (2013), Nguyen
& Fauci (2014), Farutin et al. (2016), Liu et al. (2018) and LaGrone et al. (2019). This
pattern of the dynamics, typical for elongated objects of a non-negligible thickness, is not
reproduced by the inextensible infinitely thin Euler–Bernoulli beam (elastica), analysed
e.g. by Audoly (2015) and Lindner & Shelley (2015). The elastica does not move out of
the stationary configuration perfectly aligned with the flow. Therefore, in this paper, we
introduce a modified model that accounts for the dynamics of an elastica initially aligned
with the shear flow and allows it to move out of the initial position. The key idea is to
extend the Euler–Bernoulli beam model by adding a point force exerted on the end beads
of the fibre in the direction perpendicular to the flow. This force is caused by the shear flow,
in agreement with the standard theory of the hydrodynamic interactions (Kim & Karrila
1991). Using the elastica model modified in this way, we construct an analytical solution of
the early time dynamics, which is in excellent agreement with our numerical simulations.

Moreover, we identify several additional universal scaling laws of the fibre shape and
dynamics from the numerical simulations and in some cases are able to rationalize the
results using the elastica model. We observe that essential features of the fibre dynamics
can be well understood using the parameter space of the fibre’s bending stiffness and
aspect ratio, which extends the concept of the elasto-viscous number.

This article is organized in the following way. We describe two bead-spring models,
M1 and M2, of a flexible fibre in § 2.1. We specify elastic and hydrodynamic interactions
in §§ 2.1.1 and 2.1.2, respectively. We explain why the fibre made of beads aligned with
the flow moves out of this position in § 2.1.3. We evaluate the hydrodynamic force on
the tip of the fibre aligned with the flow in § 2.1.4. We present the elastica/slender-body
theory in § 2.2. A typical evolution of a flexible fibre, initially aligned with the shear flow,
is shown in § 3. Evolution of shape and its maximum curvature are used to introduce
typical time scales. The limits of a small and a large ratio A of the bending stiffness
to the corresponding viscous stresses associated with the shear flow are discussed. The
evolution of the fibre at early times is analysed in § 4. Based on the numerical simulations,
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in § 4.1 we demonstrate that the bending process originates from the fibre ends, and at
early times only the fibre ends are deformed. We define the corresponding bending time
τb and show that it does not depend on the fibre aspect ratio n if n is large enough, and
it scales as τb ∝ A1/3. We also provide a scaling of τb in the whole range of A and n. A
similarity solution of small deformations and early times for the elastica is given in § 4.2,
and it is used for a comparison with the numerical bead-spring simulations in § 4.3. The
essential new input is the addition to the elastica model of a hydrodynamic force exerted
on the fibre tip by the rate of strain of the shear flow, in a similar way as follows from
the bead-spring models of the hydrodynamic interactions. In § 4.4 we demonstrate that
the fibre shapes scale approximately with A1/3 for times t ≤ τb, even beyond the range of
small deformations, and provide arguments from the elastica model.

Highly bent fibres, for times t ≥ τb, are analysed in § 5. From the numerical simulations
based on the bead models M1 and M2 we demonstrate in § 5.1 that the maximum fibre
curvature κb2 over time is a local quantity – it does not depend on n if the fibre is long
enough, and it satisfies a power-law dependence on A. An explanation for the results in
terms of the elastica, and also other numerically found scaling laws, is given in § 5.2.
Curling motion of a highly bent fibre is analysed with the M1 bead model and scaling
laws for the curling velocity along the flow are presented in § 5.3.

Characteristic features of the fibre dynamics and curvature in the phase space of the
aspect ratio n and the bending stiffness ratio A are analysed in § 6 with the use of the bead
models M1 and M2. The universal similarity scaling of the maximum curvature κb2 is
provided in § 6.1. The phase space diagram of the dynamical modes is found in § 6.2. The
distinction between the fibres that bend locally (for larger n and smaller A), and the fibres
that bend globally (for smaller n and larger A) is demonstrated. The transition between
them is shown to take place gradually in a certain range of the phase space. In contrast,
within the local bending mode, there exists a sharp transition in the phase space between
the fibres that straighten out along the flow while tumbling and the fibres that stay coiled.
The transition is described by a simple scaling law. The final conclusions are outlined in
§ 7. In addition, we give the details of the theoretical and numerical descriptions of the
hydrodynamic interactions between the fibre beads in appendix A and we compare the
results obtained by the theoretical models M1 and M2 in appendix B. Finally, we discuss
the universal similarity scaling and the transition between local and global bending in
appendices C and D, respectively.

2. Model of the fibre

We consider the low-Reynolds-number motion of a neutrally buoyant elastic fibre in a fluid
of viscosity μ0. In particular, the interaction of an elastic fibre with an external shear flow
of velocity

V ∞(R) = (γ̇ Z, 0, 0) , (2.1)

where R = (X, Y, Z) and γ̇ is the shear rate, is a nonlinear problem and many approaches
have been devised to study it theoretically and numerically, e.g. bead-spring models
(Warner 1972; Larson et al. 1999; Kuei et al. 2015; Słowicka et al. 2015, 2020),
cylinder-hinge models (Schmid & Klingenberg 2000; Férec et al. 2009), slender-body
and inextensible Euler–Bernoulli beam (elastica) approaches (Becker & Shelley 2001;
Tornberg & Shelley 2004; Nazockdast et al. 2017; Liu et al. 2018), the boundary
integral technique (Peskin 2002), the method of regularized Stokeslets (Cortez, Fauci
& Medovikov 2005; Nguyen & Fauci 2014; LaGrone et al. 2019), etc. We exploit the
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Figure 1. Models of a fibre in shear flow and the notation. (a) The bead model. (b) The elastica model.

HI model Constitutive laws

set 1 set 2
(2.2), (2.3) (2.4), (2.5)

GRPY + (2.6) M1 M3
HYDROMULTIPOLE — M2

Table 1. Physical assumptions of the bead-spring models M1, M2 and M3.

bead-spring approach for numerical simulations and the elastica model for rationalization
of the numerical results (see figure 1).

2.1. Bead model
The bead-spring model illustrated in figure 1(a) describes elastic and hydrodynamic
interactions between n numbered i = 1, . . . , n spherical beads of identical radii a (ith
bead position is denoted as Ri). In this work, we use three different bead models
Mi, i = 1, 2, 3 (cf. table 1), which include combinations of two different descriptions
of hydrodynamic interactions (HI), described below and in appendix A: the generalized
Rotne–Prager–Yamakawa (GRPY) method (Wajnryb et al. 2013; Zuk et al. 2017)
and the multipole method with lubrication correction (HYDROMULTIPOLE) (Cichocki,
Ekiel-Jeżewska & Wajnryb 1999; Ekiel-Jeżewska & Wajnryb 2009) with two sets of
constitutive laws specifying elastic interactions that are described next.

The results presented in the following sections are based on the numerical simulations
from the bead models M1 and M2. Both of them have the same long-distance asymptotics
of the hydrodynamic interactions, and for close beads the HYDROMULTIPOLE method is
more precise than the GRPY. However, the computations based on the HYDROMULTIPOLE
algorithm require more time and memory than the GRPY approach. The GRPY model has
been therefore used in simulations of very long fibres. For n ≤ 100 both M1 and M2 have
been applied.

Qualitative results from the bead-spring models M1 and M2 are similar and in regimes
of large A and n they are also the same quantitatively. A detailed comparison of the results
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obtained within both models is given in appendix B. The model M3 (see table 1) is applied
there to explain that some differences between the models M1 and M2 are related to
different expressions for the bending potential energy, in agreement with the predictions
of Bukowicki & Ekiel-Jeżewska (2018).

2.1.1. Elastic interactions
An elastic interaction potential model (constitutive laws) specifies a sum E of all
bead–bead interaction energies, which are used to calculate elastic forces F i = −∇RiE
acting on each bead i. We assume that there are no elastic torques acting on the beads. For
every pair of beads i, j the connector vector Rij = Rj − Ri points from the centre of the
sphere i towards the centre of sphere j.

For the first set of constitutive laws, set 1, between the centres of every two consecutive
beads i and i + 1 we impose the FENE (finitely extensible nonlinear elastic) stretching
potential energy (Warner 1972)

Es,ij = k′
sR

2
m

2
log

[
1 −

(
Rij − 2a

Rm

)2
]

, (2.2)

where j = i + 1, k′
s is the spring stiffness, Rm = 0.2a is the maximum stretching from

the equilibrium distance and Rij = |Rij|. Between every triplet of beads i − 1, i, i + 1 we
impose a harmonic bending potential energy,

Eb,i = A′

2
(θ0 − θi)

2, (2.3)

where θi and θ0 are, respectively, the time-dependent and the equilibrium angles between
connector vectors Ri,i−1 and Ri,i+1, and A′ = EI/L0 is the bending stiffness (per unit
length), with the Young modulus E, the moment of inertia I = πa4/4 and the distance
L0 between the centres of the consecutive beads. Because a fibre is straight, when in
equilibrium, the angle θ0 = π. In the set 1 of the constitutive laws we assume that L0 = 2a.

For the second set of constitutive laws, set 2, between centres of every two consecutive
beads i and i + 1 we impose a harmonic stretching potential energy

Es,ij = k′
s

2
(Rij − L0)

2, (2.4)

with j = i + 1 and the equilibrium distance L0 between the bead centres usually close to
R0 = 2a but a bit larger. Between every triplet of beads i − 1, i, i + 1 we impose a cosine
(Kratky–Porod) bending potential energy

Eb,i = A′
(

1 + Ri,i−1 · Ri,i+i

|Ri,i−1||Ri,i+i|
)

= A′(1 + cos θi). (2.5)

This potential energy is a widely used discrete approximation of the elastic bending
stiffness, see e.g. Gauger & Stark (2006).

Additionally when the GRPY model of hydrodynamic interactions is used we add the
repulsive part of the Lennard-Jones potential energy

ER,ij = 4ε′
LJ

(
σLJ

Rij

)12

(2.6)

between the second nearest or further neighbour beads, where ε′
LJ determines the strength

of the potential and σLJ is the characteristic distance. We set σLJ = 2a and truncate the
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Lennard-Jones interaction range to 2.5σLJ . This potential acts to prevent large overlaps
of the beads (comparable with 2a − Rij � a for Rij < 2a). This is not necessary for
the HYDROMULTIPOLE model because the lubrication forces prevent the beads from
overlapping.

2.1.2. Hydrodynamic interactions
In this work, we study translational motion of segments of a flexible fibre. In the framework
of the bead-spring modelling, the translational motion of the fibre beads is determined
by the theory of hydrodynamic interactions between spherical particles. We consider n
spherical particles in a fluid of viscosity μ0 subject to an incompressible external flow
V ∞(R). We investigate the case where the Reynolds number is much smaller than unity
and the quasi-steady fluid velocity V (R) and pressure p(R) are described by the Stokes
equations (Oseen 1927; Kim & Karrila 1991).

The theory of hydrodynamic interactions is used to calculate the translational velocities
U i of the particles, which are in turn necessary to integrate the particle trajectories. In
our case the external flows are linear, and there are no torques applied to the particles.
Therefore the translational velocities U i satisfy the relations,

U i = V ∞(Ri) +
n∑

j=1

(
μtt

ij · F j + μtd
ij : E∞

)
, (2.7)

where F j is the total external force exerted on the particle j and E∞ = (∇V ∞ +
(∇V ∞)T)/2 denotes the rate-of-strain tensor of the external fluid flow V ∞. For the shear
flow given by (2.1),

E∞ = γ̇

2

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ . (2.8)

There are different methods to evaluate the translational–translational μtt
ij and

translational–dipolar μtd
ij mobility matrices. The most precise is the multipole expansion,

corrected for lubrication, in order to speed up the convergence (Durlofsky, Brady & Bossis
1987; Cichocki et al. 1994; Sangani & Mo 1994; Cichocki et al. 1999; Ekiel-Jeżewska &
Wajnryb 2009) through the inverse-power expansion in the inter-particle distance (Kim &
Karrila 1991). The analytical Rotne–Prager–Yamakawa approximation is also often used
(Rotne & Prager 1969).

In this work we evaluate the mobility matrices as functions of the positions of all
the beads using the two methods outlined in appendix A. First, we apply the analytical
Rotne–Prager–Yamakawa approximation of the translational–translational mobility μtt

ij
(Rotne & Prager 1969), generalized also for the translational–dipolar mobility matrix μtd

ij
(Kim & Karrila 1991) and implemented in the GRPY numerical program. Second, we
use the precise multipole method corrected for lubrication, implemented in the numerical
code HYDROMULTIPOLE. The GRPY procedure is less precise, when particle surfaces
are closer than the radius of the smaller particle, but computationally much faster than the
HYDROMULTIPOLE algorithm. Both methods will be briefly outlined in appendix A.

The equations of motion for the positions Ri of the beads are

Ṙi = U i, (2.9)

with U i dependent on the positions Rj of all the bead centres j = 1, . . . , n, and given by
(2.7).
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The equations of motion (2.9) are solved numerically with the use of dimensionless
variables. We choose as a characteristic length the bead diameter 2a. The total length of the
fibre at equilibrium is L, which in the case of the M1 model is fixed to L = 2na so that the
fibre aspect ratio is n. We choose as a time scale the inverse of the shear rate γ̇ −1 and the
forces are normalized with πμ0γ̇ (2a)2. The above introduces the dimensionless stretching
stiffness ks = k′

s/(πμ0γ̇ (2a)), εLJ = ε′
LJ/(πμ0γ̇ (2a)3) and the bending stiffness

A = A′/(πμ0γ̇ (2a)3) = EI/(πμ0γ̇ L0(2a)3). (2.10)

For the GRPY approach, L0 = 2a. Note that for the HYDROMULTIPOLE treatment of
the hydrodynamic interactions, the dimensionless bending stiffness ratio A used here is
slightly different from the corresponding parameter EI/(πμ0γ̇ (2a)4) used by Słowicka
et al. (2013, 2015, 2020) and denoted there by the same letter. To adjust for this difference,
all the numerical values of the bending stiffness based on the HYDROMULTIPOLE codes
taken from earlier works were in this paper divided by L0/(2a) (typically equal to 1.02 or
1.01, see appendix B).

2.1.3. Why a fibre aligned with the flow moves out of this position
To answer this question, we will use (2.7) to analyse the velocities of the beads for
a fibre aligned with the flow and at the elastic equilibrium. We will use the standard
pairwise-additive Rotne–Prager–Yamakawa (RPY) approximation for the distinct mobility
matrices μtt

ij and μtd
ij with i /= j (Kim & Karrila 1991). From the geometric symmetry we

can write down the tensorial form of the mobility matrices for a pair of particles i and j
(Kim & Karrila 1991),

μtt
ij = A(Rij)dijdij + B(Rij)(I − dijdij), (2.11a)

μtd
ij = C(Rij)

(
dijdij − 1

3 I
)
dij + D(Rij)dij(I − dijdij), (2.11b)

where I is the unit tensor, dij = Rij/|Rij|, and dij(I − dijdij) is a third rank
tensor symmetric and traceless in the first and second Cartesian components, i.e.
dij(I − dijdij)αβγ

= 1
2 (dαδβγ + dβδαγ ) − dαdβdγ , where the Cartesian components are

labelled with the Greek letters. Within the RPY approximation, the translational–
translational self-mobility matrix

μtt
ii = 1

6πμ0a
I (2.12)

and the translational–dipolar self-mobility matrix vanishes, μtd
ii = 0.

Our goal now is to investigate the initial configuration, when the fibre is parallel to
the flow. In this case dij = ±êx, with the minus sign for the beads with labels i > j.
Since the fibre is at the elastic equilibrium, the external forces vanish, F j = 0, and the
only contribution to velocity in the direction perpendicular to the flow comes from the
translational–dipolar mobility. From (2.11b) it follows that the contribution to the velocity
U i of particle i from the translational–dipolar mobility μtd

ij acting on the strain tensor E∞
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Fibres in shear flow

(where [A : B]ij = AikBkj) consists of two terms proportional to

(
dijdij − 1

3
I
)

dij : E∞ = γ̇

2

⎛
⎝ 0

0
1/3

⎞
⎠ and dij(I − dijdij) : E∞ = γ̇

2

⎛
⎝ 0

0
−1

⎞
⎠ ,

(2.13a,b)

respectively. Therefore, there exist contributions to the bead velocities perpendicular to
the flow, and this is why the fibre moves out of the position aligned with the flow. In the
next section, we will show that the largest are perpendicular velocities of the first and last
beads, at the initial configuration aligned with the flow, and also later when the fibre is
slightly deflected. We will also demonstrate that this effect can be considered as the result
of a hydrodynamic force exerted by the shear flow on the fibre.

2.1.4. Hydrodynamic force acting on the tip of the fibre initially aligned with the flow
We now move on to the discussion of the hydrodynamic force exerted by the shear flow
on the tip of a fibre aligned with the flow or already slightly deflected from the alignment.
In the following, we are going to provide the theoretical explanation for the initial stage
of the bending process in terms of the elastica, based on the assumption that a constant
hydrodynamic force is exerted on the fibre end by the shear flow. In the standard use of
the elastica equations the existence of such a force has not been yet taken into account.
Here, we use the general framework of the theory of hydrodynamic interactions presented
in the previous sections to explain the physical origin of this force, and to estimate its value
numerically (with the bead model M1).

In the bead models, the tip force can be found rewriting (2.7)

Ṙi − V ∞(Ri) = μtt
ii ·
⎛
⎝F i + (μtt

ii)
−1
∑

j

μtd
ij : E∞

⎞
⎠+

∑
j /= i

(
μtt

ij · F j

)
, (2.14)

where μtt
ii is the translational self-mobility matrix, and defining the hydrodynamic force

acting on bead i as

F Hi = (μtt
ii)

−1
∑

j

μtd
ij : E∞. (2.15)

The dimensionless form is f Hi = F Hi/(πμ0γ̇ (2a)2).
Our goal is to investigate F Hi at the early stage of the evolution, when the fibre, initially

aligned with the flow, slowly moves out of this configuration, but still remains almost
parallel to the flow. We will now show that, for the fibre almost aligned with the flow, the
hydrodynamic forces F Hi, defined by (2.15), are almost perpendicular to the flow direction
êx. We will also provide some theoretical arguments why the value of F Hi is the largest at
the ends of the fibre.

The hydrodynamic forces F Hi given by (2.15) are proportional to the shear rate γ̇ .
Moreover, the force F Hi is perpendicular to the flow and parallel to the z direction of
the flow gradient, F Hi ≈ êz · F Hiêz. Therefore, they displace the fibre beads away from the
position aligned with the flow. From the explicit expressions for the functions C and D in
(2.11b), given e.g. by Kim & Karrila (1991), it follows that for the first bead êz · F H1 > 0
and for the last bead êz · F Hn < 0. This means that, owing to the hydrodynamic forces
(2.15), the fibre follows the rotational component of the shear flow.
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n
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i/n
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l ·

 ê
z

(a) (b)
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0.2

0.1

0

–0.1

–0.2

Figure 2. Hydrodynamic forces normal to the fibre, acting on bead i, calculated from (2.15) with the GRPY
model of the hydrodynamic interactions. (a) Spatial distribution of the forces on the beads along the fibre.
(b) The force on the first bead as a function of the fibre aspect ratio n.

It is also known that C ∝ R−2
ij and D ∝ R−4

ij , see e.g. Kim & Karrila (1991). Therefore,
the major contribution to FHi comes from relatively close beads j. Additionally, μtd

ij is
antisymmetric in dij, which means that the terms in (2.15) corresponding to equally distant
left and right neighbours will cancel. Therefore, the total force FHi is close to zero for i
in the middle part of the fibre, and it increases when i is closer to the fibre ends. For
longer fibres, the force FHi is non-negligible only for i close to one of the fibre ends, and
it only weakly depends on the total fibre length because it comes from unbalanced local
interactions between the bead i and close beads j.

To evaluate f Hi numerically, we use the pairwise-additive GRPY approximation for
the mobility matrices. As argued above, in the stage when fibre is only slightly deflected
from the straight line, at leading order, f Hi is directed along êz. In figure 2(a) we plot
the dimensionless hydrodynamic force êz · f Hi as a function of the bead label i for three
different fibre lengths n. It is clear that the force is well localized close to the fibre ends.

The orientation of f Hi follows the rotational component of the shear flow. As the fibre
gets longer, the force is more localized. Regardless of the fibre length, the end beads
support the largest forces, an order of magnitude larger than the forces acting on the other
beads. The magnitude of the force acting on the first bead, f H1 · êz, initially changes
non-monotonically as a function of n (see figure 2b), until it reaches a limiting value
fH ≈ 0.16. Indeed, we observe a localized, length-independent tip force perpendicular
to the flow. We will use this observation later to construct a modified elastica model,
applicable for a fibre initially aligned with the flow. Now it is time to present the standard
Euler–Bernoulli beam, based on the local slender-body theory.

2.2. The elastica and local slender-body theory
To rationalize the results of numerical simulations from the bead-spring simulations the
inextensible elastica model (Duprat & Stone 2015; Lindner & Shelley 2015) is used with
the local slender-body theory (SBT) (Cox 1970; Keller & Rubinow 1976; Johnson 1980)
to account for the drag forces acting along the fibre. Within the local SBT, in contrast to
the bead models, the full long-ranged hydrodynamic interactions are not incorporated, nor
is the finite but small thickness of the filament. The last feature is especially important
for fibres that are aligned with the flow, as will be discussed in detail later. Similarly
as in the bead model, for the elastica we also neglect Brownian motion and buoyancy
forces. The fibre has a circular cross-section of radius a and length L = 2na where
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Fibres in shear flow

ε = a/L = 1/2n � 1. We denote as R(S, T) the dimensional position of a fibre segment
at the arc length S at time T . The equation of motion of each filament segment as a result
of the applied elastic force density F (S, T) per unit length, under the steady undisturbed
flow V ∞ can be expressed using the SBT (Cox 1970; Duprat & Stone 2015; Lindner &
Shelley 2015)

Ṙ − V ∞(R) = ln(ε−1)

4πμ0
(I + RSRS) · F (S, T), (2.16)

or alternatively
2πμ0

ln(ε−1)
(2I − RSRS) · (Ṙ − V ∞(R)) = F (S, T), (2.17)

where Ṙ = ∂R/∂T , RS = ∂R/∂S and the relative motion of the filament is obtained by
applying the mobility tensor, proportional to the anisotropic tensor (I + RSRS), to the
elastic force F (S, T) on the fibre. Here, we consider shear flow V ∞(R) = γ̇ Zêx, where
Z = êz · R. For the elastic fibre we use the notation illustrated in figure 1(b), i.e. ên denotes
a unit vector normal to the fibre in the shear plane and ês denotes a unit vector tangent to
the fibre. The inextensibility condition |RS| = 1 results in ês = RS and implies the Frenet
formulas ∂ ês/∂S = Kên, ∂ ên/∂S = −Kês, where K is the local curvature and we have
assumed that the fibre shape is planar.

In the elastica model the elastic forces acting on the unit segment of the fibre are (Audoly
& Pomeau 2000; Audoly 2015)

F (S, T) = (−EIKSên + Σ ês)S, (2.18)

where Σ(S, T) is the tension in the filament (satisfying inextensibility), E is the Young
modulus and I is the moment of inertia (I = πa4/4), as earlier. Alternatively, the force
density per unit length can be expressed as F (S, T) = −EIRSSSS + (T ês)S, see e.g.
Tornberg & Shelley (2004) and Lindner & Shelley (2015). It is easy to check that
Σ = T + EIK2.

With the use of the Frenet formulas it is convenient to write separately the equations of
motion in the normal and tangential directions, respectively,

4πμ0

ln(ε−1)
ên · (Ṙ − γ̇ êx(êz · R)) = −EIKSS + ΣK, (2.19a)

2πμ0

ln(ε−1)
ês · (Ṙ − γ̇ êx(êz · R)) =

(
Σ + EI

2
K2
)

S
. (2.19b)

We write the dimensionless form (lowercase symbols) of (2.19) by expressing length in
the units of 2a and time in the units γ̇ −1, as in § 2.1, to find

ηên · (ṙ − êx(êz · r)) = −κss + σκ, (2.20a)

η

2
ês · (ṙ − êx(êz · r)) =

(
σ + 1

2
κ2
)

s
, (2.20b)

where

η = 4πμ0(2a)4γ̇

EI ln(ε−1)
(2.21)

is a dimensionless compliance. Using the same normalization of EI as for the bead
model, EI/(πμ0γ̇ L0(2a)3), we can formally write η = 4(2a)/AL0 ln(ε−1). A physical
comparison between the elastica and bead models will be presented in § 4.3.
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The dimensionless compliance η is very similar to the elasto-viscous number η̄ =
8πμ0L4γ̇ /EI ln(ε−1) (Becker & Shelley 2001; Tornberg & Shelley 2004; Wandersman
et al. 2010; Nguyen & Fauci 2014; Liu et al. 2018; LaGrone et al. 2019; du Roure et al.
2019). The main difference is that η̄ has the fibre’s length L as the typical length scale,
while η uses the fibre’s radius.

3. A typical bead model simulation

The dimensionless stretching stiffness is fixed to a large value (ks = 2000 in the M1 model
and ks = 1000 in the M2 model) so that the fibre is close to inextensible. In M1, the
equilibrium distance between the bead centres corresponds to the touching beads, L0 = 2a
and the dimensionless Lennard-Jones potential coefficient εLJ = 5 allows only slight
overlaps. In M2, lubrication interactions between close particle surfaces prevent overlaps.
The equilibrium distance L0 between the bead centres has to be a bit larger than the bead
diameter 2a; here we choose L0/(2a) = 1.02. Sensitivity of the M2 model to the choice
of L0 has been discussed by Słowicka et al. (2015, 2020).

We focus on the fibre dynamics under the influence of the dimensionless bending
stiffness A and the number of beads n, indicating the fibre’s aspect ratio. The typical shape
of a fibre during the evolution is presented in figure 3(a).The simulations (based on the
M1 model) start from a stretched fibre aligned in the flow direction. First, we observe a
slow deflection of the fibre tips up to time approximately 30. Later, until the time 35, rapid
bending of the tip occurs. Next, a curling motion appears, with the maximum curvature
moving to the central part of the fibre, and a typical shape is shown for t = 47. After the
kinked parts of the fibre pass over each other (around time 62), the fibre rapidly straightens
to a position slightly tilted from the x direction at time 66, after which the fibre slowly
stretches and aligns in the x direction until the end beads reach the same z coordinate at
time 141.

To characterize the deformation of a fibre, an informative observable is the maximum
local curvature κ(t) taken over the fibre length at every time instant, where, similarly
to the elastica model, we use lowercase symbols for the dimensionless quantities (see
§ 2.1). At every time t we inscribe a circle of radius ri−1,i,i+1(t) on the bead centres
ri−1, ri, ri+1, defining the local curvature κi(t) = 1/ri−1,i,i+1(t). The maximum local
curvature is defined as

κ(t) = max
2≤i≤n−1

κi(t). (3.1)

A typical profile of κ(t) obtained from the simulations is shown in figure 3(b). We identify
two characteristic bending curvatures κb1, the value of the first plateau, and κb2, the
maximum value over time. To characterize the shape changes, we introduce characteristic
time scales: τb, the bending time, then τc, the curling time, and τs, the stretching time, as
indicated in figure 3.

Initially, for an almost straight fibre, κ(t) is close to 0. The rapid rise in curvature
(starting around t = 30) is connected with rapid bending of the ends until a characteristic
curvature κb1 is reached. We define the time scale τb as the time needed for a fibre to reach
half of its maximum curvature κb2 starting from a straight fibre.

After the rapid bending, a curling motion occurs. We observe the end beads passing
above each other (having the same x coordinate) at a flipping time τf = 47 (τf was called
the flipping time by Słowicka et al. (2013, 2015) and is used there to characterize the
tumbling dynamics in shear and Poiseuille flows), then the kinks visible in figure 3(a)
pass each other. We identify that the last event happens approximately at time τb2 = 61.4,
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t = 66

t = 30

t = 0(a)

(b)

t

κ
τs

τ
66300

200150100τm500

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

κb2/2

κb2κb1

τb τc

τb τf τb2

τ = 141

τm = 62.8

τb2 = 61.4

τf = 47

τb = 35

Figure 3. A typical evolution of the shape of a flexible fibre with aspect ratio n = 100 and a moderate bending
stiffness A = 100 (based on the model M1), starting from a straight fibre aligned with the flow. (a) Shapes of
the fibre. The circles represent the beads actual scale along the fibre. The black circles highlight the end and
middle beads during τf and τm. (b) Maximum local curvature κ(t). Time instances corresponding to the shapes
from (a) are marked with dashed vertical lines.

when the curvature increases to a maximum value κb2. Next, there is a rapid decrease of
the fibre curvature. In particular, at a turning time τm = 62.8 the middle beads have the
same x coordinate. Later, we observe a rapid relaxation to an almost straight fibre (here at
t = 66). We define time scale τc as the time from the moment τb when fibre reaches κb2/2
for the first time until it reaches κb2/2 again after passing the peak of curvature κb2.

After rapid relaxation, the fibre is close to straight but tilted from the flow direction.
The stretching time scale τs is evaluated from the time of passing κb2/2 for the second
time until the fibre ends are aligned with the flow direction again (here at time 141). Then,
the motion approximately repeats itself periodically although small changes in the times
identified in figure 3 are possible. Therefore, the sum τ = τb + τc + τs is the tumbling time
scale defined as the half-period of the motion and analysed by Słowicka et al. (2015, 2020),
with typically small variations between the first tumbling and the tumblings observed at
long times.

With the definitions of τb, τc and τs we seek to capture the time scales of the slow
changes between the (much shorter) steep increase and decrease in curvature, which we
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0
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t = 40
(a)
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1.0
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κ

κ

Figure 4. Differences in the evolution of long, very flexible fibres and short, very stiff fibres (based on
the model M1). (a) Shapes of a long, flexible fibre with n = 300, A = 10. (b) Curvature of the fibre from
(a) versus time. The vertical marks correspond to the shapes from panel (a). (c) Shapes of a short, stiff fibre with
n = 40, A = 1000. (d) Curvature of fibre from (c). The triangle symbols with vertical dashed lines correspond
to the times for which the corresponding shapes are shown in panel (c).

consider negligible in comparison to τb, τc, τs. Thus, the precise definitions of transitions
points between τb, τc and τs can be chosen in a different way and should not have a large
influence on the analysis.

We show the changes in the dynamics for different choices of n and A in figure 4. For a
small A and n large enough, the end of the fibre bends multiple times and never returns to
the straight state again (figure 4a,b), in which case τc and τs are not defined. Nevertheless
κ remains approximately constant throughout most of the process. A similar qualitative
picture was observed with different experimental (Forgacs & Mason 1959b; Harasim et al.
2013; Liu et al. 2018) and numerical (Lindström & Uesaka 2007; Nguyen & Fauci 2014;
Liu et al. 2018; LaGrone et al. 2019) methods. The other limit is when, for a small n, A is
increased to the point when the fibre bends globally along the whole length.

In the following, we will first analyse the dynamics for 0 ≤ t ≤ τb when the bending
process originates (§ 4), and next we will study the shape evolution in the time range of
large deformation, τb ≤ t ≤ τb + τc (§ 5).

4. Bending process of initially straight fibres

4.1. Bending time from numerical simulations
In addition to bending, when in a shear flow, a fibre undergoes rotation (it tumbles).
It is instructive to compare the bending time τb, the curling time τc and the stretching
time τs (see figure 3) with two indicators of a fibre’s rotational motion: the flipping time
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Figure 5. Characteristic time scales in the fibre motion. (a) Comparison of time scales of the fibre motion:
the bending time τb, the stretching time τs, the curling time τc, the flipping time τf and the turning time τm for
n = 60 and the model M1. Insets show the shapes for the times τf and τm. (b,c) Bending time τb as a function
of A for different n from the models M1 and M2, respectively. The solid lines show τb ∝ A1/3. In (b) the
best linear fit is (0.335 ± 0.002) log10 A + 0.845 ± 0.005. (d,e) Bending time τb normalized by n is an almost
universal function of A/n3, as confirmed by the numerical data from the models M1 and M2, respectively.

τf and the turning time τm (see figure 5(a) and the insets indicating shapes for τf and
τm). We find for A ∈ [1, 10 000) that τf < τm, which shows that the ends of the flexible
fibre pass above each other earlier than the middle of the fibre rotates. As A increases,
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both τm and τf acquire the interpretation of the half-tumbling time τ/2 or the quarter
period TJ/4 of the Jeffery orbit (Jeffery 1922), which is understood here as a periodic
motion of a certain ‘effective’ rigid elongated object in shear flow (Słowicka et al. 2015,
2020) with the same period TJ = 2τ . The period TJ of a Jeffery orbit is approximately
proportional to the length of a fibre consisting of n beads (Jeffery 1922; Kim & Karrila
1991; Dhont & Briels 2007; Graham 2018).

For fibres that are very flexible or long enough (e.g. A = 10 and n = 300), τc and τs are
not defined, because the fibre does not straighten out again (Słowicka et al. 2015), bending
multiple times if n is sufficiently large (figure 4a). In the limit of very stiff fibres, all the
time scales defined above, τb, τf , τm and τc + τs, converge to TJ/4, as shown in figure 5(a)
for large values of A. More details about the relation between different time scales can be
found in appendix B.

The dynamics of bending changes systematically as a function of A. In figures 5(b) and
5(c) we show τb (see figure 3) as a function of A for different n, using the models M1
and M2, respectively. Three regimes are visible. First, in the small A regime (A � 10),
the bending dynamics is dominated by large bending angles close to the excluded volume
limit. Second, for intermediate A, τb does not depend on n and it follows a single power
law τb ∝ A1/3. Third, in the regime of large A, the bending time systematically deviates
from the power law and saturates at a constant value, where larger n have larger limiting
τb, in agreement with τb → TJ/4.

Therefore, in figures 5(d) and 5(e) we replot the data from figures 5(b) and 5(c),
respectively, using the rescaled bending time, τb/n. To obtain the universal scaling, we
also need to rescale the bending stiffness as A/n3. Indeed, after such rescaling, we observe
an almost universal curve in the whole range of values of n and A.

4.2. A similarity solution at early times for the elastica
In figure 5(b–e) we show the dependence τb ∝ A1/3, which can be argued with the help
of the elastica model, as we will demonstrate in this and the next section. We observe
numerically that, in the power-law regime, the bending time does not depend on the fibre
length n, which suggests an analysis based on the model of a very long fibre, initially
aligned with the flow, with a tip positioned at S = 0. We assume small deflections from
the straight line R = Sêx + U(S, T)êz, which leads to K = USS. Further, we assume that
because of small deflections, ês = êx and ên = êz. Under these assumptions, we rewrite
the dimensional linearized equations (2.19)

U̇(S, T) = −EI ln(ε−1)

4πμ0
USSSS(S, T) + ln(ε−1)

4πμ0
FEδ(S), (4.1a)

U(S, T) = − ln(ε−1)

2πμ0
ΣS(S, T), (4.1b)

with the Dirac delta δ(S) in the additional term that introduces the hydrodynamic force
FE = O(1), perpendicular to the fibre axis, acting on the tip of the fibre at S = 0. This
force results from the hydrodynamic interactions of the fibre beads in response to the
shear flow (see §§ 4.3 and 2.1.4). Alternatively to the delta term, the constant tip force can
be formally written as a boundary condition, USSS(S=0, T)=FE/(EI). We will use this
approach to write (4.1) in the dimensionless form, corresponding to (2.20),

u̇ = −1
η

ussss, (4.2a)
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u = −2
η
σs. (4.2b)

In order to solve (4.2a) we apply boundary conditions

u (∞, t) = 0, uss (∞, t) = 0,
1
η

usss (0, t) = F , (4.3a–c)

where

F = ln(ε−1)

4
fE (4.4)

with fE = FE/(πμ0γ̇ (2a)2). We impose an initial condition

u (s, t = 0) = 0. (4.5)

We seek a similarity solution (Barenblatt 1996; Duprat & Stone 2015; Eggers & Fontelos
2015) and account for the forcing as

u (s, t) = η1/4F t3/4U (χ) , where χ = η1/4 s
t1/4 , (4.6)

which leads to the equation

4Uχχχχ + 3U − χUχ = 0 (4.7)

with the boundary conditions

U (∞) = 0, Uχχ (0) = 0, Uχχχ (0) = 1. (4.8a–c)

The solution can be expressed with the help of special (hypergeometric) functions (e.g.
use Mathematica) and the gamma Γ (·) function

U(χ) = χ3

6
−

2χ 1F3

(
−1

2
; 1

2
,

3
4
,

5
4
; χ4

256

)
√

π
+

√
2 1F3

(
−3

4
; 1

4
,

1
2
,

3
4
; χ4

256

)
Γ
(7

4

) . (4.9)

The function U(χ) is shown in figure 6. From U(χ) we calculate

u(s, t) = F
(

ηs3

6
−
(

4ηt
π

)1/2

s 1F3

(
−1

2
; 1

2
,

3
4
,

5
4
; s4η

256t

)

+ 16η1/4

3π
t3/4Γ

(
5
4

)
1F3

(
−3

4
; 1

4
,

1
2
,

3
4
; s4η

256t

))
. (4.10)

This result can be expanded around s = 0

u(s, t) = F
(

16η1/4t3/4

3π
Γ

(
5
4

)
− s

(
4ηt
π

)1/2

+ ηs3

6
+ . . .

)
(4.11)

and, in particular at s = 0, the end moves according to

u(0, t) = (ηt3)1/4F
16Γ

(
5
4

)
3π

. (4.12)

The complete solution of the similarity ansatz has the magnitude of the deflection u(0, t) ∝
(ηt3)1/4. The length scale on which the deflection occurs is s ∝ (t/η)1/4 ∝ (u(0, t)/η)1/3.
In time the ‘height’ of the deflection grows more rapidly than its ‘width’, which makes
the tip more and more steep. The bending stiffness has an opposite effect and makes the
deformation less steep with increasing A ∝ η−1.
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Figure 6. Similarity solution from the elastica model (4.7)–(4.8a–c), valid at early times, for a fibre initially
aligned with the flow.

4.3. Comparing the numerical simulations with the similarity solution
In this section, we present results from the numerical simulations based on the model M1
and compare them with the predictions from the elastica model. According to the elastica
similarity solution, the fibres have features of the shape that follow the scaling laws with t
and η presented above. Therefore, we analyse the z coordinate of the relative position of the
first bead at time t with respect to its initial position, z1(t) = êz · (R1(t) − R1(0)), which is
calculated from the bead-spring simulations M1 (figure 7a).We show the same data with
the rescaled time t/A1/3 in figure 7(b). This scaling is suggested by the elastica model, if we
identify the height z1(t) of the fibre end with the deflection of the elastica tip u(0, t), given
by (4.12), and we remember that η ∝ 1/A. We also fit a straight line to the numerical values
of log10 z1(t) as a function of log10(t/A1/3), in the linear region log10(t/A1/3) < −1, where
deformations are still small and no deviations from the power law are observed. While
fitting, we used data from all the simulations where n ≥ 60 and A ≥ 50. The calculated
slope 0.787 is very close to 3/4 theoretically predicted from the dynamics of the elastica.
In order to further compare simulations with the theoretical results we will use the best fit
of the tip height in the form z1(t) = C(t/A1/3)3/4, which is suggested by the elastica, that
results with C ≈ 10−0.81.

In figure 7(c) we present the numerical shapes of the fibres with different A and n
taken at different times but still within the range of the similarity solution, with t/A1/3 �
100.6 ≈ 4. The ends of these shapes can be to a certain extend superimposed onto each
other by scaling the coordinates as x̃ = x/(tA)1/4 and z̃ = z/(t3/A)1/4, respectively, in
accord with predictions from the elastica, and translating by a shift x0, which is different
for each fibre, as shown in figure 7(d). The rescaled shapes are plotted together with two
plots of the similarity solution as a function akU(x̃bk), k = I, II, which correspond to our
two different approaches to compare the hydrodynamic forces, fH1 and fE, exerted on the
fibre tip in the bead (§ 2.1) and elastica (§ 4.2) models, respectively. (Actually, we will be
comparing the limiting value fH for n → ∞ rather than fH1.)

In both approaches, we assume the identical tip heights z1(t) and u(0, t) in the bead and
elastica models, respectively. In the first approach (I), both forces are assumed to be the
same, fH = fE. Therefore, F is related to fH by (4.4). On the other hand, η ≈ 4/(A ln ε−1),
as shown below (2.21), and (4.12) links F to the height u(0, t) = z1(t) of the fibre. Using
the numerical fit of z1(t), shown in figure 7(b), we find F , and from this result, using
(4.4) we determine the magnitude fE of the dimensionless tip force in the elastica model.
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(a)

(c)

(d )
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Figure 7. Scalings in the numerical simulations for small deflections. (a) Height z1(t) of the fibre tip above the
horizontal line passing through the centre of the fibre (from the M1 model). Fibres have n = 100, except the
fibre denoted with ∗ that has n = 140. (b) Height z1(t) from panel (a) as a function of the rescaled time t/A1/3

(in log–log scale). The black solid line comes from a fit to all M1 data with n ≥ 60, A ≥ 50 for times t/A1/3 <

0.1. (c) Shapes of fibres from the bead model M1 for n = 140 and different A at arbitrarily chosen times at
the end of the regime of the similarity solution. (d) Shape of fibres from panel (c), scaled according to the
similarity solution z1(t) ≈ u(s, t), with u given by (4.6), and translated to approximately overlay the left ends.
The numerically obtained shapes are superimposed onto theoretically calculated shapes akU(x̃bk), k = I, II,
with U given by (4.9) and the coefficients ak, bk given in terms of F and η which result from approaches I and
II to compare between the bead model and the elastica, given in (4.13)–(4.15) and (4.16), (4.17), respectively.

The approach (I) is given by the following equations:

F = 10−0.81 3π(ln ε−1)1/4

16Γ
(

5
4

)√
2

≈ 0.071(ln ε−1)1/4, (4.13)

fE = 0.284(ln ε−1)−3/4 = fH ≈ 0.16, (4.14)

η ≈ 4/(A ln ε−1). (4.15)

From (4.14) we find ε−1 ≈ 9, which is rather far from the typical aspect ratios used in the
numerical simulations. We use the above values to compare shape of the fibre made of
beads with the elastica. Starting from (4.6) we find that aI = 0.1 and bI = 1.16 and plot
the corresponding elastica shape (solid line) in figure 7(d).
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x
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60300–30–60

30

0

–30

Figure 8. A typical evolution of the shapes of a flexible fibre in an early stage of bending. Here, n = 140 and
A = 1000. The consecutive time instants shown are t = 50, 66, 69, 70, 70.5, with the last one approximately
equal to τb.

In the second approach (II), we assume that velocities of the fibre segments are the same
in the bead and elastica models. In this way, mobilities times forces are equal to each other.
The mobility for the elastica comes from the SBT, while in the equations of motion for a
fibre made of beads, there appear the single-sphere Stokes mobility. Therefore in approach
(II), we match the elastica and bead quantities as follows:

F ≡ ln(ε−1)

4
fE = 1

3
fH, (4.16)

η = 3
A

. (4.17)

Then, using the numerical results, from (4.12) we obtain

fH = 10−0.81 9π

16Γ
(

5
4

)
31/4

≈ 0.23, (4.18)

which is not very far from the numerical value fH = 0.16 obtained for large n. In this
approach the parameter ε−1 is not used at all. With the use of this set of values and (4.6)
we find that aII = 0.1 and bII = 1.32. We plot the corresponding elastica shape (dotted
line) in figure 7(d).

4.4. At early times beyond small deformations
In this section, we will focus on an early phase of bending for times t � τb. We will
analyse the simulations with the bead model M1 and compare them with the scaling
laws following from the elastica model. In the early phase, a flexible fibre aligned with
shear flow slowly starts to bend its ends while the middle part of the fibre remains
straight. The characteristic length scale of the deformed fibre segments at both ends
remains approximately constant in time until a significant, rapid bending is developed at
the bending time τb, associated with a fast increase of both the local curvature κ (figure 3b)
and the tip deflection z1(t) along z (figure 7a,b). A corresponding sequence of consecutive
fibre shapes, found numerically with the model M1, is shown in figure 8. The significant
bending from the middle to the last shape occurs on a very short time scale.

In figure 3(b), the bending time τb was defined as the time when the maximal local
fibre curvature reaches one half of its largest value, κ(τb) = κb/2. We now add a physical
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interpretation: at a time close to τb, the deflection z1(t) of the fibre tip approaches the first
local maximum, visible in figure 7(a,b). The corresponding fibre shape at t = τb is shown
in figure 8 as the last one.

The linear regime of small deformations is limited to short times. For example, in
figure 8, all shown fibres are already beyond this regime. However, to understand the
dynamics in the early phase, it is worthwhile to begin the analysis from the linear regime
where the universal scaling of shapes follows directly from the self-similar solution,
specified by (4.6) and (4.9). One of characteristic features of the self-similar solution is
that the same deflection z1(t) = u(0, t) of the fibre tip is reached at the same rescaled time
tA−1/3 ∝ tη1/3 (and with the same rescaled length sA−1/3 along the fibre). The numerical
results shown in figure 7(b) illustrate that z1(t) is determined by tA−1/3 not only in the
range of small deformations, but also beyond it. The tip deflection z1(t) remains a universal
function of tA−1/3 until its argument reaches value slightly smaller than, but very close to
tmaxA−1/3 ≈ 7.2, with tmax defined as the time when z1 has a local maximum umax. In the
log–log scale, as shown in figure 7(b), the universal curve is close to a straight line for
tA−1/3 � 4 (in the linear regime). For tA−1/3 � 4, a significant deviation from the straight
line is observed caused by nonlinear effects.

The deviations from the linear regime in the numerical simulations can be interpreted by
the elastica evolution in the range where the nonlinear terms in (2.20) become important,
i.e.

κss ∼ σκ. (4.19)

Next, we observe that the change in the elastica dynamics occurs away from the small
deflection state so we can use the relation (4.2b), which implies the scaling,

σ ∼ ηus (4.20)

with the results from the similarity solution to show that

O(1) = O(σ ss) = O(ηus3) ≈ η1/2t3/2 ⇒ O(1) = ηt3. (4.21)

As η ∝ A−1, these balances suggest that the time scale τb, when the nonlinear terms
become important, follows the power law τb ∝ A1/3, which is in a good agreement with
results presented in figure 5(b–e).

For times close to τb and tmax, the tip deflection z1(t) leaves the universal curve, as
shown in figure 7(a,b), and the maximum deflection umax depends on A. We observe that
in the range of A, in which the evolution follows a power law, umax ∝ A0.33, as determined
numerically from the bead model M1 and shown in figure 9(a). This scaling might reflect a
memory of the initial phase of the fibre movement as analysed using the elastica. A linearly
deflected fibre changes its shape over a length scale s ∝ A1/4t1/4 and time scale t ∝ A1/3

(4.6) thus, we find that s ∝ A1/3 at time t. However, as illustrated in figure 8, for early
times t � τb, the typical length scale of bending remains almost constant in time, what
allows us to expect that umax ∝ A1/3. The numerical results suggest that during the rapid
bending the scaling in the x direction becomes comparable to the scaling in the z direction.
To demonstrate this feature, we collect several fibre shapes for different values of n and A,
at times tmax of the maximum deflection (figure 9b), and we replot them in figure 9(c) by
rescaling both axes by A1/3, which allows for the approximate overlapping of the shapes
after translating them in the x direction.

The scalings with A1/3, typical for the early phase of the bending process, do not depend
on n. For t � τb, bending of the fibre ends is a local process. However, the typical bending
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Figure 9. Maximum deflection umax of the fibre tip, defined as z1(tmax) at the time tmax of the first maximum,
evaluated numerically from the bead modelM1. (a) umax as a function of A for different n, with the approximate
scaling ∝ A1/3. (b) Shapes of fibres at tmax for different A and n. (c) Rescaled shapes of fibres from (b),
translated to overlay the bending left ends.

length scale increases with A, and therefore for a larger stiffness, the scalings are satisfied
by a sufficiently long fibre only.

5. Highly bent fibre

5.1. Bead model simulations
We now move on to discuss the dynamics for times τb � t � τb + τc, when the fibre is
significantly bent, with the maximum local bending curvature κb2/2 ≤ κ(t) ≤ κb2, where
κb2 is the largest maximum local curvature during this time period (see figure 3). In this
range, the main feature of the dynamics is its maximum local curvature κ(t). Therefore, we
first discuss if (and how) the characteristic features of the dynamics depend on a specific
choice of the time instant when the curvature is determined.

In figure 3(b) we have illustrated that there exists a typical plateau of the curvature, κb1,
and the largest value κb2. Comparison with figures 4(b) and 4(d) indicates that both values
vary systematically with A. We analyse this dependence in figure 10(a). On a log–log
plot, κb1 is systematically below κb2, and the inset (for n = 140) illustrates that the ratio
κb1/κb2 slowly decays with increasing A, but this effect is not large. The numerical data
show that, over a few decades of A, the ratio κb1/κb2 changes only by 30 %, and it tends to
κb1/κb2 ∼ 0.7 for large A. This observation suggests that κb2 depends on A in a similar way
as κb1. The fibre is first in the state of a typical bend and tightens to a maximum curvature
for a short time afterwards. However, the plateau in the κ(t) that allows determination of
κb1, for a given n, occurs only for a finite range of A, while κb2 is well defined for any
value of A. For example, in case of n = 40, in figure 10(a) there are no data points above
A = 100 indicating κb1 while for n = 140, κb1 can be observed up to A = 2000. Therefore,
in the following we will focus on the analysis of κb2.

Depending on the values of A, three regimes of fibre bending can be identified, as
shown in figure 10(b,c) for the bead models M1 and M2, respectively. The schematics
in figure 10(b) show three typical fibre shapes with n = 20 for each of the regimes.
First, in the regime of a very flexible fibre (A � 10), the maximum curvature is close
to the excluded volume (EV) of the beads, with log10 κb2 � log10(

√
3) ≈ 0.24, which

is independent of n. Second, there is a regime A � 10, where κb2 as a function of A
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Figure 10. Fibre bending curvature as a function of A, evaluated from the bead models. (a) Difference between
typical κb1 and maximum κb2 curvatures for two different lengths of fibre (n = 40 and n = 140), based on the
model M1. The inset shows the ratio of bending curvatures κb1/κb2 as a function of n. Panels (b) and (c) show
the scaling of the maximum curvature κb2 as a function of A, for different n, determined from the models M1

and M2, respectively. The solid lines correspond to κb2 ∝ A−1/4, the dashed inclined lines show κb2 ∝ A−1/3

and the horizontal dashed lines show the curvature based on EV. The schematics in (b) show the shape of a
fibre with n = 20 for A = 1, 10 and 100.

continues with a power-law dependence until it deviates from the slope, which happens for
different A depending on n. The larger n, the larger range of A that exhibit the power-law
dependence. Inside this regime, for a given A, all fibres that are long enough have the same
κb2, which is independent of n. We interpret this response as local bending. Third, there is
a large A regime, which starts after κb2 departs from the power law. This corresponds to
κ−1

b2 comparable to or larger than the fibre length, which we interpret as global bending.
This classification of κb2 is valid even for very long fibres (having multiple loops), and also
for very stiff ones (with no pronounced plateau of the fibre curvature κ(t)). For each n, the
regimes of A where the power laws are observed for κb2 agree with the corresponding
regimes identified for τb (compare the ranges of A in figure 10(b,c) with the ranges in
figure 5(b,c), respectively).

Comparison of figures 10(b) and 10(c) indicates that, if the bending stiffness ratio A
is not very small (A � 10) and not too large (with the upper bound dependent on n),
the power-law scalings of κb2 predicted by the M1 and M2 models are in a reasonable
agreement with each other, and the curves only weakly depend on n. However, for
10 � A � 100, the maximum curvature κb2 in the M2 model decays more rapidly with A
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than in M1, with approximately κb2 ∝ A−1/3 rather than κb2 ∝ A−1/4, respectively (for the
M1 model, κb2 ∝ A−0.253±0.003 as determined numerically). For A � 10, the maximum
curvature κb2 determined from the M2 model saturates at the EV value while in model
M1 this effect is seen for more flexible fibres with A � 1. Although the treatment of
hydrodynamic interactions is more precise within the bead model M2, it seems that the
main reason for some differences between the maximum bending curvature κb2 obtained
by the M1 and M2 models is the use of different expressions for the bending potential
energy, as discussed in detail in appendix B.

5.2. Comparing with the elastica model
We are going to show now that the scaling of the fibre maximum curvature κb ∝ A−1/4,
independent of n and characteristic of the local bending, can be argued with the elastica
model (2.20). We propose that in the local bending process there is only one length scale
κ−1

b representative of the deformed fibre. This is consistent with the models of Harasim
et al. (2013), LaGrone et al. (2019) and Liu et al. (2018) and with our findings that κ(t) is
in the curling motion close to a typical constant value κb1.

Next, from the linearity of shear flow, we argue that the magnitude of the flow velocity
incident on the fibre and the fibre velocity scale linearly with the length scale (êx(êz · r)−ṙ)
∝ κ−1

b . Comparing the magnitudes of terms in (2.20b), we find that the dimensionless
tension scales as

σ ∝ ηκ−2
b + κ2

b . (5.1)

This dependence, together with (2.20a), gives

ηκ−1
b ∝ κ3

b +
(
ηκ−2

b + κ2
b

)
κb, (5.2)

resulting in κb ∝ η1/4 ∝ A−1/4. It is also true that σ ∝ A−1/2 and σs ∝ A−3/4. Note that
these arguments apply to the maximum curvature in the whole range of the curling motion
with a large shape deformation, in particular for κb = κb1 and κb = κb2.

The scalings obtained from the elastica model can be compared with the results from
the bead-spring simulations with the model M1. The force F i acting on each bead i as the
result of the elastic constitutive laws can be decomposed into the force components normal
N i and tangential T i to the fibre centreline. In figure 11(a) we show shapes of locally bent
fibres with n = 100 for three different values of A. The colour-coded representations of N i
and T i are included in the following way. Each bead is depicted by a hemisphere, which
has an orientation that indicates the direction of T i (inset), while the colour coding shows
the ratio of the magnitudes of the forces normal and tangential to the fibre, |N i|/|T i|.
In order to compare the simulation data quantitatively with the scalings deduced above
from the elastica, it is sufficient to choose any time from the curling motion of the
fibre. As we compare between different A, we introduce the transformation of the bead
numbering i′ = (i − i0)A−1/4 (i is a discrete analogue of the arc length s), where a shift i0
is chosen (for each fibre separately) to overlap the extrema. In the figure 11(b,c) we show
the profile of local curvature κi over half of the fibre (i = 1 . . . 50) for the shapes presented
in figure 11(a). In figure 11(b) the raw data are plotted and in figure 11(c) κi is multiplied by
A1/4 to show the scaling suggested by the elastica model. From the bead-spring simulations
we have direct access to T i · ês acting at the centre of bead i, which is the analogue of the
derivative of the tension σs(s) for the elastica. The value of T i · ês is shown in figure 11(d),

914 A31-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1048


Fibres in shear flow

T
i ·

 ê
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Figure 11. Instantaneous distribution of forces and curvatures on individual beads (fibre statics) for three
locally bent fibres with n = 100 and A = 100, 500, 2000. (a) Shapes of the fibres. The colour coding shows
the ratio of the normal |N i| to the tangential |T i| force components acting on each bead i, represented as a
hemisphere. The orientation of hemispheres shows the direction of T i. (b) Curvature κi on bead i along the
fibre. (c) Rescaled curvature as a function of rescaled position i′ = (i − i0)A−1/4 along the fibre. (d) Tangential
forces T i · ês acting on beads i – the discrete analogue of the tension’s derivative σs for the elastica. (e) Rescaled
T i · ês as a function of i′.

and in figure 11(e) we demonstrate that the tangential forces scale as A−3/4, which has been
also suggested by the elastica model.

5.3. Curling velocity and curling time
In § 3 we introduced the curling motion and the associated curling time τc (see figure 3).
During the curling motion, the first bead travels from left to right approximately over
the distance L = 2na with respect to the fibre’s centre. Snapshots illustrating the shape
evolution are shown using the schematics at the top of figure 12(a) for the fibre with
n = 100 and A = 100. We define the curling velocity vx(t) as the x-component of the
velocity of the first bead. At the bottom of figure 12(a), we plot vx versus time, for the
fibres with A = 100 and different values of n. Initially, vx is close to zero. Then, it rises
significantly and we observe the first peak, the plateau and the second peak. Numerical
simulations show that for a given A, the profile of vx(t) in the initial phase of the motion
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Figure 12. The curling motion. Results from the bead model M1. (a) The x component vx of the first bead
velocity as a function of time for A = 100 and different aspect ratios n. The enlarged black circles represent
the fibre of aspect ratio n = 100 (shown in figure 3). The schematics above the plot show the shapes for
n = 100 at times marked with vertical dashed lines; the first bead is marked with a dot. (b) Comparison of
vx(t) (normalized with the maximum observed value vxm) with κ(t) (normalized with the maximum curvature
κb2), for A = 100 and n = 100. (c) Scaling of the curling time τc as a function of A/n3.5, found empirically.

is almost the same for different n. In figure 12(a), the plots of vx(t) for different n are
almost superimposed for a long time. The changes between vx(t) with different n occur
when the fibre stops to undergo curling motion due to its limited length. The peaks of
vx are observed at the times of the steepest changes in κ(t), as illustrated in figure 12(b).
The first peak takes place at the time close to the bending time τb, and the second one
approximately after the curling time τc (compare with figure 3). Therefore, our definitions
of τb and τc seem to well separate three different phases of the fibre dynamics.

We have found empirically that τc as a function of A and n can be collapsed on a single
universal line when plotted versus A/n3.5, as shown in figure 12(c). For small values of
A/n3.5, the curling time τc tends to a power law with the exponent −1/3, as determined
empirically. Thus we observe that, in the limit of long fibres, we can approximate the
curling time as τc ∝ A−1/3n1.17. That is, τc is almost linear in n. The deviations might be
related to a larger average resistance during the curling motion of longer fibres. Indeed,
figure 12(a) illustrates that, for longer fibres, the contribution to the average curling
velocity from the initial and final peaks is smaller, and therefore the average curling
velocity is smaller, which leads to the curling time increasing with n a little faster than
linearly.

The dynamics analogous to the curling motion was investigated in the literature
experimentally, numerically and by the elastica model, with and without the Brownian
motion (Forgacs & Mason 1959b; du Roure et al. 2019). We have shown here that on the
onset of curling motion the characteristic length scale (∝A1/3) is different from the one
observed later in the highly bent state (∝A1/4), which leads to the analogous scalings for
vx at earlier and later times, respectively. Therefore, we emphasize the importance of the
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time evolution during the curling motion but at the same time we benefit from the previous
studies of Harasim et al. (2013) and Liu et al. (2018) who reported the linear dependence
between the local radius of curvature of the bent tip and its track velocity (analogous to
our curling velocity), both approximately constant in time.

We have found that, in the regime of the local bending, during the curling motion, the
curling velocity and the local curvature are mostly determined by the bending stiffness A
and practically do not depend on the fibre aspect ratio n, This finding agrees well with the
results of another numerical model of LaGrone et al. (2019) where only minute changes
in the local radius of curvature of the fibre tip and its snaking (analogous to our curling)
velocity have been observed in a wide range of relatively large fibre aspect ratios.

6. Universal scaling and phase diagram

6.1. Shapes of fibres with different n and A
The transition from the locally to globally bent fibres, observed for the increasing values
of the bending stiffness A and illustrated in figure 10(b,c), motivated us to search for κb2n
as a universal function of A/nγ , with a certain value of the exponent γ . We use here
κb2n because in the global bending mode we expect bending along the whole fibre length.
Indeed, in figure 13(a,b), plotted in log–log scale, we find the universal scaling of κb2n,
based on the numerical simulations M2 (in a) and M1 (in b), respectively. We added to
figure 13(a) also the results of the M2 simulations reported by Słowicka et al. (2015),
with the parameters n = 10, L0/(2a) = 1.01 and ks = 2000. From the numerical data for
the model M2 we obtain the exponent γ = 3.25 and we find the slopes −0.3 and −5
of the two straight lines for the local and global bending regimes, for log10(A/n3.25) �
−2.9 and log10(A/n3.25) � −2.3, respectively. The fits agree very well with the results
of the M2 simulations, and reasonably well with the results of the M1 simulations, as
shown in figures 13(a) and 13(b), respectively. The deviations from the universal curve
are observed only owing to the EV effects seen for very flexible fibres, with the EV value
of the maximum local curvature κb2 = log10

√
3 ≈ 0.24. The deviations correspond to

the first (small A) regime of the fibre bending described in § 5.1 and shown in figure 10.
For the local bending, the relation log10(κb2n) ∼ −0.3 log10(A/n3.25) + 0.48, fitted to the
M2 numerical data, gives the approximate scaling of the maximum curvature κb2 ∼ A−0.3

independent of n, in agreement with the previous discussion of the local character of the
dynamics of very elastic fibres. The exponent −0.3 is close but not identical to the −1/4
fitted to the M1 numerical data in figure 10(b). In the global bending regime, we find that
κb2n ∼ (A/n3.25)−5.

The fitting of the exponent γ in the relation A/nγ is based on the choice of 2an to
represent the fibre length L, and it is sensitive to a choice of L. For example, γ ≈ 3 if the
fibre length L = (n − 1)L0 is chosen. Such a shorter fibre length was proposed by Farutin
et al. (2016) as the result of comparing shapes of flexible fibres and deformable vesicles
in Poiseuille flow and partially accounts for the rigidity of the beads at the fibre ends. On
the other hand, in shear flow, a matching of the tumbling period with the half-period of
the Jeffery orbit could be used to determine L. In the bead model M2 for stiffer fibres,
the effective aspect ratio L defined in this way is greater than 2an, and it could lead to a
γ closer to 4, which means also closer to the scaling κb2 ∼ A−1/4 of the local bending
proposed in figure 10(b).

We expect that also the shape of the whole fibre is a universal function of A/n3.25.
Indeed, as illustrated in figure 13, for the models M2 (left) and M1 (right), the fibre
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Figure 13. Universal similarity scaling of fibre shapes, evaluated with the model M2, (a,c,e), and with
the model M1, (b,d, f ). The maximum curvature κb2n, scaled by the inverse of the fibre length, can be
approximated as a universal function of A/n3.25, as shown in (a,b) in the log–log scale. The regimes of
local and global bending correspond to a more flat and a more steep straight line, respectively. As shown
in figure 13(c–f ), in both regimes the shapes of fibres are almost the same for approximately the same
values of A/n3.25 (as indicated). In (c) (n, A) = (10, 8.4), (20, 79.4), (40, 720.6), (60, 2922.5), in (d) (n, A) =
(20, 100), (40, 1000), in (e) (n, A) = (40, 8.8), (60, 29.4), (80, 79.4) and in ( f ) (n, A) = (60, 100), (100, 500).

shapes depend on n and A approximately through the ratio A/n3.25. We show it separately
for the global bending in figure 13(c,d) and for the local bending in figure 13(e, f ). The
corresponding values of A/n3.25 are explicitly indicated below each fibre shape, with
approximately the same values for all the similar shapes.
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Figure 14. Diagram of three dynamical modes in the phase space of the parameters n and A, for the bead
models M1 (filled symbols) and M2 (open symbols). The dynamical modes of the fibres initially aligned with
the flow are the following: the fibres that are coiled and do not straighten out (mode 1, triangles); the fibres
that straighten out along the flow while tumbling periodically and bend locally (mode 2, rhombus) or globally
(mode 3, circles). A sharp transition between the fibres that straighten out while tumbling and the fibres that
stay coiled is marked by a dashed line and the stars, taken from Słowicka et al. (2015), for the M2 model and
by a solid line for the M1 model. In contrast, the transition between fibres bent locally and globally is gradual
(grey area). The sizes of symbols for the M2 model discriminate between data from this work with l0 = 1.02
and ks = 1000 (large open symbols) and the data of Słowicka et al. (2015) with l0 = 1.01 and ks = 2000 (small
open symbols). The symbols + indicate such points that τb2 = τf .

Comparison of the power-law scaling of the fibre shapes with an attempt to find
another similarity solution, based on a logarithmic dependence on n and a generalized
elasto-viscous number, standard in the SBT and elastica approaches, is presented in
appendix C. We show there that, although such a possibility cannot be excluded, it seems
to be quite complicated to construct. Using simple arguments, we are able to find such a
scaling function only for the local bending mode.

6.2. Phase diagram of the dynamical modes
The analysis of the fibre dynamics can be summarized on a phase diagram in the space
of the fibre aspect ratio n and the bending stiffness A. In figure 14 we show the numerical
results, with essentially the same features for the bead models M1 and M2. The elastic
fibre initially aligned with the shear flow has three characteristic modes of motion,
depending on values of n and A:

(Mode 1) The fibre does not straighten out again. The curvature κ does not return to zero
after the first bending event.

(Mode 2) The fibre bends locally, curls and then stretches; correspondingly curvature
grows, reaches a plateau and then returns to zero in a periodic way.

(Mode 3) The fibre periodically bends globally along the whole length. Curvature
maxima are observed but the plateau vanishes.
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At early times, the fibre is bent only at the ends. During the curling motion, as shown in
figures 3 and 12 and earlier by Harasim et al. (2013), Liu et al. (2018) and LaGrone et al.
(2019), the range of the most curved segments shifts towards the central part of the fibre.
The fibre ends become straight and almost aligned with the flow, and the length of straight
ends increases with time. Therefore, in general, we might expect that the end of such a
long fibre will behave in a similar way as a fibre of a comparable length aligned with the
flow. Therefore, if the curling continues long enough, with τc � τb, the fibre may bend
its end again, even several times, and it will not straighten out. Indeed, such a scenario
sometimes happens for very long or very flexible fibres, as shown in figure 4, and earlier
by Nguyen & Fauci (2014) and LaGrone et al. (2019). Using our scalings, τb ∝ A1/3 and
τc ∝ A−1/3n1.17, a dynamical transition could be expected around A ∝ n1.75. However, the
physical origin of the transition between the coiled and straightening out modes is more
complicated. Shorter fibres cannot bend several times, but still they do not straighten out
along the flow when their bending stiffness is small enough.

The transition between the coiled and locally bent modes for shorter fibres with n ≤ 40
and a wide range of values of the bending stiffness A has been analysed by Słowicka
et al. (2015). The dynamics of flexible fibres was evaluated over a long time, starting from
the initial configuration aligned with the flow. A characteristic value ACS(n) was found
for the transition between the fibres that remain coiled and the fibres that straighten out
along the flow while tumbling, with ACS(n) ∝ n3/2. Moreover, the dynamics was shown
to be very sensitive to a small change of A close to ACS. For A slightly below the critical
value, fibres often straightened out a smaller or larger number of times before changing
to the coiled mode. Słowicka et al. (2015) sorted the data for the modes 1 and 2 based
on the long-time behaviour. We present in figure 14 (small open symbols) some of the
results obtained by Słowicka et al. (2015). The inset illustrates high precision of the critical
values ACS determined there and marked by stars in figure 14. The results of the model M2
applied in this work (large open symbols) also support the ACS(n) ∝ n3/2 scaling of the
transition between the coiled and straightening out modes. The numerical simulations in
the M1 model also agree well with the above scaling, with a different factor which could
be interpreted as the result of different bending potentials in both models.

In contrast to the transition between the modes 1 and 2, the transition between the
modes 2 and 3 is not sharp. It takes place in a range of the phase space (n, A) marked
in grey in figure 14. This stripe corresponds to −2.3 � log10(A/n3.25) � −2.9, i.e. the
range between the local and global bending found numerically with the bead model M2
and shown in figure 13(a), in agreement with the findings of the model M1 presented in
figure 13(b). The different symbols are the locally and globally bent fibres that indicate
just an approximation, based on a comparison of the time instant of the maximum κb to
the flipping time τf , as described in appendix D. In the regime of the local bending, for
a smaller A or larger n, the bending time scales as τb ∝ A1/3 and the maximum local
curvature scales as κb ∝ A−1/4, independently of n. In the regime of the global bending,
τb ∝ n independently of A, and κbn ∝ (A/n3.25)−5.

The transition between the local and global bending could be interpreted as a
competition between bending and rotation. If the fibre bends before it manages to rotate in
shear flow, it belongs to the local bending mode while if it rotates before it bends, it belongs
to the global bending mode. Approximating the rotation time as TJ/4 ∝ n, and equating
τb ≈ TJ/4, we obtain A ∝ n3, which is an approximation of the transition between the
local and global bending shown in figure 14. Another way of looking at the transition
between the local and global bending is to compare the typical length scales. The length
of the bent fibre end at τb scales as A1/3. In the local bending mode, it needs to be smaller
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than half of the fibre length, proportional to n, which again estimates the transition roughly
as A ∝ n3.

7. Conclusions

In this paper, we analyse the evolution of an elastic thin fibre that is initially straight
and aligned with an ambient shear flow. We consider a wide range of the fibre aspect
ratios n and many different values of the bending stiffness ratio A (i.e. the ratio of
the bending forces to the hydrodynamic forces caused by the flow rate γ̇ ). We use
two theoretical descriptions of the fibre: the bead-spring model with elastic potential
energy and hydrodynamic interactions, and also a generalized elastica model. These two
approaches complement each other and allow to rationalize analytically many of the
observed numerical results for the bead-spring model.

To quantify evolution of the fibre shapes, we introduce and evaluate numerically three
main characteristic time-dependent quantities: the deflection of the fibre tip u(0, t) in the
direction perpendicular to the flow, with the first maximum at umax, the maximum local
curvature κ(t), with the largest value κ2b = maxt κ(t), and the curling velocity vx(t), with
the maximum value vxm. Their behaviour allows us to identify three characteristic time
scales of the dynamics: the bending time τb, the curling time τc and the tumbling time τ

equal to the half-period TJ/2 of the effective Jeffery rotation.
Accordingly to the time scales, we identify three characteristic stages of the time

evolution of flexible fibres initially aligned with the flow: bending of the fibre tips for
0 ≤ t ≤ τb, curling of the deformation towards the centre of the fibre for τb ≤ t ≤ τb + τc
and stretching of the fibre for τb + τc ≤ t ≤ TJ/2 with an effective Jeffery period TJ . In
the bending stage, we find the scaling u(0, t) ∝ (t3/A)1/4, with the maximum umax ∝ A1/3

at τb ∝ A1/3, all independent of n, in agreement with the local character of the early stage
of the fibre dynamics for all the modes. In the curling stage, the maximum curvature κ(t)
and the curling velocity vx(t) are approximately independent of n (except for short final
time intervals), and for a sufficiently large n change in time only a little (except for short
initial and final time intervals), as argued by Harasim et al. (2013) and Liu et al. (2018).

We demonstrate that τb/n, κb2n and τc depend on n and A approximately through certain
universal functions A/nα . Based on the numerical simulations, we determine the exponents
α which are equal to 3, 3.25 and 3.5, respectively (close to but different than 4 as in case of
the elasto-viscous number). In particular, the shapes of fibres (and the maximum ‘global’
curvature κb2n) are shown to depend on n and A approximately through A/n3.25. A referee
suggested trying another similarity function, dependent on log n, for the same reason that
SBT depends on the logarithm of the aspect ratio. An (unsuccessful) attempt to replace a
power law with the exponent 3.25 by a logarithmic dependence is described in appendix C.
In figure 16 we present an analogue of figure 13, but with an elasto-viscous number
log10[A(ln n + ln 2 + 1/2)/n4] on the horizontal axis. The constants in the numerator
follow from (8.8) for the SBT transverse motion, derived by Batchelor (1970a). Different
constants in the logarithmic expressions are also used e.g. by Becker & Shelley (2001)
and Young & Shelley (2007). We find it interesting that the plots of κb2n versus the
elasto-viscous number in figure 16 seem to indicate that the fibre shape (at the time of
its maximum curvature) might be a universal function of the elasto-viscous number in
the local bending mode (left part of the plot) but not in the global bending mode (right
part of the plot). The difficulty of matching a logarithmic expression might be related to
relatively small values of n in our simulations. A scaling which involves ln n might require
very large aspect ratios n. It seems logical that comparison of κb2n for fibres with different
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thicknesses and the same length may depend not only on the elasto-viscous number, the
parameter adequate for asymptotically large values of n. Moreover, it is known from SBT
that the constants added to ln n are sensitive to fibre shape. It is also worth remembering
that for moderate values of n a constant added to the logarithm has a significant influence.
This constant for a flexible, deformed fibre depends on both n and A, and it is difficult
to evaluate it theoretically. However, it is clear that its value is different from Batchelor’s
result for a straight rigid rod. Therefore, it is clear that an additive constant for a flexible
fibre should depend on shape, and therefore on both n and A.

Based on the numerical simulations, we classify the dynamics of flexible fibres in
the phase space of n and A, according to the essential features of the motion and shape
deformation. We find three different modes of the fibre motion: coiled, locally bent and
globally bent, and we identify the characteristic ranges of n and A for each of them. The
classification refers to the fibres initially aligned with the flow. In the coiled mode, found
for larger n or smaller A, the fibres later do not straighten out along the flow, in contrast
to the other two modes. Global bending of fibres takes place at smaller n or larger A
and it corresponds to coherent deformation along the whole fibre length. Local bending
means that only a part of the fibre is curved, and it is typical for intermediate values
of n and A. Essentially, basic features of these three scenarios were identified already
in experiments performed by Forgacs & Mason (1959b) who called them a coiled orbit,
springy rotation and snake turn, and then analysed e.g. by Lindström & Uesaka (2007),
Harasim et al. (2013), Nguyen & Fauci (2014), Liu et al. (2018) and LaGrone et al. (2019),
with differences between shapes observed under different physical conditions (e.g. with
or without Brownian motion). Here, for the first time, a systematic analysis of these three
modes is performed.

In particular, all three stages of the evolution are observed for the local bending
dynamical mode. In the global bending mode, the curling stage is absent, and for the coiled
mode there is no stretching stage and the curling motion is much more complicated than in
the case of the local bending mode. For the local bending mode, we find the approximate
scaling κb2 ∝ A−0.3 independent of n, with the exponent close to −1/4 found by Harasim
et al. (2013) and Liu et al. (2018) (in the M1 model we can also deduce from the numerical
results that κb2 ∝ A−1/4, see figure 9(b). In this case, our data seem to agree with both
scalings). The dependence of the global bending on A has not been analysed. We find that
the maximum ‘global’ curvature κb2n ∝ (A/n3.25)−5 decays rapidly with A, which is much
faster than in the local bending mode.

Our analysis of the dynamics for different n and A indicates that the transition between
the local and global bending modes takes place for −2.3 � log10(A/n3.25) � −2.9.
Therefore, it is close but not exactly equal to a certain universal value of the elasto-viscous
number η̄ = 8πμ0γ̇ (2a)4n4/EI ln(ε−1) (or effective viscosity (effective flow forcing)
μ̄ = 8πμ0γ̇ (2a)4n4/EI), which scales as n4/A (Becker & Shelley 2001; Tornberg &
Shelley 2004; Harasim et al. 2013; Nguyen & Fauci 2014; Liu et al. 2018; LaGrone et al.
2019). Moreover, we have found that a second transition, between the coiled fibres and the
fibres that straighten out, is given as log10(A/n3/2) = C and it takes place at different
values of the elasto-viscous number when n or A are changed. Therefore, we find it
beneficial to extend the concept of the elasto-viscous number and analyse the dynamics
in the phase space of n and A. Certain features of the dynamics depend on n and A in a
more complex way than the elasto-viscous number predicts.

We also analyse the elastica model and rationalize some of the scalings described above.
We provide a self-similar exact solution of the linear elastica equations when the fibre is
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almost aligned with the flow. The main new idea is to assume as the boundary condition
the existence of a constant hydrodynamic force exerted on the fibre tip by the rate of
strain of the ambient flow. This allows tracing of the early stage of the fibre bending
from the initial position aligned with the flow which, is not possible within the standard
elastica approach. Moreover, we derive such a hydrodynamic force from the theory of
hydrodynamic interactions and evaluate it numerically. These findings indicate that the
standard elastica model in some cases may be too simple to predict the dynamics, and
cannot always serve as a source of a theoretical explanation.
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Appendix A. Hydrodynamic interactions in GRPY and hydromultipole models

A.1. GRPY – model 1
The GRPY approximation generalizes the Rotne–Prager (Rotne & Prager 1969;
Yamakawa 1970) and Goldstein (1985) analytical expressions for the translational and
rotational mobilities to the dipolar degrees of freedom, for both non-overlapping and
overlapping spherical particles of different radii (Wajnryb et al. 2013; Zuk et al. 2014,
2017). The GRPY includes pairwise hydrodynamic interactions through the analytic
positive-definite mobility matrices acting on the lowest force multipoles induced at
the sphere surfaces by the fluid flow (Kim & Karrila 1991). In this way, the GRPY
approximation takes some of the ideas from the method of reflections (Kim &
Karrila 1991), Stokesian dynamics developed by Durlofsky et al. (1987) and Brady
& Bossis (1988) and the multipole expansion performed by Felderhof (1988) and
Cichocki et al. (1994, 1999). Although the GRPY does not include the lubrication
interactions, by construction it gives positive definite mobility matrices for overlapping
spheres which can be easily used for soft objects allowing for overlaps of the particle
surfaces.

In this work, a mobility matrix was used for the Lees–Edwards (Lees & Edwards
1972) periodic boundary conditions with the GRPY model of hydrodynamic interactions
derived by Mizerski et al. (2014). The periodic box was elongated in the direction
of the shear flow so has dimensions Lx, Ly, Lz, with ratio Lx : Ly : Lz = 4 : 1 : 1. The
volume of the computational cell was set for each fibre length separately and we kept
the volume fraction occupied by the fibre smaller then 10−5 to have Lx, Ly, Lz � 2na.
For such a large periodic cell the values of the hydrodynamic tensors differ from the
values of the hydrodynamic tensors in the case without periodic boundary conditions
(Zuk et al. 2017) on the level of the numerical accuracy when using double precision
calculations.
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A.2. HYDROMULTIPOLE – model 2
Consider now a general system of n spherical particles immersed in an incompressible
fluid flow with velocity V (R) and pressure p(R) that satisfies the quasi-steady Stokes
equations with the boundary condition at infinity,

V (R) − V ∞(R) → 0, when R → ∞, (A1)

where V ∞(R) is an arbitrary external fluid flow. Assume the no-slip boundary conditions
at the bead surfaces, Si,

V (R) = W i(R) ≡ U i + Ω i × (R − Ri), for R ∈ Si, i = 1, . . . , n. (A2)

The integral representation (Pozrikidis 1992) and the method of induced forces (Cox &
Brenner 1967; Mazur & Bedeaux 1974; Felderhof 1976) can be used to express the fluid
velocity in terms of the Oseen tensor T 0(R − R̄), given e.g. by Kim & Karrila (1991),
applied to the density f j(R) of the forces exerted by the surface of the particle i on
the fluid. Application of the boundary conditions (A2) results in the boundary integral
equation for the force density f j(R),

W i(R) − V ∞(R) =
n∑

j=1

∫
T 0(R − R̄) · f j(R̄) dR̄, R ∈ Si and R̄ ∈ Sj, (A3)

which is then projected onto a complete set of elementary (spherical multipole) solutions
of the Stokes equations (Cichocki, Felderhof & Schmitz 1988; Felderhof 1988). As a result,
an infinite set of algebraic equations is obtained. This set is truncated at a certain multipole
order L and solved for the vector of the force multipoles. Converting from the spherical to
the Cartesian representation, we obtain a linear relation between (i) the forces F i, torques
T i, stresslets Si and higher-order force multipoles exerted on the fluid by the particles
i = 1, . . . , N, and (ii) the translational and rotational velocities, U j and Ω j of particle
j = 1, . . . , N, and the multipoles of the external velocity field V ∞(R). This relation is
written using the grand friction matrix ζ ,⎛

⎜⎜⎝
F̃
T̃
S̃
· · ·

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

ζ tt ζ tr ζ td · · ·
ζ rt ζ rr ζ rd · · ·
ζ dt ζ dr ζ dd · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

Ṽ ∞ − Ũ
ω̃∞ − Ω̃

Ẽ∞
· · ·

⎞
⎟⎟⎠ . (A4)

In the above the 3N dimensional vectors are F̃ =(F 1, F 2, . . . , F N), T̃ =(T 1, T 2, . . . , T N),
Ũ = (U1, U2, . . . , UN), Ω̃ = (Ω1, Ω2, . . . , ΩN). The velocity multipoles are evaluated
at the centres Ri of the particle i = 1, . . . , N from the external flow velocity and its
derivatives. In particular, Ṽ ∞ = (V ∞(R1), . . . , V ∞(RN)). Similarly ω̃∞ is the vector of
vorticities, with ω∞(Ri) = 1

2(∇ × V ∞)|Ri . Next, we introduce the tensor of strain rates
Ẽ∞ = (E∞(R1), . . . , E∞(RN)) with E∞(Ri) = 1

2(∇V ∞ + (∇V ∞)T)|Ri . The second
rank strain tensors E∞(Ri) are symmetric and traceless and therefore Ẽ∞ has 5N
independent components. Finally, the symmetric tensor S̃ = (S1, . . . , SN) represents the
particle stresslets. To speed up the convergence of the multipole expansion, the lubrication
correction is applied to friction matrices, as described by Durlofsky et al. (1987), Sangani
& Mo (1994) and Cichocki et al. (1999).
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The system of the particles evolves according to velocities calculated with the use of the
grand mobility matrix μ⎛

⎜⎜⎝
Ũ − Ṽ ∞
Ω̃ − ω̃∞

−S̃
· · ·

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

μtt μtr μtd · · ·
μrt μrr μtd · · ·
μdt μdr μdd · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

F̃
T̃

Ẽ∞
· · ·

⎞
⎟⎟⎠ (A5)

which is a partial inversion of the relation (A4), i.e. note that S̃ is now grouped with
generalized velocities and Ẽ∞ with generalized forces. The superscripts t, r and d denote
translational, rotational and dipolar degrees of freedom of the grand friction and grand
mobility matrices ζ and μ, respectively. The hydrodynamic matrices ζ and μ in general
depend on the positions of all the particles in the system. In particular, for the external
shear flow and in the absence of external torques, (A5) leads to (2.7) for the translational
velocities of the fibre beads that make up the fibre.

Appendix B. Comparing results from the M1 and M2 models

In this appendix, we compare in detail the results for the curvature κb2 obtained with
the use of the M1 and M2 bead models and discuss the physical reason for the
small differences. We start from a brief reminder of both models, described in § 2.1.
Hydrodynamic interactions in the bead model M1 are approximated using the GRPY
mobility matrices. The treatment of the hydrodynamic interactions in the bead model
M2 is based on the multipole expansion corrected for lubrication, as described in § 2.1.2,
appendix A.2 and implemented in the precise numerical codes HYDROMULTIPOLE. The
repulsive part of the Lennard-Jones potential energy (2.6) used in M1 is not needed (and
therefore not present) in the model M2, because of the stick boundary conditions at the
bead surfaces and the lubrication hydrodynamic forces that are taken into account.

In the M1 approach, the elastic properties are determined by the sum of the FENE
stretching and harmonic bending potential energies defined in (2.2) and (2.3), respectively.
In the M2 approach, the elastic properties are determined by the sum of the Hookean
stretching and cosine (Kratky–Porod) bending potential energies defined in (2.4) and (2.5),
respectively. The elastic constitutive laws (set 1 or set 2, see table 1) in the models M1 and
M2 are the same for small deformations, but have different forms for a significant change
of the fibre length (which is irrelevant because the fibre practically does not extend) and
for large bending angles (which is important because we consider highly bent fibres).

It is known from Bukowicki & Ekiel-Jeżewska (2018) that different bending potential
energies can result in significant differences of the dynamics of flexible fibres in the case
of large bending angles, which correspond to a large curvature. Therefore we investigate if
this effect is responsible for the differences between the dependence of κb on A resulting
from the models M1 and M2 and shown in figure 10(b,c). To this goal we introduce a
third bead model M3 and apply it in test simulations. In the M3 model, hydrodynamic
interactions are treated with the GRPY approach supplemented with (2.6) as in M1, but
the elastic constitutive laws are given by (2.4), (2.5) as in M2. The difference between
the stretching potential energies is irrelevant because the fibre length practically does not
change. The essential difference between M1 and M3 is the difference between harmonic
and cosine bending potential energies.

Figure 15 presents comparison of the behaviour of the three fibre models for n = 20
and n = 100 elucidating the differences between the models. For n = 20, the maximum
curvature κb2 is evaluated with the models M1, M2, M3 and plotted in the log–log scale
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M1, n = 20
M2, n = 20
M3, n = 20
M1, n = 100
M2, n = 100
EV

log10A

4

1

3.02.52.01.51.00.50

0.2

0

−0.2

−0.4

−0.6

−0.8

lo
g 10

κ
b2

Figure 15. Comparison of three bead models of a flexible fibre. The maximum curvature κb2 vs. bending
stiffness A, evaluated with the use of the models M1 (filled symbols), M2 (empty symbols) and M3 (stars).
The EV limit is marked as the horizontal dashed line.

in figure 15. For A � 20–30 there is a difference between M1 and M2, and also between
M1 and M3. However, the results from M2, M3 are close to each other. Therefore the
form of the bending potential at large angles seems to be essential for the dynamics of
more flexible fibres, in agreement with the same conclusion for sedimenting flexible fibres
given in Bukowicki & Ekiel-Jeżewska (2018).

Indeed the cosine bending potential from the models M2 and M3 is more flexible than
harmonic bending potential from M1 and for large bends it leads to higher curvatures. For
such large values of the bending stiffness that the radius of curvature is three or more times
larger than the bead radius, the maximum curvatures obtained with the models M1, M2,
M3 are the same because the bending potential energies behave alike. This is expected
since both are intended to approximate the elastic bending potential energy in the limit of
large A (it was estimated by Bukowicki & Ekiel-Jeżewska (2018) that a difference smaller
than 5 % is expected for the maximum bending angles π − θi = κ � 0.7).

The agreement between the M1, M2 and M3 models of more stiff fibres is illustrated
in figure 15 where we also present the maximum curvature κb2 for much longer fibres with
n = 100, evaluated with M1 and M2 models. For A � 100 a good agreement is obtained
between all the computations performed with the use of M1 and M2 models, regardless
of the fibre length. Actually, all the properties of flexible fibres that were discussed in the
main text for the model M1 are analogous for the model M2 in the range of intermediate
and large A, where the constitutive laws are manifesting similar behaviour.

Appendix C. Discussion of the universal scaling

The idea of figures 13(c–f ) and 16(b,c) is to compare properties of fibres of the same
length, but different thickness and different bending stiffness. To this goal, on vertical
axis we plotted the maximum curvature normalized by the inverse fibre length (rather
than by its inverse width), i.e. κb2n. The universal scaling of the maximum curvature κb2n,
provided in § 6.1, is based on the similarity solution as a function of A/n3.25. Here we check
if a universal scaling can be based on a certain modification of the standard elasto-viscous
number, including a logarithmic dependence on n. Therefore in 16(a) we plot in log–log
scale κb2n versus the elasto-viscous number A(ln n + ln 2 + 1/2)/n4, with the constant
modified following SBT of Batchelor (1970a). The scaling works reasonably well for the
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A =

0.002000.002060.00208

1.63 × 10−5

1.60 × 10−5

1.68 × 10−5

A
ln n + ln2 + 1/2 ln n + ln2 + 1/2

n4 n4=

–5.*x – 12.2
–0.28*x + 0.35
n = 100
n = 80
n = 60
n = 40
n = 20
n = 10

log10(A(ln n + ln2 + 1/2)/n4))

lo
g 10

 (κ
b2

n)

−2−3−4−5−6

3

2

1

0

−1

−2

−3

(b)

(a)

(c)

Figure 16. The elasto-viscous number A(ln n + ln 2 + 1/2)/n4, based on the SBT by Batchelor (1970a), is
not a universal scaling function of the numerical results obtained with the model M2. (a) The maximum
curvature κb2n, scaled by the inverse of the fibre length, is plotted in log–log scale versus the elasto-viscous
number A(ln n + ln 2 + 1/2)/n4. The similarity scaling of shapes is observed in (b) for the local bending mode,
but it does not work in (c) for the global bending, with values of the elasto-viscous number as indicated. In
(b) (n, A) = (40, 8.8), (60, 39.2), (80, 119.6) and in (c) (n, A) = (20, 79.4), (40, 1078.4), (60, 4902.0).

local bending mode, as shown in figure 16(b), but does not account for the global bending
mode, as shown in figure 16(c). Possible reasons for this discrepancy are discussed in § 7.

Appendix D. Time scales close to the transition between local and global bending

In § 6, the distinction between the locally and globally bent fibres was approximately
estimated by comparing the time instant τb2 of the maximum curvature κb2 with the
flipping time τf (Słowicka et al. 2015; Farutin et al. 2016; Słowicka et al. 2020), i.e. the
time when two end beads have the same x coordinate. This procedure is illustrated in
figure 17 using the numerical data from the model M2. If flipping occurs for τf < τb2, the
corresponding point (n, A) is marked by a square in the phase diagram (figure 14), while
if flipping happens for τf = τb2 or τf > τb2, by a plus or a circle, respectively. However,
it should be kept in mind that the change between the locally and globally bent fibres takes
place in a certain range of A. The values marked by the symbols + in figure 14 correspond
already to the global mode scaling κb2n ∝ (A/n3.25)−5 but they are too large to satisfy
κb2 ∝ A−1/4 typical for the local bending. The shapes at the maximum curvature shown in
figure 17(b,c) are bent globally, but the shape presented in figure 17(a) is not locally bent.
In the local bending mode, at the moment of the maximum local curvature, the fibre ends
are almost parallel to the flow.
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1

0
335

κ(t)

345 338

Moment
of flipping Moment

of flipping

Moment
of flipping

348 340 350
t t t

(b)(a) (c)

Figure 17. Maximum local curvature κ(t) and characteristic fibre shapes at the time τb2 of the maximum
curvature, shown for n = 40 and (a) A = 483.3, (b) A = 720.6, (c) A = 880.4. For the global bending mode,
the maximum of the local curvature is observed at the flipping moment or later, as in (b, c).
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CICHOCKI, B., EKIEL-JEŻEWSKA, M.L. & WAJNRYB, E. 1999 Lubrication corrections for three-particle
contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys. 111 (7),
3265–3273.

CICHOCKI, B., EKIEL-JEZEWSKA, M.L. & WAJNRYB, E. 2012 Intrinsic viscosity for Brownian particles of
arbitrary shape. J. Phys.: Conf. Ser. 392, 012004.

CICHOCKI, B., FELDERHOF, B.U., HINSEN, K., WAJNRYB, E. & BŁAWZDZIEWICZ, J. 1994 Friction and
mobility of many spheres in Stokes flow. J. Chem. Phys. 100, 3780–3790.

CICHOCKI, B., FELDERHOF, B.U. & SCHMITZ, R. 1988 Hydrodynamic interactions between two spherical
particles. Physico-Chem. Hydrodyn. 10, 383–403.

CORTEZ, R., FAUCI, L. & MEDOVIKOV, A. 2005 The method of regularized Stokeslets in three dimensions:
analysis, validation, and application to helical swimming. Phys. Fluids 17 (3), 031504.

COX, R.G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech.
44 (4), 791–810.

COX, R.G. & BRENNER, H. 1967 Effect of finite boundaries on the Stokes resistance of an arbitrary particle.
Part 3. Translation and rotation. J. Fluid Mech. 28 (2), 391–411.

DHONT, J.K.G. & BRIELS, W.J. 2007 Rod-like Brownian particles in shear flow. In Complex Colloidal
Suspensions (ed. G. Gompper & M. Schick), Soft Matter, vol. 2, pp. 216–283. Wiley-VCH.

DUPRAT, C. & STONE, H.A. 2015 Model problems coupling elastic boundaries and viscous flows. In
Fluid-Structure Interactions in Low-Reynolds-Number Flows (ed. C. Duprat & H.A. Stone), pp. 78–99.
Royal Society of Chemistry.

DURLOFSKY, L., BRADY, J.F. & BOSSIS, G. 1987 Dynamic simulation of hydrodynamically interacting
particles. J. Fluid Mech. 180, 21–49.

914 A31-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1048


Fibres in shear flow

EGGERS, J. & FONTELOS, M.A. 2015 Singularities: Formation, Structure, and Propagation. Cambridge Texts
in Applied Mathematics, vol. 53. Cambridge University Press.
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P.J. Żuk and others

LINDSTRÖM, S.B. & UESAKA, T. 2007 Simulation of the motion of flexible fibers in viscous fluid flow. Phys.
Fluids 19 (11), 113307.

LIU, Y., CHAKRABARTI, B., SAINTILLAN, D., LINDNER, A. & DU ROURE, O. 2018 Morphological
transitions of elastic filaments in shear flow. Proc. Natl Acad. Sci. USA 115 (38), 9438–9443.

MA, H. & GRAHAM, M.D. 2005 Theory of shear-induced migration in dilute polymer solutions near solid
boundaries. Phys. Fluids 17 (8), 083103.

MATTHEWS, R., LOUIS, A.A. & YEOMANS, J.M. 2010 Complex dynamics of knotted filaments in shear
flow. Europhys. Lett. 92 (3), 34003.

MAZUR, P. & BEDEAUX, D. 1974 A generalization of Faxén’s theorem to nonsteady motion of a sphere
through an incompressible fluid in arbitrary flow. Physica 76 (2), 235–246.

MIZERSKI, K.A., WAJNRYB, E., ZUK, P.J. & SZYMCZAK, P. 2014 The Rotne–Prager–Yamakawa
approximation for periodic systems in a shear flow. J. Chem. Phys. 140 (18), 184103.

NARSIMHAN, V., KLOTZ, A.R. & DOYLE, P.S. 2017 Steady-state and transient behavior of knotted chains in
extensional fields. ACS Macro Lett. 6 (11), 1285–1289.

NAZOCKDAST, E.N., RAHIMIAN, A., ZORIN, D. & SHELLEY, M.J. 2017 A fast platform for simulating
semi-flexible fiber suspensions applied to cell mechanics. J. Comput. Phys. 329, 173–209.

NGUYEN, H. & FAUCI, L. 2014 Hydrodynamics of diatom chains and semiflexible fibres. J. R. Soc. Interface
11 (96), 20140314.

OSEEN, C.W. 1927 Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft.
PESKIN, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479–517.
POZRIKIDIS, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge

University Press.
ROTNE, J. & PRAGER, S. 1969 Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys.

50, 4831–4837.
DU ROURE, O., LINDNER, A., NAZOCKDAST, E.N. & SHELLEY, M.J. 2019 Dynamics of flexible fibers in

viscous flows and fluids. Annu. Rev. Fluid Mech. 51, 539–572.
SANGANI, A.S. & MO, G. 1994 Inclusion of lubrication forces in dynamic simulations. Phys. Fluids 6 (5),

1653–1662.
SCHMID, C.F. & KLINGENBERG, D.J. 2000 Mechanical flocculation in flowing fiber suspensions. Phys. Rev.

Lett. 84 (2), 290.
SKJETNE, P., ROSS, R.F. & KLINGENBERG, D.J. 1997 Simulation of single fiber dynamics. J. Chem. Phys.

107 (6), 2108–2121.
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