
11 
Multiple D-branes and bound states 

In chapter 5, we saw a number of interesting terms arise in the Dp-brane 
world-volume action which had interpretations as smaller branes. For ex­
ample, a U(l) flux was a D(p - 2)-brane fully delocalised in the world­
volume, while for the non-Abelian case, we saw a D(p - 4)-brane arise as 
an instanton in the world-volume gauge theory. Interestingly, while the 
latter breaks half of the supersymmetry again, as it ought to, the former 
is still half BPS, since it is T-dual to a tilted D(p + l)-brane. 

It is worthwhile trying to understand this better back in the basic 
description using boundary conditions and open string sectors, and this 
is the first goal of this chapter. After that, we'll have a closer look at the 
nature of the BPS bound and the superalgebra, and study various key 
illustrative examples. 

11.1 Dp and Dp' from boundary conditions 

Let us consider two D-branes, Dp and Dp', each parallel to the coordinate 
axes. (We can of course have D-branes at angles129 , but we will not con­
sider this here.) An open string can have both ends on the same D-brane 
or one on each. The p - p and pi - pi spectra are the same as before, but 
the p - pi strings are new if pi-p'. Since we are taking the D-branes to be 
parallel to the coordinate axes, there are four possible sets of boundary 
conditions for each spatial coordinate Xi of the open string, namely NN 
(Neumann at both ends), DD, ND, and DN. What really will matter is 
the number v of ND plus DN coordinates. AT-duality can switch NN 
and DD, or ND and DN, but v is invariant. Of course v is even because 
we only have p even or p odd in a given theory in order to have a chance 
of preserving supersymmetry. 
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250 11 Multiple D-branes and bound states 

The respective mode expansions are 

NN: 

DN,ND: 

DD: 

In particular, the DN and ND coordinates have half-integer moding. The 
fermions have the same moding in the Ramond sector (by definition) and 
opposite in the Neveu-Schwarz sector. The string zero point energy is 0 
in the R sector as always, and using (2.80) we get: 

(8 - v) (-~ - ~) + v (~ + ~) = -~ + ~ 
24 48 48 24 2 8 

(11.2) 

in the NS sector. 
The oscillators can raise the level in half-integer units, so only for v 

a multiple of four is degeneracy between the Rand NS sectors possible. 
Indeed, it is in this case that the Dp-Dp' system is supersymmetric. We 
can see this directly. As discussed in sections 8.1.1 and 8.2, a D-brane 
leaves unbroken the supersymmetries 

(11.3) 

where P acts as a reflection in the direction transverse to the D-brane. 
With a second D-brane, the only unbroken supersymmetries will be those 
that are also of the form 

(11.4) 

with pi the reflection transverse to the second D-brane. Then the unbro­
ken supersymmetries correspond to the + 1 eigenvalues of p-l P'. In DD 
and NN directions this is trivial, while in DN and ND directions it is a net 
parity transformation. Since the number v of such dimensions is even, we 
can pair them as we did in section 7.1.1, and write p-l pi as a product 
of rotations by 'IT, 

(11.5) 
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11.1 Dp and Dp' from boundary conditions 251 

In a spinor representation, each ei'IT J has eigenvalues ±i, so there will be 
unbroken supersymmetry only if v is a multiple of four as found above*. 

For example, type I theory, besides the D9-branes, will have D1-branes 
and D5-branes. This is consistent with the fact that the only R-R field 
strengths are the three-form and its Hodge-dual seven-form. The D5-
brane is required to have two Chan-Paton degrees of freedom (which can 
be thought of as images under f?) and so an SU(2) gauge group130, 132. 

When v = 0, p-1 pi = 1 identically and there is a full ten-dimensional 
spinor of supersymmetries. This is the same as for the original type I 
theory, to which it is T-dual. In D = 4 units, this is N = 4, or sixteen 
supercharges. For v = 4 or v = 8 there is D = 4 N = 2 supersymmetry. 

Let us now study the spectrum for v = 4, saving v = 8 for later. 
Sometimes it is useful to draw a quick table showing where the branes are 
located. Here is one for the (9,5) system, where the D5-brane is pointlike 
in the x 6 , x 7, x 8 , x 9 directions and the D9-brane is (of course) extended 
everywhere. 

• • • • 

A dash under xi means that the brane is extended in that direction, while 
a dot means that it is pointlike there. 

Continuing with our analysis, we see that the NS zero-point energy is 
zero. There are four periodic world-sheet fermions ?j;i, namely those in the 
ND directions. The four zero modes generate 24/ 2 or four ground states, 
of which two survive the GSO projection. In the R sector the zero-point 
energy is also zero; there are four periodic transverse ?j;, from the NN and 
DD directions not counting the directions /L = 0,1. Again these generate 
four ground states of which two survive the GSO projection. The full 
content of the p - pi system is then is half of an N = 2 hypermultiplet. 
The other half comes from the pi - P states, obtained from the orientation 
reversed strings: these are distinct because for v i- ° the ends are always 
on different D-branes. 

Let us write the action for the bosonic p - pi fields XA , starting with 
(p,p') = (9,5). Here A is a doublet index under the SU(2)R of the N = 2 
alge bra. The field XA has charges (+ 1, -1) under the U (1) x U (1) gauge 
theories on the branes, since one end leaves, and the other arrives. The 

* We will see that there are supersymmetric bound states when 1/ = 2. 
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252 11 Multiple D-branes and bound states 

minimally coupled action is then 

J d6e (tl(aa+iAa-iA~)xI2+(4 21 + 4 21 )i)XtT1 X)2) , 
a=O gYM,p gYM,p' 1=1 

(11.6) 

with Aa and A~ the brane gauge fields, gYM,p and gYM,p' the effective 
Yang-Mills couplings (8.13), and T1 the Pauli matrices. The second term 
is from the N = 2 D-terms for the two gauge fields. It can also be written 
as a commutator Tr [¢i, ¢JF for appropriately chosen fields ¢i, showing 
that its form is controlled by the dimensional reduction of an p2 pure 
Yang-Mills term. See section 13.1 for more on this. 

The integral is over the five-brane world-volume, which lies in the nine­
brane world-volume. Under T-dualities in any of the ND directions, one 
obtains (p,p') = (8,6), (7,7), (6,8), or (5,9), but the intersection of the 
branes remains (5 + 1 )-dimensional and the p - pi strings live on the inter­
section with action (11.6). In the present case the D-term is non-vanishing 
only for XA = 0, though more generally (say when there are several co­
incident p and pi -branes), there will be additional massless charged fields 
and fiat directions arise. 

Under T-dualities in T NN directions, one obtains (p, pi) = (9 - T, 5 - T). 
The action becomes 

(11. 7) 

The second term, proportional to the separation of the branes, is from 
the tension of the stretched string. 

11.2 The BPS bound for the Dp-Dp' system 

The ten dimensional N = 2 supersymmetry algebra (in a Majorana 
basis) is 

{Qa, Q~} 

{Qa, Q~} 

{Qa, Q~} 

2(rOrtL)a~(PtL + Q~s /2Tr(y') 

2(rOrtL)a~(PtL - Q~s /2Trc/) 

2 L ;~ (rOrm1 ... rmp)a~Q~l .. mp· 
p 

(11.8) 
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11.2 The BPS bound for the Dp-Dp' system 253 

Here QNS is the charge to which the NS-NS two-form couples, it is es­
sentially the winding of a fundamental string stretched along M 1: 

QNS == QNS r dX{!. with QNS = _1_ r e-2<I> * H(3) (11.9) 
{! VI JMl' VolS7 JS7 

and the charge QNS is normalised to one per unit spatial world-volume, 
VI = L, the length of the string. It is obtained by integrating over the 8 7 

which surrounds the string. The QR are the R-R charges, defined as a 
generalisation of winding on the space Mp: 

QR == Q: j dX{!l /\ ... dX{!p with {!l ... {!p , 
QR = 1 r *C(p+2). 

p Vol 8 8-p J S8-p vp Mp 
(11.10) 

The sum in (11.8) runs over all orderings of indices, and we divide by p! 
Of course, p is even for IIA or odd for IIB. The R-R charges appear in 
the product of the right- and left-moving supersymmetries, since the cor­
responding vertex operators are a product of spin fields, while the NS-NS 
charges appear in right-right and left-left combinations of supercharges. 

As an example of how this all works, consider an object of length L, 
with the charges of p fundamental strings CF-strings', for short) and q 
Dl-branes CD-strings') in the IIB theory, at rest and aligned along the 
direction Xl. The anticommutator implies 

q/ g8] L(rOr1 )aj3 . 

-p 27Ta' 

(11.11) 

The eigenvalues of rOr1 are ±1 so those of the right hand side are }\;I ± 
L(p2 + q2 / g2)1/2 /27Ta'. The left side is a positive matrix, and so we get 
the 'BPS bound' on the tension 133 

Quite pleasingly, this is saturated by the fundamental string, 
(1,0), and by the D-string, (p, q) = (0,1). 

(11.12) 

(p, q) = 

It is not too hard to extend this to a system with the quantum numbers 
of Dirichlet p and p' branes. The result for v a multiple of four is 

lVI :2 TpVp + Tp'Vp' 
and for v even but not a multiple of four it is t 

M :2 VTJV~ + T;,V;,. 

(11.13) 

(11.14) 

t The difference between the two cases comes from the relative sign of rM (rM')T and 
r M ' (rM)T. 
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254 11 Multiple D-branes and bound states 

The branes are wrapped on tori of volumes vp and v~ in order to make 
the masses finite. 

The results (11.13) and (11.14) are consistent with the earlier results 
on supersymmetry breaking. For lJ a multiple of four, a separated p-brane 
and p'-brane do indeed saturate the bound (11.13). For lJ not a multiple 
of four, they do not saturate the bound (11.14) and cannot be supersym­
metric. 

11.3 Bound states of fundamental strings and D-strings 

Consider a parallel Dl-brane (D-string) and a fundamental string 
(F -string) lying along Xl. The total tension 

-1 + 1 gs 
TDI + TFI = 2 / 

'ITa 
(11.15) 

exceeds the BPS bound (11.12) and so this configuration is not super­
symmetric. However, it can lower its energy26 as shown in figure 11.1. 
The F -string breaks, its endpoints attached to the D-string. The end­
points can then move off to infinity, leaving only the D-string behind. Of 
course, the D-string must now carry the charge of the F -string as well. 
This comes about because the F-string endpoints are charged under the 
D-string gauge field, so a flux runs between them; this flux remains at the 
end. Thus the final D-string carries both the NS-NS and R-R two-form 
charges. The flux is of order gs, its energy density is of order g8, and so the 
final tension is (g;;l + O(gs)) /2'ITa/. This is below the tension of the sepa­
rated strings and of the same form as the BPS bound (11.12) for a (1,1) 
string. A more detailed calculation shows that the final tension saturates 

(a) 

J 

j 
(b) (c) 

Fig. 11.1. (a) A parallel D-string and F-string, which is not supersymmet­
ric. ( b) The F -string breaks, its ends attaching to the D-string, resulting 
in (c) the final supersymmetric state, a D-string with flux. 
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11.4 The three-string junction 255 

the bound118 , so the state is supersymmetric. In effect, the F-string has 
dissolved into the D-string, leaving flux behind. 

We can see quite readily that this is a supersymmetric situation using 
T -duality. We can choose a gauge in which the electric flux is FOl =.fb. 
T-dualising along the xl direction, we ought to get a DO-brane, which we 
do, except that it is moving with constant velocity, since we get Xl = 

27TOOl fb. This clearly has the same supersymmetry as a stationary DO­
brane, having been simply boosted. 

To calculate the number of BPS states we should put the strings in a 
box of length L to make the spectrum discrete. For the (1,0) F-string, 
the usual quantisation of the ground state gives eight bosonic and eight 
fermionic states moving in each direction for 162 = 256 in all. This is 
the ultrashort representation of supersymmetry: half the 32 generators 
annihilate the BPS state and the other half generate 28 = 256 states. The 
same is true of the (0,1) D-string and the (1,1) bound state just found, 
as will be clear from the later duality discussion of the D-string. 

It is worth noting that the (1,0) F-string leaves unbroken half the su­
persymmetry and the (0, 1) D-string leaves unbroken a different half of the 
supersymmetry. The (1,1) bound state leaves unbroken not the intersec­
tion of the two (which is empty), but yet a different half. The unbroken 
symmetries are linear combinations of the unbroken and broken super­
symmetries of the D-string. 

All the above extends immediately to p F-strings and one D-string, 
forming a supersymmetric (p, 1) bound state. The more general case of 
p F -strings and q D-strings is more complicated. The gauge dynamics 
are now non-Abelian, the interactions are strong in the infrared, and no 
explicit solution is known. When p and q have a common factor, the 
BPS bound makes any bound state only neutrally stable against falling 
apart into subsystems. To avoid this complication let p and q be relatively 
prime, so any supersymmetric state is discretely below the continuum 
of separated states. This allows the Hamiltonian to be deformed to a 
simpler supersymmetric Hamiltonian whose supersymmetric states can 
be determined explicitly, and again there is one ultrashort representation, 
256 states. It is left to the reader to consult the literature26 , I for the 
details. 

11.4 The three-string junction 

Let us consider further the BPS saturated formula derived and studied in 
the two previous subsections, and write it as follows: 

(11.16) 
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256 11 Multiple D-branes and bound states 

An obvious solution to this is 

Tp,q SIn GO = qTO,l, Tp,q cos GO = PT1,o. (11.17) 

with tan GO = q/ (pgs). Recall that these are tensions of strings, and there­
fore we can interpret the equations (11.17) as balance conditions for 
the components of forces. In fact, it is the required balance for three 
strings137, 135, and we draw the case of p = q = 1 in figure 11.2. 

Is this at all consistent with what we already know? The answer is yes. 
An F-string is allowed to end on a D-string by definition, and a (1,1) 
string is produced, due to flux conservation, as we discussed above. The 
issue here is just how we see that there is bending. The first thing to 
notice is that the angle GO goes to 'IT /2 in the limit of zero string coupling, 
and so the D-string appears in that case to run straight. This had better 
be true, since it is then clear that we simply were allowed to ignore the 
bending in our previous weakly coupled string analysis. (This study of 
the bending of branes beyond zero coupling has important consequences 
for the study of one-loop gauge theory data139 . We shall study some of 
this later on.) 

Parenthetically, it is nice to see that in the limit of infinite string cou­
pling, GO goes to zero. The diagram is better interpreted as aD-string 
ending on an F -string with no resulting bending. This fits nicely with 
the fact that the D- and F-strings exchange roles under the strong/weak 
coupling duality (,S-duality') of the type IIB string theory, as we shall see 
in chapter 12. 

When we wrote the linearised Blon equations in section 5.7, we ignored 
the 1+1 dimensional case. Let us now include that part of the story here 

(0,1) 

(a) 

(1,0) 

(b) 

(1,0) 

(0,1) 

Fig. 11.2. (a) When an F-string ends on a D-string it causes it to bend at 
an angle set by the string coupling. On the other side of the junction is 
a (1,1) string. This is in fact a BPS state. (b) Switching on some amount 
of the R-R scalar can vary the other angle, as shown. 
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11.4 The three-string junction 257 

as a 1+1 dimensional gauge theory discussion. There is a flux P01 on the 
world-volume, and the end of the F -string is an electric source. Given that 
there is only one spatial dimension, the F -string creates a discontinuity 
on the flux, such that e.g. 140, 60: 

F01 = {gS' 
0, 

so we can choose a gauge such that 

Ao = {gSXI, 
0, 

:rl > 0 
:rl < 0' 

Xl> 0 
Xl < O' 

(11.18) 

(11.19) 

Just as in section 5.7, this is BPS if one of the eight scalars <[>m is also 
switched on so that 

(11.20) 

How do we interpret this? Since (27Ta/)<[>2 represents the x2 position of 
the D-string, we see that for xl < 0 the D-string is lying along the xl 

axis, while for xl > 0, it lies on a line forming an angle tan- I (I/gs ) with 
h I' t ex, aXIS. 

Recall the Tl-dual picture we mentioned in the previous section, where 
we saw that the flux on the D-string (making the (1,1) string) is equivalent 
to a DO-brane moving with velocity (27Ta/)F01' Now we see that the DO­
brane loses its velocity at xl = O. This is fine, since the apparent impulse 
is accounted for by the momentum carried by the F-string in the T-dual 
picture. (One has to tilt the diagram in order to T -dualise along the (1,1) 
string in order to see that there is F-string momentum.) 

Since we have seen many times that the presence of flux on the world­
volume of a Dp-brane is equivalent to having a dissolved D(p - 2)-brane, 
i.e. non-zero C(p-l) source, we can modify the flux on the :rl < 0 part 
of the string this way by turning on the R-R scalar Co. This means that 
<[>2 (:rl) will be linear there too, and so the angle {-J between the D- and F­
strings can be varied too (see figure 11. 2 ( b) ). It is interesting to derive the 
balance conditions from this, and then convert it into a modified tension 
formula, but we will not do that herel40 . 

It is not hard to imagine that given the presence we have already de­
duced of a general (p, q) string in the theory that there are three-string 
junctions to be made out of any three strings such that the (p, q)-charges 
add up correctly, giving a condition on the angles at which they can 
meet. This is harder to do in the full non-Abelian gauge theories on their 
world-volumes, but in fact a complete formula can be derived using the 
underlying 5L(2, Z) symmetry of the type IIB string theory. We will have 
more to say about this symmetry later. 
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258 11 Multiple D-branes and bound states 

General three-string junctions have been shown to be important in a 
number of applications, and there is a large literature on the subject which 
we are unfortunately not able to review here. 

11.5 Aspects of D-brane bound states 

Bound states of p-branes and pl-branes have many applications. Some of 
them will appear in our later lectures, and so it is worth listing some of 
the results here. Here we focus on pi = 0, since we can always reach it 
from a general (p, pi) using T -duality. 

11.5.1 0-0 bound states 

The BPS bound for the quantum numbers of n O-branes is nTo, so any 
bound state will be at the edge of the continuum. What we would like 
to know is if there is actually a true bound state wave function, i.e. a 
wavefunction which is normalisable. To make the bound state counting 
well defined, compactify one direction and give the system momentum 
m/ R with m and n relatively prime141 . The bound state now lies discretely 
below the continuum, because the momentum cannot be shared evenly 
among unbound subsystems. 

This bound state problem is T-dual to the one considered in section 
11.3. Taking the T-dual, the n DO-branes become D1-branes, while the 
momentum becomes winding number, corresponding to m F-strings. There 
is therefore one ultrashort multiplet of supersymmetric states when m and 
n are relatively prime141 . This bound state should still be present back in 
infinite volume, since one can take R to be large compared to the size of 
the bound state. There is a danger that the size of the wavefunction we 
have just implicitly found might simply grow with R such that as R ----+ 00 

it becomes non-normalisable again. More careful analysis is needed to 
show this. It is sufficient to say here that the bound states for arbitrary 
numbers of DO-branes are needed for the consistency of string duality, 
so this is an important problem. Some strong arguments have been pre­
sented in the literature (n = 2 is proven), but the general case is not yet 
proven142 . 

11.5.2 0-2 bound states 

Now the BPS bound (expression (11.14)) puts any bound state discretely 
below the continuum. One can see a hint of a bound state forming by 
noticing that for a coincident DO-brane and D2-brane the NS 0-2 string 
has a negative zero-point energy (11.2) and so a tachyon (which survives 
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11.5 Aspects of D-brane bound states 259 

the GSO projection), indicating an instability towards forming something 
else. In fact the bound state (one short representation) is easily described: 
the DO-brane dissolves in the D2-brane, leaving flux, as we have seen 
numerous times. The brane R-R action (expression (9.9)) contains the 
coupling C(l)F, so with the flux the D2-brane also carries the DO-brane 
charge143 . There is also one short multiplet for n DO-branes. This same 
bound state is always present when 1/ = 2. 

11.5.3 0-4 bound states 

The BPS bound (11.13) makes any bound state marginally stable, so the 
problem is made well-defined as in the 0-0 case by compactifying and 
adding momentum144 . The interactions in the action (11.7) are relevant 
in the infrared so this is again a hard problem, but as before it can be 
deformed into a solvable supersymmetric system. Again there is one mul­
tiplet of bound states144 . Now, though, the bound state is invariant only 
under ~ of the original supersymmetry, the intersection of the supersym­
metries of the DO-brane and of the D4-brane. The bound states then lie 
in a short (but not ultrashort) multiplet of 212 states. 

For two DO-branes and one D4-brane, one gets the correct count as 
follows 145 . Think of the case that the volume of the D4-brane is large. 
The 16 supersymmetries broken by the D4-brane generate 256 states that 
are delocalised on the D4-brane. The eight supersymmetries unbroken by 
the D4-brane and broken by the DO-brane generate 16 states (half bosonic 
and half fermionic), localised on the DO-brane. The total number is the 
product 212. Now count the number of ways two DO-branes can be put 
into their 16 states on the D4-brane: there are eight states with both DO­
branes in the same (bosonic) state and ~ 16 ·15 states with the D-branes in 
different states, for a total of 8 ·16 states. But in addition, the two-branes 
can bind, and there are again 16 states where the bound state binds to the 
D4-brane. The total, tensoring again with the D4-brane ground states, is 
9·16·256. 

For n DO-branes and one D4-brane, the degeneracy Dn is given by the 
generating functional 145 (see insert 3.4, p. 92): 

00 00 (1+ k)8 L qn Dn = 256 II 1 _ q k ' 

n=O k=l q 
(11.21) 

where the term k in the product comes from bound states of k DO-branes 
then bound to the D4-brane. Some discussion of the DO-D4 bound state, 
and related issues, can be found in the references146 . 

https://doi.org/10.1017/9781009401371.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.012


260 11 Multiple D-branes and bound states 

11.5.4 0-6 bound states 

The relevant bound is (11.14) and again any bound state would be below 
the continuum. The NS zero-point energy for 0-6 strings is positive, so 
there is no sign of decay. One can give DO-brane charge to the D6-brane 
by turning on flux, but there is no way to do this and saturate the BPS 
bound. So it appears that there are no supersymmetric bound states. 
Notice that, unlike the 0-2 case, the 0-6 interaction is repulsive, both at 
short distance and at long. 

11.5.5 0-8 bound states 

The case of the D8-brane is special, since it is rather big. It is a domain 
wall, because there is only one spatial dimension transverse to it. In fact, 
the D8-brane on its own is not really a consistent object. Trying to put 
it into type IIA runs into trouble, since the string coupling blows up a 
finite distance from it on either side because of the nature of its coupling 
to the dilaton. To stop this happening, one has to introduce a pair of 
08-planes, one on each side, because they (for SO groups) have negative 
charge (-8 times that of the D8-brane) and can soak up the dilaton. We 
therefore should have 16 D8-branes for consistency, and so we end up in 
the type I' theory, the T-dual of type 1. The bound state problem is now 
quite different, and certain details of it pertain to the strong coupling 
limit of certain string theories, and their 'matrix,157 formulation147, 148. 
We shall revisit this in section 12.5. 
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