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Real Interpolation with Logarithmic Functors
and Reiteration
W. D. Evans and B. Opic

Abstract. We present “reiteration theorems” with limiting values θ = 0 and θ = 1 for a real interpolation
method involving broken-logarithmic functors. The resulting spaces lie outside of the original scale of spaces
and to describe them new interpolation functors are introduced. For an ordered couple of (quasi-) Banach
spaces similar results were presented without proofs by Doktorskii in [D].

1 Introduction

Let (X0,X1) be a compatible couple of (quasi-) Banach spaces. The interpolation space
X̄θ,q;A = (X0,X1)θ,q;A (with a “broken logarithmic” functor) is the set of functions f ∈
X0 + X1 such that

‖ f ‖θ,q;A = ‖t
−θ− 1

q �A(t)K( f , t ; X0,X1)‖q,(0,∞) <∞.(1.1)

Here θ ∈ [0, 1], q ∈ (0,∞], A = (α0, α∞) ∈ R2,

�A(t) =

{
(1 + | log t|)α0 , t ∈ (0, 1]

(1 + | log t|)α∞ , t ∈ (1,∞),

K is the Peetre K-functional, and ‖ · ‖q,(0,∞) is the usual Lq-(quasi-) norm on the interval
(0,∞). A very important feature of the scale of spaces (X0,X1)θ,q;A, resulting from the
logarithmic terms involved in their (quasi-) norms, is that these spaces are well-defined
also for θ = 0 and θ = 1 (cf. Theorem 2.2 and Corollary 2.3 below).

Assume now that (X0,X1) and (Y0,Y1) are two compatible couples and that 0 ≤ θ0 <
θ1 ≤ 1, 0 ≤ ψ0, ψ1 ≤ 1, ψ0 �= ψ1, θ ∈ [0, 1], 0 < q0, q1, q, r0, r1 ≤ ∞, and Ai =
(αi0, αi∞), Bi = (βi0, βi∞), A = (α0, α∞) ∈ R2 (i = 0, 1). Moreover, let T be a linear or
quasilinear (in the sense of [S]) operator such that

T : X̄θ0,q0;A0 → Ȳψ0,r0;B0 ,

T : X̄θ1,q1;A1 → Ȳψ1,r1;B1

(here the notation T : X → Y means that T is bounded from X into Y ). Then

T : (X̄θ0,q0;A0 , X̄θ1,q1;A1 )θ,q;A → (Ȳψ0,r0;B0 , Ȳψ1,r1;B1 )θ,q;A(1.2)
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(this holds even if spaces involved are trivial; for conditions which ensure that such spaces
are nontrivial we refer to Theorem 2.2, Corollary 2.3, Theorem 2.4 and Corollary 2.5 be-
low).

A problem of fundamental importance is the identification of spaces involved in (1.2).
In the case when θ0, θ1, θ ∈ (0, 1) the identification of interpolation spaces
(X̄θ0,q0;A0 , X̄θ1,q1;A1 )θ,q;A is known (cf. [EOP] and references given therein) and is given by
the reiteration formula

(X̄θ0,q0;A0 , X̄θ1,q1;A1 )θ,q;A = (X0,X1)θ ′,q;A ′ ,(1.3)

where
θ ′ = (1− θ)θ0 + θθ1 and A ′ = (1− θ)A0 + θA1 + A.

In practice (especially in connection with certain limiting inequalities in analysis—cf.
[Mi]) it is often important to understand the behaviour of T on spaces which are close to
X̄θ0,q0;A0 or X̄θ1,q1;A1 . This means that we need to identify the spaces

(X̄θ0,q0;A0 , X̄θ1,q;A1 )θ,q;A with θ = 0 or θ = 1.(1.4)

Note that in the case where the space X̄θ0,q0;A0 or X̄θ1;q1;A1 , respectively, is replaced by X0

or X1, such an identification was obtained in [EOP]. In the situation where X1 ⊆ X0,
similar results were presented without proofs in [D]; some particular cases of [D] had been
investigated earlier in [GM] and [B].

Although the scale of spaces (X0,X1)θ,q;A is a particular case of (X0,X1)ρ,q, where ρ =
ρ(t) is the so-called function parameter (cf. [Ka], [G], [He], [Me 1, 2], [Per], etc.), the
results presented in the mentioned literature do not cover the situation described in (1.4).
Indeed, to get the reiteration formula involving

(X̄ρ0,q0 , X̄ρ1,q1 )ρ,q,

where ρ0, ρ1 and ρ are function parameters, the authors of these papers impose on ρ as-
sumptions which imply that the Matuszewska-Orlicz indices associated to ρ belong to the
interval (0, 1) (cf. [EOP]). Consequently, the case described in (1.4) is excluded.

The aim of this paper is to fill this gap and identify the spaces which appear in (1.4)
provided that 0 < θ0 < θ1 < 1 and θ = 0 or θ = 1. In order to do this a new class of
(quasi-) Banach spaces is introduced (based on ones appearing in [D] in the case X1 ⊆ X0),
and its relation to the scale of spaces X̄θ;q,A is analysed in detail. The identification of the
spaces in (1.4) when X1 ⊆ X0 was stated (without proof) in [D]. In this context we should
mention that general reiteration results of [DO], [N] and [BK] imply that

(X̄θ0,q0;A0 , X̄θ1,q1;A1 )θ,q;A = X̄K
Φ ,

where ‖ f ‖X̄K
Φ
= ‖K( f , t ; X0,X1)‖Φ with

Φ = (Lp0,q0;A0 , Lp1,q1;A1 )θ,q;A, pi = (1− θi)
−1, i = 0, 1.
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922 W. D. Evans and B. Opic

This means that the problem of identifying the spaces in (1.4) can be reduced to the special
case of couples of Lorentz-Zygmund spaces. However, it will be apparent from our solution
below that such a reduction does not make the proofs any easier.

To illustrate our results, for 0 ≤ θ ≤ 1, 0 < q, r ≤ ∞ and A = (α0, α∞), B =
(β0, β∞) ∈ R2, let

X̄L
θ;r,B,q,A = (X0,X1)L

θ;r,B,q,A

be the family of all functions f ∈ X0 + X1 satisfying ‖ f ‖L;θ;r,B,q,A <∞, where

‖ f ‖L;θ;r,B,q,A = ‖t
− 1

r �B−A(t)‖τ−θ−
1
q �A(τ )K( f , τ ; X0,X1)‖q,(0,t)‖r,(0,∞).(1.5)

We prove (Theorem 5.3) that

(X̄θ0,q0;A0 , X̄θ1,q1;A1 )0,q;A = X̄L
θ0;q,A+A0,q0,A0

(1.6)

provided that 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞, Ai = (αi0, αi∞) ∈ R2 (i = 0, 1), and
A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q = q0 =∞

or

α∞ +
1

q
< 0 < α0 +

1

q
if max{q, q0} <∞.

If, moreover, q = q0, then (cf. Corollary 5.4)

X̄L
θ0;q,A+A0,q0,A0

= X̄θ0,q0;A+A0+ 1
q0
,

which means that the resulting space in (1.6) is a space of the original scale X̄θ,q;A. In general
(cf. Theorems 4.7 and 4.10), we have the natural embeddings

X̄θ0;q;A+A0+ 1
min{q,q0}

↪→ X
L
θ0;q,A+A0,q0,A0

↪→ X̄θ0,q;A+A0+ 1
max{q,q0}

∩ X̄θ0,max{q,q0};A+A0+ 1
q
.

The formula (1.6) exhibits a certain kind of stability since the resulting space in (1.6) is
independent of the parameters involved in the space X̄θ1,q1;A1 ; note also that the same result
is obtained if the space X̄θ1,q1;A1 in (1.6) is replaced by X1 (Theorem 5.7).

In the case when X0 = L1(Ω), X1 = L∞(Ω) with Ω ⊆ Rn, 1 < p < ∞, 0 < q, r ≤ ∞,
θ = 1− 1

p , and A,B ∈ R2,

X̄L
θ;r,B,q,A = LL

p;r,B,q,A(Ω),

where the latter space is the collection of all measurable functions f on Ω satisfying

‖t−
1
r �B−A(t)‖τ

1
p−

1
q �A(τ ) f ∗(τ )‖q,(0,t)‖r,(0,∞) <∞

(cf. Lemma 8.5); f ∗ stands for the non-increasing rearrangement of f . The space
LL

p;r,B,q,A(Ω) is the Lorentz-Zygmund space Lp,r;B+ 1
r
(Ω) (for the precise definition see Sec-

tion 8) when r = q and

β∞ − α∞ ≤ 0 ≤ β0 − α0 if r =∞
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or

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
if r <∞.

Similar results are obtained for spaces (X̄θ0,q0;A0 , X̄θ1,q1;A1 )1,q;A (cf. Section 6).
The method of this paper can be used in the situation when the function �A(t) involved

in the (quasi-) norm (1.1) is replaced by
∏m

i=1 �
Ai
i (t), where �1(t) = �(t), � j+1(t) = 1 +

log � j(t) if j ≥ 1, and Ai = (αi0, αi∞) ∈ R2, i = 1, . . . ,m.
The paper is organized as follows. Section 2 contains the basic definitions and prelim-

inaries, while in Section 3 we present weighted inequalities which are applied in Sections
4–8 to get the desired results. Embedding theorems for spaces X̄L

θ;r,B,q,A are derived in Sec-
tion 4. Section 5 is devoted to the reiteration formula (1.6) involving spaces of the scale
X̄L
θ;r,B,q,A, while spaces X̄R

θ;r,B,q,A are defined in Section 6, which are of significance in the reit-
eration (1.4) with θ = 1. In Section 7 we explain how to obtain from our general results the
corresponding ones in [D] for an ordered couple of (quasi-) Banach spaces; applications
are contained in Section 8.

2 Notation and Preliminaries

Let E be a measurable subset of Rn (with respect to n-dimensional Lebesgue measure), and
denote its measure by |E| and its characteristic function by χE. The set of all non-negative
measurable functions on E is denoted by M+(E); when E = (a, b) ⊆ R we simply write
M+(a, b). By M+(a, b; ↓) we mean the subset of M+(a, b) consisting of non-increasing
functions on (a, b), and M+(a, b; ↑) is defined analogously. The set W (0,∞) of all weights
on (0,∞) is defined by

W(0,∞) := {w ∈M+(0,∞) : 0 < w <∞ a.e. on (0,∞)}.

We write A � B if A ≤ cB for some constant c which is independent of significant quantities
involved in expressions A and B, and A ≈ B if A � B and B � A. We use the convention
1/∞ = 0 and∞/a = ∞ for 0 < a < ∞, and for 0 < q ≤ ∞ we define q ′ by 1

q ′ + 1
q = 1

when q �= 1, and q ′ = +∞ when q = 1; note that q ′ < 0 when 0 < q < 1.
We understand by T : X → Y that the operator T is bounded from X to Y , where X

and Y are (quasi-) normed spaces; hence ‖T f ‖Y � ‖ f ‖X for all f ∈ X. The symbol ↪→ in
X ↪→ Y means that X is continuously embedded in Y ; hence ‖ f ‖Y � ‖ f ‖X for all f ∈ X.

Throughout the paper the spaces X0,X1,Y0,Y1 are (quasi-) Banach spaces (see [Pi]). We
say that (X0,X1) is a compatible couple if there is a Hausdorff topological vector space into
which each of X0, X1 is continuously embedded. The Peetre K-functional K( f , t ; X0,X1) is
defined for f ∈ X0 + X1 and t > 0 by

K( f , t ; X0,X1) = inf{‖ f0‖X0 + t‖ f1‖X1}

where the infimum is over all representations f = f0 + f1 with f0 ∈ X0, f1 ∈ X1. It is known
that K( f , t ; X0,X1) is non-decreasing, and t−1K( f , t ; X0,X1) non-increasing in t ; see [BS].
If there is no danger of confusion, we shall simply write K( f , t) instead of K( f , t ; X0,X1).

We write A = (α0, α∞) ∈ R2 for an ordered pair of real numbers, and use the con-
vention A + σ = (α0 + σ, α∞ + σ), A + B = (α0 + β0, α∞ + β∞) for σ ∈ R and
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B = (β0, β∞) ∈ R2. If A = (α0, α∞) and α0 = α∞ = α, we write the logarithmic
function �A(t) appearing in (1.1) as �α(t).

The spaces which feature in this paper have already been defined in Section 1: for 0 <
r, q ≤ ∞, θ ∈ [0, 1] and A,B ∈ R2,

X̄θ,q;A ≡ (X0,X1)θ,q;A = { f ∈ X0 + X1 : ‖ f ‖θ,q;A <∞}(2.1)

where ‖ f ‖θ,q;A is given by (1.1), and

X̄L
θ;r,B,q,A ≡ (X0,X1)L

θ;r,B,q,A = { f ∈ X0 + X1 : ‖ f ‖L;θ;r,B,q,A <∞}(2.2)

where ‖ f ‖L;θ;r,B,q,A is defined in (1.5).
It is readily seen that X̄θ,q;A and X̄L

θ;r,B,q,A are (quasi-) normed spaces. We establish their
completeness in our first theorem.

Theorem 2.1 Let X0,X1 be quasi-Banach spaces. Then, for θ ∈ [0, 1], 0 < r, q ≤ ∞,
A,B ∈ R2, the spaces X̄θ,q;A, X̄L

θ;r,B,q,A are quasi-Banach spaces.

Proof The proof in the case when X0, X1 are Banach spaces and r, q ∈ [1,∞] essentially
follows that in [BS, Chapter 5, Proposition 1.8]. The modifications necessary in general are
based on the following observations.

We first recall that the quasi-norm ‖ · ‖X on a quasi-normed space X is equivalent to
a p-norm for some p ∈ (0, 1], that is a quasi-norm ||| · ||| say which is such that ||| · |||p

satisfies the triangle inequality. It is readily seen that a p-norm ||| · ||| is also an s-norm for
any s ∈ (0, p). For a space X with a p-norm ||| · |||, it is known that X is complete if and only
if the following implication holds for fn ∈ X, n = 1, 2, . . . :

∞∑
n=1

||| fn|||
p <∞⇒

∣∣∣∣∣∣∣∣∣ ∞∑
n=1

fn

∣∣∣∣∣∣∣∣∣p ≤ ∞∑
n=1

||| fn|||
p(2.3)

(see [Pi, B1.6, page 17]).
Next, let Xi , i = 1, 2, be quasi-Banach spaces with quasi-norms ‖ · ‖i , i = 1, 2, respec-

tively, which are equivalent to pi-norms ||| · |||i for some pi ∈ (0, 1], i = 1, 2, and put
p = min{p0, p1}. Then ||| · |||i , i = 1, 2 are both p-norms, and X0 + X1 is a p-space with
p-norm defined by

||| f |||X0+X1 := inf
f= f0+ f1

fi∈Xi

{||| f0|||0 + ||| f1|||1}(2.4)

which is equivalent to the standard norm ‖ · ‖X0+X1 . The functional

K̃( f , t) := inf
f= f0+ f1

fi∈Xi

{||| f0|||
p
0 + t p||| f1|||

p
1}

is readily seen to satisfy the triangle inequality for all t ∈ (0,∞), and

K̃(·, t) ≈ ||| · |||pX0+X1
.
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Finally, on using the equivalence of ‖ · ‖Xi and ||| · |||i , and the fact that for p ∈ (0, 1] and
a1, a2 ≥ 0,

(a1 + a2)p ≤ ap
1 + ap

2 ≤ 21−p(a1 + a2)p,

it follows that for all f ∈ X0 + X1 and t ∈ (0,∞)

K̃( f , t) ≈ [K( f , t)]p,(2.5)

the constants of equivalence being independent of f and t .
The argument in [BS, Chapter 5, Proposition 1.8] can now be modified as follows. We

sketch the proof for X̄L
θ;r,B,q,A (assuming r, q <∞) that for X̄θ,q;A being similar. Write

‖ f ‖p
L;θ;r,B,q,A = ‖ψF( f , ·)‖r/p,(0,∞),

where

ψ(t) = t−p/r�p(B−A)(t), F( f , t) = ‖φK( f , ·)p‖q/p,(0,t), φ(τ ) = τ−p(θ+ 1
q )�pA(τ ),

and choose p ∈ (0,min{p0, p1, r, q}]. The Riesz-Fisher property (2.3) is applied suc-
cessively in Lr/p

(
(0,∞);ψr/p dt

)
, Lq/p

(
(0, t);φq/p dτ

)
and X0 + X1 with the p-norm

||| · |||X0+X1 ≈ K(·, t) for each t ∈ (0,∞) to give the result.

An important question is, when are X̄θ,q;A and X̄L
θ;r,B,q,A intermediate spaces between X0

and X1, that is

X0 ∩ X1 ↪→ X̄θ,q;A ↪→ X0 + X1,(2.6)

X0 ∩ X1 ↪→ X̄L
θ;r,B,q,A ↪→ X0 + X1.(2.7)

The answer for (2.6) is given in [EOP, Theorem 2.2 and Corollary 2.3] and, for convenience,
we mention it here.

Theorem 2.2 ([EOP, Theorem 2.2]) Let 0 ≤ θ ≤ 1, 0 < q ≤ ∞, and A = (α0, α∞) ∈ R2.

(i) The space (X0,X1)θ,q;A is an intermediate space between X0 and X1 provided that one of
the following conditions is satisfied:

θ ∈ (0, 1);(2.8)

θ = 0, α∞ +
1

q
< 0;(2.9)

θ = 0, q =∞, α∞ = 0;(2.10)

θ = 1, α0 +
1

q
< 0;(2.11)

θ = 1, q =∞, α0 = 0.(2.12)

(ii) If none of the conditions (2.8)–(2.12) holds, then (X0,X1)θ,q;A is a trivial space, that is
(X0,X1)θ,q;A = {0}.
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Corollary 2.3 ([EOP, Corollary 2.3]) If X0 ∩ X1 �= {0}, then the following statements are
equivalent:

(i) (X0,X1)θ,q;A is an intermediate space between X0 and X1;
(ii) (X0,X1)θ,q;A �= {0};
(iii) one of the conditions (2.8)–(2.12) holds.

We now give the answer for (2.7).

Theorem 2.4 Let 0 ≤ θ ≤ 1, 0 < q, r ≤ ∞, and A = (α0, α∞), B = (β0, β∞) ∈ R2.

(i) The space X̄L
θ;r,B,q,A is an intermediate space between X0 and X1 provided that one of the

following conditions is satisfied:
I. 0 < q, r <∞ and either

0 < θ < 1, β∞ − α∞ +
1

r
< 0

or

θ = 0, α∞ +
1

q
≥ 0, β∞ +

1

q
+

1

r
< 0

or

θ = 0, α∞ +
1

q
< 0, β∞ − α∞ +

1

r
< 0

or

θ = 1, α0 +
1

q
< 0, β0 +

1

q
+

1

r
< 0, β∞ − α∞ +

1

r
< 0;

II. q =∞, 0 < r <∞ and either

0 < θ < 1, β∞ − α∞ +
1

r
< 0

or

θ = 0, α∞ ≥ 0, β∞ +
1

r
< 0

or

θ = 0, α∞ < 0, β∞ − α∞ +
1

r
< 0

or

θ = 1, α0 ≤ 0, β0 +
1

r
< 0, β∞ − α∞ +

1

r
< 0;

III. 0 < q <∞, r =∞ and either

0 < θ < 1, β∞ − α∞ ≤ 0

or

θ = 0, α∞ +
1

q
> 0, β∞ +

1

q
≤ 0

or

θ = 0, α∞ +
1

q
= 0, β∞ − α∞ < 0
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or

θ = 0, α∞ +
1

q
< 0, β∞ − α∞ ≤ 0

or

θ = 1, α0 +
1

q
< 0, β0 +

1

q
≤ 0, β∞ − α∞ ≤ 0.

IV. q =∞, r =∞ and either

0 < θ < 1, β∞ − α∞ ≤ 0

or
θ = 0, α∞ ≥ 0, β∞ ≤ 0

or
θ = 0, α∞ < 0, β∞ − α∞ ≤ 0

or
θ = 1, α0 ≤ 0, β0 ≤ 0, β∞ − α∞ ≤ 0.

(ii) If none of the conditions I–IV holds, then X̄L
θ;r,B,q,A is a trivial space, that is X̄L

θ;r,B,q,A =

{0}.

Proof The proof is similar to that of [EOP, Theorem 2.2] and thus omitted.

Corollary 2.5 If X0 ∩ X1 �= {0}, then the following statements are equivalent:

(i) X̄L
θ;r,B,q,A is an intermediate space between X0 and X1;

(ii) X̄L
θ;r,B,q,A �= {0};

(iii) one of conditions I–IV holds.

Proof It is again omitted since it is similar to that of [EOP, Corollary 2.3].

Other (quasi-) Banach spaces, denoted by X̄R
θ;r,B,q,A, will be defined in Section 6. They

possess similar properties to those of X̄L
θ;r,B,q,A, and, indeed, are closely related to them.

The superscripts L, R are an indication of the fact that the corresponding spaces give a
descriptions of the reiterations considered in the paper at the left (L) and right (R) end of
the θ-range [0,1].

3 Weighted Inequalities

In this section we collect together weighted inequalities which are needed in the rest of the
paper. Some of the results are new, but others are included here (with precise references)
for convenience.

Lemma 3.1 ([EOP, Lemma 4.2 (i)]) Let 1 ≤ P ≤ Q ≤ ∞ and D = (δ0, δ∞) ∈ R2. Then
the inequality

∥∥∥t− 1
Q �D− 1

Q (t)

∫ t

0
g(τ ) dτ

∥∥∥
Q,(0,∞)

� ‖t 1
P ′ �D+ 1

P ′ (t)g(t)‖P,(0,∞)
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holds for every g ∈M+(0,∞) if and only if either

δ∞ < 0 < δ0,

or
P = 1, Q =∞ and δ∞ ≤ 0 ≤ δ0.

Theorem 3.2 ([L, Theorem 2.2]) Let 0 < Q ≤ P ≤ 1, Φ : R+ × R+ → R+, and v,w ∈
M+(0,∞). Then the inequality

[∫ ∞
0

(∫ ∞
0
Φ(x, y)h(y) dy

)P
w(x) dx

]1/P
≤ C
[∫ ∞

0
hQ(x)v(x) dx

]1/Q
(3.1)

holds for every h ∈M+(0,∞; ↓) if and only if, for all z > 0,

[∫ ∞
0

(∫ z

0
Φ(x, y) dy

)P
w(x) dx

]1/P
≤ C
[∫ z

0
v(x) dx

]1/Q
.(3.2)

(The constant C in both inequalities is the same.)

Theorem 3.3 ([L, Theorem 2.1]) Let 1 ≤ P ≤ Q < ∞, Φ : R+ × R+ → R+, and v,w ∈
M+(0,∞). Then the inequality

[∫ ∞
0

hQ(x)v(x) dx
]1/Q

≤ C
[∫ ∞

0

(∫ ∞
0
Φ(x, y)h(y) dy

)P
w(x) dx

)1/P
(3.3)

holds for all h ∈M+(0,∞; ↓) if and only if for all z > 0,

[∫ z

0
v(x) dx

]1/Q
≤ C
[∫ ∞

0

(∫ z

0
Φ(x, y) dy

)P
w(x) dx

]1/P
.(3.4)

(The constant C in both inequalities is the same.)

Lemma 3.4 Let s ∈ (0, 1), ϕ,w ∈W(0,∞) and define v ∈W (0,∞) by

v(y) = w(y)1−s
[
ϕ(y)

∫ ∞
y

w(x) dx
]s
, y ∈ (0,∞).(3.5)

Then for all h ∈M+(0,∞),

∫ ∞
0

hs(x)v(x) dx ≤ ss

∫ ∞
0

(∫ x

0
ϕ(y)h(y) dy

)s
w(x) dx.(3.6)

Proof Put

(Th)(x) =

∫ x

0
ϕ(y)h(y) dy, h ∈M+(0,∞), x ∈ (0,∞).(3.7)
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We can assume that h ∈M+(0,∞) satisfies

0 < ‖(Th)w
1
s ‖s,(0,∞) <∞(3.8)

(otherwise (3.6) with such h holds trivially). Using the identity

[(Th)(x)]s = s

∫ x

0

(∫ y

0
ϕ(t)h(t) dt

)s−1
ϕ(y)h(y) dy, x ∈ (0,∞),

Fubini’s theorem, and (3.5), we get

∫ ∞
0

[(Th)(x)]sw(x) dx = s

∫ ∞
0

(∫ x

0
[(Th)(y)]s−1ϕ(y)h(y) dy

)
w(x) dx(3.9)

= s

∫ ∞
0

[(Th)(y)]s−1h(y)ϕ(y)
[∫ ∞

y
w(x) dx

]
dy

= s

∫ ∞
0

[(Th)(y)]s−1w
1

s ′ (y)h(y)v
1
s (y) dy.

As ‖(Th)s−1w
1

s ′ ‖s ′,(0,∞) = ‖(Th)w
1
s ‖s−1

s,(0,∞), (3.8) implies that we can estimate the last
term in (3.9) by Hölder’s inequality (which has the reverse form since s ∈ (0, 1)—cf. [A.,
Theorem 2.6]). Thus,∫ ∞

0
[(Th)(x)]sw(x) dx ≥ s‖(Th)s−1w

1
s ′ ‖s ′,(0,∞)‖hv

1
s ‖s,(0,∞)

= s‖(Th)w
1
s ‖s−1

s,(0,∞)‖hv
1
s ‖s,(0,∞).

Dividing this inequality by ‖(Th)w
1
s ‖s−1

s,(0,∞) (cf. (3.8)) and raising it to the power s, we
obtain (3.6).

Lemma 3.5 Let θ < 1, 0 < q < ∞, and A = (α0, α∞), B = (β0, β∞) ∈ R2. Then for all
h ∈M+(0,∞; ↓),

‖t(1−θ)q�Bq(t)h(t)‖∞,(0,∞) �
∥∥∥�(B−A)q(t)

∫ t

0
τ (1−θ)q−1�Aq(τ )h(τ ) dτ

∥∥∥
∞,(0,∞)

.(3.10)

Proof Let t ∈ (0,∞) and h ∈M+(0,∞; ↓). Then

t(1−θ)q�Bq(t)h(t) = �(B−A)q(t)h(t)t(1−θ)q�Aq(t)

≈ �(B−A)q(t)h(t)

∫ t

0
τ (1−θ)q−1�Aq(τ ) dτ

≤ �(B−A)q(t)

∫ t

0
τ (1−θ)q−1�Aq(τ )h(τ ) dτ ,

which immediately yields (3.10).
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Remark 3.6 Note that the right-hand side of (3.10) is infinite if β∞−α∞ > 0 and 0 �= h ∈
M+(0,∞; ↓). Indeed, for such h there is R ∈ (0,∞) satisfying h ≥ χ(0,R). Consequently,

∥∥∥�(B−A)q(t)

∫ t

0
τ (1−θ)q−1�Aq(τ )h(τ ) dτ

∥∥∥
∞,(0,∞)

≥
∥∥∥�(B−A)q(t)

∫ t

0
τ (1−θ)q−1�Aq(τ )χ(0,R)(τ )

∥∥∥
∞,(R,∞)

=
(∫ R

0
τ (1−θ)q−1�Aq(τ ) dτ

)
‖�(B−A)q(t)‖∞,(R,∞).

Assuming that β∞ − α∞ > 0, we have

‖�(B−A)q(t)‖∞,(R,∞) =∞,

and the result follows.

Lemma 3.7 Let θ ∈ R, 0 < q < ∞, s ∈ (0, 1), r = sq, and let A = (α0, α∞), B =
(β0, β∞) ∈ R2 be such that

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
.(3.11)

Then for all h ∈M+(0,∞),∫ ∞
0

h(x)x(1−θ)q−1�Bq+ 1
s (x) dx(3.12)

�
{∫ ∞

0

[∫ x

0
y(1−θ)q−1�Aq(y)h(y) dy

]s
x−1�(B−A)r(x) dx

} 1
s
.

Proof Let h ∈M+(0,∞); put

LHS :=

∫ ∞
0

h(x)x(1−θ)q−1�Bq+ 1
s (x) dx.

Using the estimate

�Bq+ 1
s (x) ≈ �Aq(x)

(∫ ∞
x

y−1�(B−A)r(y) dy
) 1

s
, x ∈ (0,∞),

and Minkowski’s (integral) inequality, we obtain

(LHS)s ≈
{∫ ∞

0
h(x)x(1−θ)q−1�Aq(x)

(∫ ∞
x

y−1�(B−A)r(y) dy
) 1

s
dx
}s

≤

∫ ∞
0

[∫ y

0
h(x)x(1−θ)q−1�Aq(x) dx

]s
y−1�(B−A)r(y) dy

and (3.12) follows.

Lemma 3.8 ([EOP, Lemma 4.1]) Let 1 ≤ P ≤ Q ≤ ∞, ν �= 0, and D = (δ0, δ∞) ∈ R2.
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(i) The inequality∥∥∥tν− 1
Q �D(t)

∫ t

0
g(s) ds

∥∥∥
Q,(0,∞)

� ‖tν+ 1
P ′ �B(t)g(t)‖P,(0,∞)

holds for every g ∈M+(0,∞) if and only if ν < 0.
(ii) The inequality∥∥∥tν− 1

Q �D(t)

∫ ∞
t

g(s) ds
∥∥∥

Q,(0,∞)
� ‖tν+ 1

P ′ �B(t)g(t)‖P,(0,∞)

holds for every g ∈M+(0,∞) if and only if ν > 0.

Theorem 3.9 ([L, Theorem 2.4]) Let 0 < Q ≤ P ≤ 1, Φ : R+ × R+ → R+, and v,w ∈
M+(0,∞). Then the inequality[∫ ∞

0

(∫ ∞
0
Φ(x, y)h(y) dy

)P
w(x) dx

]1/P
≤ C
[∫ ∞

0
hQ(x)v(x) dx

]1/Q
(3.13)

holds for all h ∈M+(0,∞; ↑) if and only if, for all z > 0,[∫ ∞
0

(∫ ∞
z
Φ(x, y) dy

)P
w(x) dx

]1/P
≤ C
[∫ ∞

z
v(x) dx

]1/Q
.(3.14)

(The constant C in both inequalities is the same.)

Lemma 3.10 Assume that 0 < r < ∞ and A = (α0, α∞), B = (β0, β∞) ∈ R2 are
such that (3.11) holds. Let either θ ∈ [0, 1), or θ = 1 and α0 ≤ 0 ≤ α∞. Then for all
h ∈M+(0,∞; ↓),

‖t1−θ�B+ 1
r (t)h(t)‖∞,(0,∞) � ‖t− 1

r �B−A(t)‖τ 1−θ�A(τ )h(τ )‖∞,(0,t)‖r,(0,∞).

Proof For h ∈M+(0,∞; ↓) and T ∈ [0,∞) put

RHS(T) = ‖t−
1
r �B−A(t)‖τ 1−θ�A(τ )h(τ )‖∞,(0,t)‖r,(T,∞).

Our assumptions imply that for all T ∈ (0,∞),

‖τ 1−θ�A(τ )h(τ )‖∞,(0,T) ≈ T1−θ�A(T)

and
‖t−

1
r �B−A(t)‖r,(T,∞) ≈ �

B−A+ 1
r (T).

Consequently, for any T ∈ (0,∞),

RHS(0) ≥ RHS(T) ≥ ‖τ 1−θ�A(τ )‖∞,(0,T)h(T)‖t−
1
r �B−A(t)‖r,(T,∞)

≈ T1−θ�B+ 1
r (T)h(T)

and the result follows.

Lemma 3.11 ([EOP, Lemma 4.6 (i)]) Let ν ∈ (−1, 0), 0 < P ≤ 1, P ≤ Q ≤ ∞, and
D = (δ0, δ∞) ∈ R2. Then the inequality∥∥∥tν− 1

Q �D(t)

∫ t

0
g(s) ds

∥∥∥
Q,(0,∞)

� ‖tν+ 1
P ′ �D(t)g(t)‖P,(0,∞)

holds every g ∈M+(0,∞; ↓).
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4 Embeddings

Our objective here is to establish embeddings between spaces of the scales X̄θ,q;A and
X̄L
θ;r,B,q,A . More precisely, we prove that (under appropriate assumptions)

X̄θ,r;B+ 1
min{r,q}

↪→ X̄L
θ;r,B,q,A(4.1)

and

X̄L
θ;r,B,q,A ↪→ X̄θ,r;B+ 1

max{r,q}
.(4.2)

We shall start with a simple observation.

Lemma 4.1 Let θ ∈ [0, 1] and A = (α0, α∞), B = (β0, β∞) ∈ R2 be such that

β∞ − α∞ ≤ 0 ≤ β0 − α0.(4.3)

Then

X̄L
θ;∞,B,∞,A = X̄θ,∞;B(4.4)

(and the corresponding norms are equivalent).

Proof Using (4.3), we get

esssup
τ<t<∞

�B−A(t) ≈ �B−A(τ ) for all τ ∈ (0,∞).

Hence, for all f ∈ X̄L
θ;∞,B,∞,A ,

‖ f ‖L;θ;∞,B,∞,A = esssup
0<t<∞

�B−A(t) esssup
0<τ<t

τ−θ�A(τ )K( f , τ )

= esssup
0<τ<∞

τ−θ�A(τ )K( f , τ ) esssup
τ<t<∞

�B−A(t)

≈ esssup
0<τ<∞

τ−θ�B(τ )K( f , τ )

= ‖ f ‖θ,∞;B.

To deal with other cases, it will be useful to rewrite (1.5). Let 0 < q < ∞, 0 < r ≤ ∞
and set

s = r/q(4.5)

and

g(τ ) = [τ−θ−
1
q �A(τ )K( f , τ )]q, τ ∈ (0,∞).(4.6)
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Then we can rewrite (1.5) as

‖ f ‖q
L;θ;r,B,q,A =

∥∥∥t− 1
s �(B−A)q(t)

∫ t

0
g(τ ) dτ

∥∥∥
s,(0,∞)

.(4.7)

Lemma 4.2 Let θ ∈ [0, 1), A = (α0, α∞), B = (β0, β∞) ∈ R2, and either

0 < q ≤ r ≤ ∞ and q <∞(4.8)

or

0 < r < q <∞.(4.9)

If moreover

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
,(4.10)

then

X̄θ,r;B+ 1
min{r,q}

↪→ X̄L
θ;r,B,q,A.(4.11)

Proof Let s be given by (4.5) and f ∈ X̄θ,r;B+ 1
min{r,q}

.

(i) Assume first that (4.8) holds. Then 1 ≤ s ≤ ∞. Using (4.7), Lemma 3.1(i) (with
P = Q = s and D = (B− A)q + 1

s ), (4.10), and (4.6), we obtain

‖ f ‖q
L;θ;r,B,q,A =

∥∥∥t− 1
s �[(B−A)q+ 1

s ]− 1
s (t)

∫ t

0
g(τ ) dτ

∥∥∥
s,(0,∞)

� ‖t 1
s ′ �(B−A)q+1(t)g(t)‖s,(0,∞) = ‖t

−θq− 1
s �Bq+1(t)K( f , t)q‖s,(0,∞)

= ‖t−θ−
1
r �B+ 1

q (t)K( f , t)‖q
r,(0,∞) = ‖ f ‖q

θ,r;B+ 1
q

and (4.11) follows since min(r, q) = q.
(ii) Assume that (4.9) is satisfied. Then 0 < s < 1. Put P = Q = s and, for x, y ∈ (0,∞),



Φ(x, y) = χ(0,x)(y)y(1−θ)q−1�Aq(y),

w(x) = x−1�(B−A)qs(x),

v(x) = x(1−θ)r−1�Br+1(x),

h(y) = [K( f , y)/y]q;

(4.12)

note that h ∈M+(0,∞; ↓).
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Using (4.7), (4.6), (4.12), and the fact that min{r, q} = r, we obtain

‖ f ‖q
L;θ,r,B,q,A =

[∫ ∞
0

(∫ ∞
0
Φ(x, y)h(y) dy

)P
w(x) dx

]1/P
(4.13)

and

‖ f ‖q
θ,r;B+ 1

min{r,q}
= ‖ f ‖q

θ,r;B+ 1
r
= ‖x1−θ− 1

r �B+ 1
r (x)K( f , x)/x‖q

r,(0,∞)(4.14)

= ‖v
1
r (x)h

1
q (x)‖q

r,(0,∞) =
[∫ ∞

0
hQ(x)v(x) dx

]1/Q
.

Thus, the embedding (4.11) would hold if and only if the inequality (3.1) (with our choice
of P, Q,Φ, w, and v) would be satisfied. Consequently, to complete the proof, it is sufficient
to verify (3.2) (cf. Theorem 3.2).

Let z ∈ (0,∞). Since θ < 1,∫ z

0
v(x) dx =

∫ z

0
x(1−θ)qs−1�Bqs+1(x) dx ≈ z(1−θ)qs�Bqs+1(z).(4.15)

Moreover, using (4.12), (4.10), and the assumption θ < 1, we obtain

∫ ∞
0

(∫ z

0
Φ(x, y) dy

)P
w(x) dx

(4.16)

=

∫ z

0

(∫ z

0
Φ(x, y) dy

)s
w(x) dx

+

∫ ∞
z

(∫ z

0
Φ(x, y) dy

)s
w(x) dx

=

∫ z

0

(∫ x

0
y(1−θ)q−1�Aq(y) dy

)s
w(x) dx

+

∫ ∞
z

(∫ z

0
y(1−θ)q−1�Aq(y) dy

)s
w(x) dx

≈

∫ z

0

(
x(1−θ)q�Aq(x)

)s
w(x) dx +

(
z(1−θ)q�Aq(z)

)s
∫ ∞

z
w(x) dx

≈ z(1−θ)qs�Bqs+1(z).

The estimates (4.15) and (4.16) show that the condition (3.2) holds. The proof is complete.

It remains to prove the embedding (4.1) in the case where 0 < r < q = ∞. Then the
norm in the space X̄L

θ;r,B,q,A cannot be expressed by (4.7) and one cannot directly apply the
results of Section 3. However, we shall show in the proof of the next lemma that there is a
way which, ultimately, enables us to make use of results of Section 3 to treat this case.

Lemma 4.3 Let θ ∈ [0, 1), 0 < r < q = ∞, and let A = (α0, α∞), B = (β0, β∞) ∈ R2

satisfy (4.10). Then the embedding (4.11) holds.
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Proof On putting

X̄ = X̄θ,r;B+ 1
min{r,q}

= X̄θ,r;B+ 1
r
, X̄L = X̄L

θ;r,B,q,A,

and
h(t) = [K( f , t)/t]r , t ∈ (0,∞),

we have, for any f ∈ X0 + X1,

‖ f ‖X̄ = ‖t
−θ− 1

r �B+ 1
r (t)K( f , t)‖r,(0,∞) = ‖t

(1−θ)r−1�Br+1(t)h(t)‖
1
r
1,(0,∞)(4.17)

and
‖ f ‖X̄L = ‖t−

1
r �B−A(t)N(t)‖r,(0,∞),

where
N(t) = esssup

0<τ<t
τ−θ�A(τ )K( f , τ ) = esssup

0<τ<t
h

1
r (τ )τ 1−θ�A(τ ).

Since τ 1−θ�A(τ ) ≈ ‖σ1−θ− 1
r �A(σ)‖r,(0,τ ) and h ∈M+(0,∞; ↓),

N(t) � esssup
0<τ<t

‖σ1−θ− 1
r �A(σ)h

1
r (σ)‖r,(0,τ ) = ‖σ

1−θ− 1
r �A(σ)h

1
r (σ)‖r,(0,t),

which in turn yields

‖ f ‖X̄L �
∥∥∥t− 1

r �B−A(t)
(∫ t

0
σ(1−θ)r−1�Ar(σ)h(σ) dσ

) 1
r
∥∥∥

r,(0,∞)
(4.18)

=
∥∥∥t−1�(B−A)r(t)

∫ t

0
σ(1−θ)r−1�Ar(σ)h(σ) dσ

∥∥∥ 1
r

1,(0,∞)
.

On putting, for x, y ∈ (0,∞),

Φ(x, y) = χ(0,x)(y)y(1−θ)r−1�Ar(y),

w(x) = x−1�(B−A)r(x),

v(x) = x(1−θ)r−1�Br+1(x),

we have from (4.18) and (4.17),

‖ f ‖r
X̄L =

∫ ∞
0

(∫ ∞
0
Φ(x, y)h(y) dy

)
w(x) dx, ‖ f ‖r

X̄ =

∫ ∞
0

h(x)v(x) dx.

Together with Theorem 3.2 this implies that the embedding (4.11) holds if and only if the
condition (3.2) (with P = Q = 1) is satisfied for all z ∈ (0,∞). Since this is the case, the
proof is complete.
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Now, we turn our attention to the embedding (4.2).

Lemma 4.4 Let A = (α0, α∞), B = (β0, β∞) ∈ R2. Suppose that either

θ ∈ [0, 1) and 0 < q ≤ r <∞(4.19)

or

θ ∈ [0, 1] and 0 < r < q <∞.(4.20)

If moreover

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
,(4.21)

then

X̄L
θ;r,B,q,A ↪→ X̄θ,r;B+ 1

max{r,q}
.(4.22)

Proof Let s be given by (4.5) and f ∈ X̄L
θ;r,B,q,A.

(i) Assume first that (4.19) holds. Then 1 ≤ s <∞. Put P = Q = s and define Φ,w, v,
and h by (4.12). On using (4.7), (4.6), (4.12), and the fact that max{r, q} = r, we obtain
(4.13) and

‖ f ‖q
θ,r;B+ 1

max{r,q}
= ‖ f ‖q

θ,r;B+ 1
r
=
[∫ ∞

0
hQ(x)v(x) dx

]1/Q
(cf. (4.14)).

Thus, the embedding (4.22) holds if and only if the inequality (3.3) (with our choice of P,
Q, Φ, w, and v) is satisfied. By Theorem 3.3, this is the case if we verify (3.4). However, this
follows from (4.15) and (4.16).

(ii) Assume now that (4.20) is satisfied. Then 0 < s < 1. For x, y ∈ (0,∞) put{
ϕ(y) = y(1−θ)q−1�Aq(y), h(y) = [K( f , y)/y]q,

w(x) = x−1�(B−A)qs(x), v(x) = x(1−θ)r−1�Br+s(x).
(4.23)

Then (cf. (4.21)) ∫ ∞
y

w(x) dx ≈ �(B−A)qs+1(y), y ∈ (0,∞),

which implies that

w1−s(y)
[
ϕ(y)

∫ ∞
y

w(x) dx
]s
= ys−1�(B−A)qs(1−s)(y)y[(1−θ)q−1]s�[Aq+(B−A)qs+1]s(y)

= v(y), y ∈ (0,∞).

Thus, by Lemma 3.4, the inequality (3.6) holds on M+(0,∞). However, on using (4.7),
(4.6), and (4.23), we see that

‖ f ‖q
L;θ;r,B,q,A =

[∫ ∞
0

(∫ x

0
ϕ(y)h(y) dy

)s
w(x) dx

]1/s
.
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Moreover,

‖ f ‖q
θ,r;B+ 1

max{r,q}
= ‖ f ‖q

θ,r;B+ 1
q
= ‖x1−θ− 1

r �B+ 1
q (x)K( f , x)/x‖q

r,(0,∞)

= ‖v
1
r (x)h

1
q (x)‖q

r,(0,∞) =
[∫ ∞

0
hs(x)v(x) dx

]1/s
.

Consequently, (4.22) follows from (3.6).

The next two assertions show that Lemma 4.4 continues to hold when the condition
(4.19) is replaced by 0 < q < r =∞ and the condition (4.20) by 0 < r < q =∞.

Lemma 4.5 Let θ ∈ [0, 1), θ < q < r =∞, and A = (α0, α∞), B = (β0, β∞) ∈ R2. Then
the embedding (4.22) holds.

Proof Let f ∈ X̄L
θ;r,B,q,A and define s by (4.5) (i.e. s =∞). Put

h(t) = [K( f , t)/t]q, t ∈ (0,∞).(4.24)

Then, on using (4.7), (4.6) and the fact that max{r, q} =∞ we obtain

‖ f ‖q
L;θ;r,B,q,A = ‖�

(B−A)q(t)

∫ t

0
τ (1−θ)q−1�Aq(τ )h(τ ) dτ‖∞,(0,∞)

and

‖ f ‖q
θ,r;B+ 1

max{r,q}
= ‖ f ‖q

θ,∞;B = ‖t
1−θ�B(t)h

1
q (t)‖q

∞,(0,∞) = ‖t
(1−θ)q�Bq(t)h(t)‖∞,(0,∞).

Consequently, the result follows from Lemma 3.5.

Lemma 4.6 Let θ ∈ [0, 1], 0 < r < q =∞, and A = (α0, α∞), B = (β0, β∞) ∈ R2. Then
the embedding (4.22) holds.

Proof Let f ∈ X̄L
θ;r,B,q,A. Since for every t ∈ (0,∞),

‖τ−θ�A(τ )K( f , τ )‖∞,(0,t) ≥ t−θ�A(t)K( f , t),

we get

‖ f ‖L;θ;r,B,q,A ≥ ‖t
−θ− 1

r �B(t)K( f , t)‖r,(0,∞) = ‖ f ‖θ,r;B

and the result follows for max(r, q) =∞.

Summarizing our results with θ ∈ [0, 1), we have the following assertion.

Theorem 4.7 Let θ ∈ [0, 1), 0 < r, q ≤ ∞, and A = (α0, α∞), B = (β0, β∞) ∈ R2.
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(i) Let
β∞ − α∞ ≤ 0 ≤ β0 − α0 if r = q =∞

and

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
if min{r, q} <∞.

Then

X̄θ,r;B+ 1
min{r,q}

↪→ X̄L
θ;r,B,q,A.(4.25)

(ii) Let
β∞ − α∞ ≤ 0 ≤ β0 − α0 if r = q =∞

and

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
if max{r, q} <∞.

Then

X̄L
θ;r,B,q,A ↪→ X̄θ,r;B+ 1

max{r,q}
.(4.26)

Corollary 4.8 Let A = (α0, α∞), B = (β0, β∞) ∈ R2. Let either

θ ∈ [0, 1), 0 < r <∞, and β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
(4.27)

or

θ ∈ [0, 1], r =∞, and β∞ − α∞ ≤ 0 ≤ β0 − α0.(4.28)

Then

X̄L
θ;r,B,r,A = X̄θ,r;B+ 1

r
.(4.29)

Proof The result follows from Theorem 4.7 and Lemma 4.1.

Note that the direct proof of (4.29) shows that the restriction θ < 1 in (4.27) can be
relaxed (cf. our next result).

Lemma 4.9 Let θ ∈ [0, 1], and A = (α0, α∞), B = (β0, β∞) ∈ R2. Suppose either

0 < r <∞ and β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
(4.30)

or
r =∞ and β∞ − α∞ ≤ 0 ≤ β0 − α0.

Then
X̄L
θ;r,B,r,A = X̄θ,r;B+ 1

r
.
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Proof If r =∞, then Lemma 4.1 yields the result. If r ∈ (0,∞), then (4.7), (4.5), Fubini’s
theorem, (4.30), and (4.6) imply that

‖ f ‖r
L;θ;r,B,r,A =

∫ ∞
0

t−1�(B−A)r(t)
(∫ t

0
g(τ ) dτ

)
dt

=

∫ ∞
0

g(τ )
(∫ ∞

τ

t−1�(B−A)r(t) dt
)

dτ ≈

∫ ∞
0

g(τ )�(B−A)r+1(τ ) dτ

=

∫ ∞
0

[τ−θ−
1
r �B+ 1

r (τ )K( f , τ )]r dτ = ‖ f ‖r
θ,r;B+ 1

r
,

which completes the proof.

Now, we are going to show that the target space in (4.26) can be improved. In fact, we
shall prove that

X̄L
θ;r,B,q,A ↪→ X̄θ,r;B+ 1

max{r,q}
∩ X̄θ,max{r,q};B+ 1

r
(4.31)

provided that θ ∈ [0, 1], 0 < r < q <∞, and β∞ − α∞ + 1
r < 0 < β0 − α0 + 1

r .
Note that the target space in (4.31), in general, does not coincide with either of the

spaces X̄θ,r;B+ 1
max{r,q}

, X̄θ,max{r,q};B+ 1
r

(cf. [EOP, Theorems 3.1 and 3.11]). Observe also that

the target spaces on the right hand side of (4.31) coincide if 0 < q ≤ r ≤ ∞.

Theorem 4.10 Let θ ∈ [0, 1], 0 < r < q <∞, and let A = (α0, α∞), B = (β0, β∞) ∈ R2

be such that

β∞ − α∞ +
1

r
< 0 < β0 − α0 +

1

r
.(4.32)

Then (4.31) holds.

Proof By Lemma 4.4, the embedding (4.26) holds. Thus, it remains to prove that

X̄L
θ;r,B,q,A ↪→ X̄θ,max{r,q};B+ 1

r
.(4.33)

Let s be given by (4.5) and f ∈ X̄L
θ;r,B,q,A. Define h ∈ M+(0,∞) by (4.24). Then, using

(4.7), (4.6), (4.24), and the fact that max{r, q} = q, we obtain

‖ f ‖q
L;θ;r,B,q,A =

{∫ ∞
0

[∫ t

0
τ (1−θ)q−1�Aq(τ )h(τ ) dτ

]s
t−1�(B−A)r(t) dt

}1/s

and

‖ f ‖q
θ,max{r,q};B+ 1

r
= ‖ f ‖q

θ,q;B+ 1
r

= ‖t1−θ− 1
q �B+ 1

r (t)h
1
q (t)‖q

q,(0,∞) =

∫ ∞
0

h(t)t(1−θ)q−1�Bq+ 1
s (t) dt.

Thus, (4.33) is a consequence of Lemma 3.7.

The next theorem shows that (4.31) may hold even if 0 < r < q =∞.

Theorem 4.11 Assume that 0 < r < q = ∞ and A = (α0, α∞), B = (β0, β∞) ∈ R2 are
such that (4.32) is satisfied. Let either θ ∈ [0, 1), or θ = 1 and α∞ ≥ 0. Then (4.31) holds.
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Proof Since, by Lemma 4.6, the embedding (4.22) holds, it remains to prove (4.33).
If X̄L := X̄L

θ;r,B,q,A = {0}, then (4.33) is plain. Let X̄L �= {0}. If θ = 1, then Theorem 2.4
and the second inequality in (4.32) imply that α0 < 0. Hence, θ, r,A and B satisfy the
assumption of Lemma 3.10. Therefore, Lemma 3.10 applied to h ∈ M+(0,∞; ↓), given by
h(t) = K( f , t)/t , t ∈ (0,∞), with f ∈ X̄L, yields the result.

5 Reiteration

The aim of this section is to prove a limiting form of reiteration formula involving spaces
X̄θ,q;A = (X0,X1)θ,q;A, namely, the formula for the space

(X̄θ0,q0;A0 , X̄θ1,q1;A1 )0,q;A.

To this end we shall use the following notation:

K̄( f , t) = K( f , t ; X̄θ0,q0;A0 , X̄θ1,q1;A1 ).

Lemma 5.1 Let 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞, and A0 = (α00, α0∞), A1 =
(α10, α1∞), A = (α0, α∞) ∈ R2. Then

(X̄θ0,q0;A0 , X̄θ1,q1;A1 )0,q;A ↪→ X̄L
θ0;q,A+A0,q0,A0

.(5.1)

Proof Put

X = (Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q;A(5.2)

and

X
L
= X

L
θ0;q,A+A0,q0,A0

.(5.3)

By [EOP, Theorem 6.3], for all f ∈ X,

K
(

f , ρ(t)
)
≈ ‖s−θ0− 1

q0 �A0 (s)K( f , s; X0,X1)‖q0,(0,t)(5.4)

+ ρ(t)‖s−θ1−
1

q1 �A1 (s)K( f , s; X0,X1)‖q1,(t,∞),

where

ρ(t) = tθ1−θ0�A0−A1 (t), t ∈ (0,∞).(5.5)

Note that the function ρ is continuous on (0,∞), it maps (0,∞) onto (0,∞), and there
exist numbers δ,M ∈ (0,∞), δ < 1 < M, such that ρ is increasing on (0, δ) ∪ (M,∞).
Since ρ(t) → 0 as t → 0+ and ρ(t) → ∞ as t → ∞, we may assume that δ and M are
chosen in such a way that also ρ(δ) < 1 < ρ(M). One can verify that

ρ ′(t) ≈ ρ(t)/t, t ∈ (0,∞),(5.6)
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and

ρ−1(τ ) ≈ [τ�A1−A0 (τ )]1/(θ1−θ0),(5.7)

provided τ ∈
(
0, ρ(δ)

)
∪
(
ρ(M),∞

)
.

On using (5.4), we obtain for all f ∈ X,

‖ f ‖
XL = ‖ f ‖L;θ0;q,A+A0,q0,A0(5.8)

= ‖t−
1
q �A(t)‖τ−θ0− 1

q0 �A0 (τ )K( f , τ )‖q0 ,(0,t)‖q,(0,∞)

� ‖t−
1
q �A(t)K

(
f , ρ(t)

)
‖q,(0,∞) � N1 + N2 + N3,

where
Ni = ‖t

− 1
q �A(t)K

(
f , ρ(t)

)
‖q,Ii

, i = 1, 2, 3,

and

I1 = (0, δ), I2 = (δ,M), I3 = (M,∞).(5.9)

Changing the variable to τ = ρ(t), t ∈ I1 ∪ I3, and using the relations (dt/t) ≈ (dτ/τ ) and
log ρ−1(τ ) ≈ log τ , we get for i = 1, 3,

Ni ≈ ‖τ
− 1

q �A(τ )K( f , τ )‖q,ρ(Ii ) ≤ ‖ f ‖X,(5.10)

where ρ(Ii) = {τ ; τ = ρ(t), t ∈ Ii}. Since t ≈ 1 and �(t) ≈ 1 on I2, and

c1K( f , t) ≤ K
(

f , ρ(t)
)
≤ c2K( f , t), t ∈ I2,

where
c1 = min

t∈I2

{1, t−1ρ(t)}, c2 = max
t∈I2

{1, t−1ρ(t)},

we have

N2 ≈ ‖K
(

f , ρ(t)
)
‖q,I2
≈ ‖K( f , t)‖q,I2 ≈ ‖t

− 1
q �A(t)K( f , t)‖q,I2 ≤ ‖ f ‖X.(5.11)

Thus, on using estimates (5.8), (5.10), and (5.11), we obtain (5.1).

Lemma 5.2 Let 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞, and Ai = (αi0, αi∞) ∈ R2, i = 0, 1.
Suppose that A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q = q0 =∞(5.12)

and

α∞ +
1

q
< 0 ≤ α0 +

1

q
if max{q, q0} <∞.(5.13)
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Then
X

L
θ0;q,A+A0,q0,A0

↪→ (Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q;A.

Proof We shall use notation (5.2) and (5.3). Let f ∈ X
L

. Then

‖ f ‖X = ‖τ
− 1

q �A(τ )K( f , τ )‖q,(0,∞) � N1 + N2 + N3,

where
Ni = ‖τ

− 1
q �A(τ )K( f , τ )‖q,ρ(Ii ), i = 1, 2, 3,

ρ is from (5.5), and I1, I2, I3 are given by (5.9). On substituting τ = ρ(t), t ∈ I1 ∪ I3, we
obtain for i = 1, 3,

Ni ≈ ‖t
− 1

q �A(t)K
(

f , ρ(t)
)
‖q,Ii
≤ ‖t−

1
q �A(t)K

(
f , ρ(t)

)
‖q,(0,∞).

Since, moreover,

N2 ≈ ‖K( f , τ )‖q,ρ(I2) ≈‖K
(

f , ρ(τ )
)
‖q,ρ(I2)

≈ ‖τ−
1
q �A(τ )K

(
f , ρ(τ )

)
‖q,ρ(I2) ≤ ‖t

− 1
q �A(t)K

(
f , ρ(t)

)
‖q,(0,∞),

we have

‖ f ‖X � ‖t−
1
q �A(t)K

(
f , ρ(t)

)
‖q,(0,∞)(5.14)

and, on making use of (5.4) and (5.5),

‖ f ‖X̄ � I + J,

where
I = ‖t−

1
q �A(t)‖s−θ0−

1
q0 �A0 (s)K( f , s)‖q0 ,(0,t)‖q,(0,∞) = ‖ f ‖

XL

and
J = ‖tθ1−θ0− 1

q �A+A0−A1 (t)‖s−θ1−
1

q1 �A1 (s)K( f , s)‖q1 ,(t,∞)‖q,(0,∞).

Thus, to conclude the proof, it is sufficient to verify that

J � ‖ f ‖
XL for all f ∈ X

L
.(5.15)

To this end, we shall distinguish several cases:
(i) Assume first that q1 =∞, q =∞. Since

J = esssup
0<t<∞

tθ1−θ0�A+A0−A1 (t) esssup
t<s<∞

s−θ1�A1 (s)K( f , s)

= esssup
0<s<∞

s−θ1�A1 (s)K( f , s) esssup
0<t<s

tθ1−θ0�A+A0−A1 (t)

≈ esssup
0<s<∞

s−θ1�A1 (s)K( f , s)sθ1−θ0�A+A0−A1 (s)

= esssup
0<s<∞

s−θ0�A+A0 (s)K( f , s) = ‖ f ‖θ0,∞;A+A0
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and, by Lemma 4.5 (if q0 <∞) or by Lemma 4.1 (if q0 =∞; note that then (5.12) is used),

‖ f ‖
XL = ‖ f ‖L;θ0;∞,A+A0,q0,A0 � ‖ f ‖θ0,∞;A+A0 ,

the estimate (5.15) follows.
(ii) Let 0 < q1 <∞ and 0 < q ≤ ∞. On putting

σ = q/q1(5.16)

and

g(s) = [s−θ1−
1

q1 �A1 (s)K( f , s)]q1 ,(5.17)

we can write

Jq1 =
∥∥∥t(θ1−θ0)q1− 1

σ �(A+A0−A1)q1 (t)

∫ ∞
t

g(s) ds
∥∥∥
σ,(0,∞)

.(5.18)

(ii1) Assume additionally that q1 ≤ q (consequently, 0 < q1 ≤ q ≤ ∞ and q1 < ∞).
Then 1 ≤ σ ≤ ∞. Using (5.18), Lemma 3.8(ii) (with P = Q = σ, ν = (θ1 − θ0)q1, and
D = (A + A0 − A1)q1), (5.17), and (5.16), we obtain

Jq1 � ‖t(θ1−θ0)q1+ 1
σ ′ �(A+A0−A1)q1 (t)g(t)‖σ,(0,∞)(5.19)

= ‖t−θ0q1−
1
σ �(A+A0)q1 (t)K( f , t)q1‖σ,(0,∞)

= ‖t−θ0− 1
q �(A+A0)(t)K( f , t)‖q1

q,(0,∞)

= ‖ f ‖q1

θ0,q;A+A0
≤ ‖ f ‖q1

θ0,q;A

where

A = A + A0 +
1

max{q, q0}
.(5.20)

Since, by Theorem 4.7(ii) (cf. (5.12) and (5.13)),

X
L
= X

L
θ0;q,A+A0,q0,A0

↪→ Xθ0,q;A,(5.21)

the estimate (5.15) follows from (5.19).
(ii2) Assume additionally that q < q1 (consequently, 0 < q < q1 <∞). Then 0 < σ <

1. Let A be given by (5.20). Put P = Q = σ and, for x, y ∈ (0,∞),



Φ(x, y) = χ(x,∞)(y)y−θ1q1−1�A1q1 (y),

w(x) = x(θ1−θ0)q−1�(A+A0−A1)q(x),

v(x) = x−θ0q−1�Aq(x),

h(y) = [K( f , y)]q1 ;

(5.22)
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note that h ∈M+(0,∞; ↑). Using (5.18), (5.17), and (5.22), we obtain

Jq1 =
[∫ ∞

0

(∫ ∞
0
Φ(x, y)h(y) dy

)P
w(x) dx

]1/P

and [∫ ∞
0

hQ(x)v(x) dx
]1/Q

= ‖h
1

q1 (x)v(x)
1
q ‖q1

q,(0,∞)

= ‖x−θ0− 1
q �A(x)K( f , x)‖q1

q,(0,∞) = ‖ f ‖q1

θ0,q;A.

Since, by Theorem 4.7(ii), the embedding (5.21) holds, the estimate (5.15) holds if and only
if the inequality (3.13) (with our choice of P, Q, Φ, w, and v) is satisfied. By Theorem 3.9,
this is the case if we verify (3.14).

Let z ∈ (0,∞). Then∫ ∞
z

v(x) dx =

∫ ∞
z

x−θ0q−1�Aq(x) dx ≈ z−θ0q�Aq(z).(5.23)

Moreover, ∫ ∞
0

(∫ ∞
z
Φ(x, y) dy

)P
w(x) dx(5.24)

=

∫ z

0

(∫ ∞
z
Φ(x, y) dy

)P
w(x) dx +

∫ ∞
z

(∫ ∞
z
Φ(x, y) dy

)P
w(x) dx

=

∫ z

0

(∫ ∞
z

y−θ1q1−1�A1q1 (y) dy
)σ

w(x) dx

+

∫ ∞
z

(∫ ∞
x

y−θ1q1−1�A1q1 (y) dy
)σ

w(x) dx

≈ z−θ0q�(A+A0)q(z).

The estimates (5.23) and (5.24) imply that the condition (3.14) holds.
(iii) Finally, let 0 < q < q1 =∞. It is sufficient to prove that

J ≤ ‖ f ‖θ0,q;A for all f ∈ X
L

(5.25)

with A from (5.20) since then the estimate (5.15) follows on applying the embedding
(5.21).

Let f ∈ X
L

. For x, y ∈ (0,∞) put



Φ(x, y) = χ(x,∞)(y)y−θ1q−1�A1q(y),

w(x) = x(θ1−θ0)q−1�(A+A0−A1)q(x),

v(x) = x−θ0q−1�Aq(x),

h(y) = [K( f , y)]q;

(5.26)
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again h ∈M+(0,∞; ↑). As

‖s−θ1�A1 (s)K( f , s)‖∞,(t,∞) ≈ esssup
t<s<∞

K( f , s)‖σ−θ1− 1
q �A1 (σ)‖q,(s,∞)

≤ ‖σ−θ1−
1
q �A1 (σ)K( f , σ)‖q,(t,∞),

we obtain

Jq � ‖tθ1−θ0−
1
q �A+A0−A1 (t)

(∫ ∞
t

σ−θ1q−1�A1q(σ)h(σ) dσ
)1/q
‖q

q,(0,∞)(5.27)

=
∥∥∥t(θ1−θ0)q−1�(A+A0−A1)q(t)

∫ ∞
t

σ−θ1q−1�A1q(σ)h(σ) dσ
∥∥∥

1,(0,∞)

=

∫ ∞
0

(∫ ∞
0
Φ(x, y)h(y) dy

)
w(x) dx.

Moreover,

‖ f ‖q
θ0,q;A = ‖t

−θ0− 1
q �A(t)K( f , t)‖q

q,(0,∞)(5.28)

= ‖t−θ0q−1�Aq(t)h(t)‖1,(0,∞) =

∫ ∞
0

h(x)v(x) dx.

Since the condition (3.14) with P = Q = 1 (and Φ,w, and v given by (5.26)) is satisfied, by
Theorem 3.9 the inequality (3.13) holds on M+(0,∞; ↑). Together with (5.27) and (5.28)
this yields (5.25), which completes the proof.

Combining Lemmas 5.1 and 5.2, we obtain the desired reiteration formula.

Theorem 5.3 Let 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞, and Ai = (αi0, αi∞) ∈ R2,
i = 0, 1. Suppose that A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q = q0 =∞(5.29)

and

α∞ +
1

q
< 0 < α0 +

1

q
if max{q, q0} <∞.(5.30)

Then

(Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q;A = X
L
θ0;q,A+A0,q0,A0

.(5.31)

Corollary 5.4 Let 0 < θ0 < θ1 < 1, 0 < q0, q1 ≤ ∞, and Ai = (αi0, αi∞) ∈ R2, i = 0, 1.
Suppose that A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q0 =∞
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and

α∞ +
1

q0
< 0 < α0 +

1

q0
if q0 <∞.

Then

(Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q0;A = Xθ0,q0;A+A0+ 1
q0
.(5.32)

Proof The assertion is a consequence of Theorem 5.3 and Lemma 4.9.

One can see from Theorem 5.3 that the resulting space in (5.31), that is the space

X
L
θ0;q,A+A0,q0,A0

, is independent of parameters θ1, q1, and A1. That means there is a certain

kind of stability in the reiteration formula (5.31) with respect to the space Xθ1,q1;A1 . Now,
we are going to show that (5.31) continues to hold even if the space Xθ1,q1;A1 is replaced by
any intermediate space X1 of class 1, that is, by any intermediate space X̄1 (between X0 and
X1) satisfying (cf. [BS, Chapter 5, Definition 2.2])

X1 ↪→ X̄1 ↪→ X1 +∞X0 := (X0,X1)1,∞;(0,0).

Lemma 5.5 Let 0 < θ0 < 1, 0 < q0, q ≤ ∞, and A0 = (α00, α0∞), A = (α0, α∞) ∈ R2. If
X1 is an intermediate space of class 1, then

(Xθ0,q0;A0 ,X1)0,q;A ↪→ X
L
θ0;q,A+A0,q0,A0

.(5.33)

The proof uses the same arguments as that of Lemma 5.1, except that the estimate (cf.
[EOP, Theorem 6.6])

K( f , ρ(t); Xθ0,q0;A0 ,X1) ≈ ‖s−θ0−
1

q0 �A0 (s)K( f , s)‖q0 ,(0,t)(5.34)

with

ρ(t) = t1−θ0�A0 (t), t ∈ (0,∞),(5.35)

is applied instead of (5.4).

The next lemma deals with the opposite embedding to (5.33).

Lemma 5.6 Let 0 < θ0 < 1, 0 < q0, q ≤ ∞, and A0 = (α00, α0∞), A = (α0, α∞) ∈ R2. If
X̄1 is an intermediate space of class 1, then

X
L
θ0;q,A+A0,q0,A0

↪→ (Xθ0,q0;A0 ,X1)0,q;A.(5.36)

Proof Let X
L

be given by (5.3); put X = (Xθ0,q0;A0 ,X1)0,q;A and K( f , t) =
K( f , t ; Xθ0,q0;A0 ,X1). Using the arguments of the proof of Lemma 5.2 (except that ρ is now
given by (5.35)), one obtains (5.14), and, on applying (5.34),

‖ f ‖X � ‖t−
1
q �A(t)‖s−θ0− 1

q0 �A0 (s)K( f , s)‖q0 ,(0,t)‖q,(0,∞) = ‖ f ‖
X

L .
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Combining Lemmas 5.5 and 5.6, we get the desired result.

Theorem 5.7 Let 0 < θ0 < 1, 0 < q0, q ≤ ∞, and A0 = (α00, α0∞), A = (α0, α∞) ∈ R2.
If X̄1 is an intermediate space of class 1, then

(Xθ0,q0;A0 ,X1)0,q;A = X
L
θ0;q,A+A0,q0,A0

.(5.37)

The next assertion is a consequence of Theorem 5.7 and Lemma 4.9.

Corollary 5.8 Let 0 < θ0 < 1, 0 < q0 ≤ ∞, and A0 = (α00, α0∞), A = (α0, α∞) ∈ R2.
Suppose that

α∞ ≤ 0 ≤ α0 if q0 =∞

or

α∞ +
1

q0
< 0 < α0 +

1

q0
if q0 <∞.

If X1 is an intermediate space of class 1, then

(Xθ0,q0;A0 ,X1)0,q0;A = Xθ0,q0;A+A0+ 1
q0
.(5.38)

Combining Theorems 5.3 and 5.7 (or Corollaries 5.4 and 5.8), we obtain the following
result on stability of the reiteration formula (5.31).

Theorem 5.9 Let 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞, and Ai = (αi0, αi∞) ∈ R2,
i = 0, 1. Suppose that A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q = q0 =∞

and

α∞ +
1

q
< 0 < α0 +

1

q
if max{q, q0} <∞.

If, moreover, X1 is an intermediate space of class 1, then

(Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q;A = (Xθ0,q0;A0 ,X1)0,q;A = X
L
θ0;q,A+A0,q0,A0

.

Corollary 5.10 Let 0 < θ0 < θ1 < 1, 0 < q0, q1 ≤ ∞, and Ai = (αi0, αi∞) ∈ R2, i = 0, 1.
Suppose that A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q0 =∞

and

α∞ +
1

q0
< 0 < α0 +

1

q0
if q0 <∞.

If, moreover, X1 is an intermediate space of class 1, then

(Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q0;A = (Xθ0,q0;A0 ,X1)0,q0;A = Xθ0,q0;A+A0+ 1
q0
.

Remark 5.11 Note that a similar stability property to that of Theorem 5.9 has the reitera-
tion formula

(X0,Xθ1,q1;A1 )0,q;A = (X0,X1)0,q;A = X0,q;A

provided that α∞ + 1
q < 0 or α∞ ≤ 0 when q = ∞, and Xi (i = 0, 1) is an intermediate

space of class i (see [EOP, Theorem 7.1 (iii)]; cf. also [GM, Theorem 4.1]).
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6 The Spaces X̄Rθ;r,B,q,A

For 0 < r, q ≤ ∞, θ ∈ [0, 1] and A,B ∈ R2, we define

X̄R
θ;r,B,q,A ≡ (X0,X1)R

θ;r,B,q,A := { f ∈ X0 + X1 : ‖ f ‖R;θ;r,B,q,A <∞},(6.1)

where

‖ f ‖R;θ;r,B,q,A := ‖t−
1
r �B−A(t)‖τ−θ−

1
q �A(τ )K( f , τ ; X0,X1)‖q,(t,∞)‖r,(0,∞).(6.2)

These spaces are needed to obtain analogous results to the preceding ones at the right end
(θ=1) of the θ-range [0, 1]. They are in fact related to the spaces X̄L

θ;r,B,q,A by the identity

(X0,X1)R
θ;r,B,q,A = (X1,X0)L

1−θ;r,B̃,q,Ã,(6.3)

where, if A = (α0, α∞), B = (β0, β∞), we have Ã = (α∞, α0) and B̃ = (β∞, β0).
This follows from a change of variables t → 1/t and the fact that (see [BS, Chapter 5,
Proposition 1.2])

tK( f , t−1; X0,X1) = K( f , t ; X1,X0).(6.4)

Similarly, on using (6.4) we have

(X0,X1)θ,q;A = (X1,X0)1−θ,q;Ã(6.5)

and hence

(
(X0,X1)θ0,q0;A0 ,(X0,X1)θ1,q1;A1

)
1,q;A

(6.6)

=
(
(X1,X0)1−θ1,q1;Ã1

, (X1,X0)1−θ0,q0;Ã0

)
0,q;Ã

.

These remarks lead to the following consequences of Theorems 2.4.

Theorem 2.4∗ Let 0 ≤ θ ≤ 1, 0 < q, r ≤ ∞ and A = (α0, α∞), B = (β0, β∞) ∈ R2.

(i) The space X̄R
θ;r,B,q,A is a (quasi-) Banach space which is intermediate between X0 and X1,

provided that one of the following conditions is satisfied:
I. 0 < q, r <∞ and either

0 < θ < 1, β0 − α0 +
1

r
< 0

or

θ = 0, α∞ +
1

q
< 0, β∞ +

1

q
+

1

r
< 0, β0 − α0 +

1

r
< 0

or

θ = 1, α0 +
1

q
< 0, β0 − α0 +

1

r
< 0
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or

θ = 1, α0 +
1

q
≥ 0, β0 +

1

q
+

1

r
< 0;

II. q =∞, 0 < r <∞ and either

0 < θ < 1, β0 − α0 +
1

r
< 0

or

θ = 0, α∞ ≤ 0, β∞ +
1

r
< 0, β0 − α0 +

1

r
< 0

or

θ = 1, α0 < 0, β0 − α0 +
1

r
< 0

or

θ = 1, α0 ≥ 0, β0 +
1

r
< 0;

III. 0 < q <∞, r =∞ and either

0 < θ < 1, β0 − α0 ≤ 0

or

θ = 0, α∞ +
1

q
< 0, β∞ +

1

q
≤ 0, β0 − α0 ≤ 0

or

θ = 1, α0 +
1

q
< 0, β0 − α0 ≤ 0

or

θ = 1, α0 +
1

q
= 0, β0 − α0 < 0

or

θ = 1, α0 +
1

q
> 0, β0 +

1

q
≤ 0;

IV. q =∞, r =∞ and either

0 < θ < 1, β0 − α0 ≤ 0

or
θ = 0, α∞ ≤ 0, β∞ ≤ 0, β0 − α0 ≤ 0

or
θ = 1, α0 < 0, β0 − α0 ≤ 0

or
θ = 1, α0 ≥ 0, β0 ≤ 0.

(ii) If none of the conditions I–IV holds, then X
R
θ;r,B,q,A is a trivial space.
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Similarly, one can obtain the symmetric results to those of Sections 4 and 5 involving

spaces X
R
θ;r,B,q,A. For example, the symmetric counterparts of Theorems 4.7 and 5.9 read as

follows.

Theorem 4.7∗ Let θ ∈ (0, 1], 0 < r, q ≤ ∞ and A = (α0, α∞), B = (β0, β∞) ∈ R2.

(i) Let
β0 − α0 ≤ 0 ≤ β∞ − α∞ if r = q =∞

and

β0 − α0 +
1

r
< 0 < β∞ − α∞ +

1

r
if min{r, q} <∞.

Then

(4.25∗) Xθ,r;B+ 1
min{r,q}

↪→ X
R
θ;r,B,q,A.

(ii) Let
β0 − α0 ≤ 0 ≤ β∞ − α∞ if r = q =∞

and

β0 − α0 +
1

r
< 0 < β∞ − α∞ +

1

r
if max{r, q} <∞.

Then

(4.26∗) X
R
θ;r,B,q,A ↪→ Xθ,r;B+ 1

max{r,q}
.

Theorem 5.9∗ Let 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞ and Ai = (αi0, αi∞) ∈ R2,
i = 0, 1. Suppose that A = (α0, α∞) ∈ R2 is such that

α0 ≤ 0 ≤ α∞ if q = q1 =∞

and

α0 +
1

q
< 0 < α∞ +

1

q
if max{q, q1} <∞.

Then, if X̄0 is an intermediate space of class 0,

(Xθ0,q0;A0 ,Xθ1,q1;A1 )1,q;A = (X0,Xθ1,q1;A1 )1,q;A = X
R
θ1;q,A+A1,q1,A1

.

7 Ordered Couples

We now indicate the changes which result from the assumptions that the compatible couple
(X0,X1) of (quasi-) Banach spaces is ordered in the sense that X1 ⊆ X0 algebraically and
topologically, i.e. the identification map is continuous, and hence there exists K > 0 such
that ‖ f ‖X0 ≤ K‖ f ‖X1 for all f ∈ X1. These are the spaces considered in [D]. An example
is X0 = L1(Ω), X1 = L∞(Ω) and Ω ⊂ Rn such that |Ω| < ∞. When X1 ⊆ X0 and X0 is a
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Banach space, then it is readily seen that K( f , t ; X0,X1) = ‖ f ‖X0 for all f ∈ X0 and t ≥ K
(cf. [BL]), whereas if X0 is a quasi-Banach space, there exists c > 1 such that

1

c
‖ f ‖X0 ≤ K( f , t ; X0,X1) ≤ ‖ f ‖X0 , f ∈ X0

for t ≥ K; in fact, in this case the functional K̃ in the proof of Theorem 2.1 satisfies
K̃( f , t ; X0,X1) = ‖ f ‖p

X0
for f ∈ X0, where p ∈ (0, 1] is such that ‖ · ‖X0 is equivalent

to a p-norm.
The spaces (X0,X1)θ,q;A and (X0,X1)L

θ;r,B,q,A are now defined (cf. [D] and [EOP]) with
A = (α, α) and B = (β, β), and (quasi-) norms

‖ f ‖θ,q;α := ‖t−θ−
1
q �α(t)K( f , t,X0,X1)‖q,(0,1),

‖ f ‖L;θ;r,β,q,α := ‖t−1/r�β−α(t)‖τ−θ−
1
q �α(τ )K( f , τ ; X0,X1)‖q,(0,t)‖r,(0,1)

respectively: they are denoted by Xθ,q;α and X
L
θ;r,β,q,α.

The proofs of our general results in this paper are easily adapted to give analogous results
for the ordered couple case: these essentially involve replacing the intervals (0,∞), (t,∞)
by (0, 1), (t, 1) respectively, the vector exponents A, B by their first components, and by
omitting all the assumptions on their second components. For example, the results which
correspond to Theorems 2.4, 4.7, 4.10, 5.7 and 5.9 are as follows.

Theorem 2.4+ Let 0 ≤ θ ≤ 1, 0 < q, r ≤ ∞ and α, β ∈ R.

(i) The space (X0,X1)L
θ;r,β,q,α is an intermediate space between X0 and X1 provided that one

of the following conditions is satisfied:

(a) 0 ≤ θ < 1;

(b) θ = 1 and either

0 < q, r <∞, α +
1

q
< 0, β +

1

q
+

1

r
< 0

or

q =∞, 0 < r <∞, α ≤ 0, β +
1

r
< 0

or

0 < q <∞, r =∞, α +
1

q
< 0, β +

1

q
≤ 0

or

q =∞, r =∞, α ≤ 0, β ≤ 0.

(ii) If none of the above conditions holds, then (X0,X1)L
θ;r,β,q,α = {0}.
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Theorem 4.7+ Let θ ∈ [0, 1), 0 < r, q ≤ ∞ and α, β ∈ R.

(i) Let

β − α ≥ 0 if r = q =∞,

β − α +
1

r
> 0 if min{r, q} <∞.

Then

(4.25+) Xθ,r;β+ 1
min{r,q}

↪→ X
L
θ;r,β,q,α.

(ii) Let

β − α ≥ 0 if r = q =∞,

β − α +
1

r
> 0 if max{r, q} <∞.

Then

(4.26+) X
L
θ;r,β,q,α ↪→ Xθ,r;β+ 1

max{r,q}
.

Theorem 4.10+ Let θ ∈ [0, 1], 0 < r < q <∞, and α, β ∈ R with β − α + 1
r > 0. Then

(4.31+) X
L
θ;r,β,q,α ↪→ Xθ,r;β+ 1

q
∩ Xθ,q;β+ 1

r
.

Theorem 5.9+ Let 0 < θ0 < θ1 < 1, 0 < q0, q1, q ≤ ∞ and α0, α1 ∈ R. Let α ∈ R be such
that

α ≥ 0 if q = q0 =∞,

α +
1

q
> 0 if max{q, q0} <∞.

Then
(Xθ0,q0;α0 ,Xθ1,q1;α1 )0,q;α = (Xθ0,q0;α0 ,X1)0,q;α = X

L
θ0;q,α+α0,q0,α0

where X1 is an intermediate space of class 1.

Results for an ordered couple (X0,X1) (still with X1 ⊆ X0) corresponding to θ = 1 in

the reiteration formulae are obtained in terms of the spaces X
R
θ;r,β,q,α = (X0,X1)R

θ;r,β,q,α with
(quasi-) norms

‖ f ‖R;θ;r,β,q,α := ‖t−
1
r �β−α(t)‖τ−θ−

1
q �α(τ )K( f , τ ,X0,X1)‖q,(t,1)‖r,(0,1).

Such results can be easily obtained from general results for the spaces X
R
θ;r,B,q,A, replacing

the intervals (0,∞), (t,∞) by (0, 1), (t, 1) respectively, the vector exponents A, B by their

https://doi.org/10.4153/CJM-2000-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-039-2


Real Interpolation 953

first components, and by omitting all the assumptions on their second components. (The
formula (6.3) offers another way of getting such results from our general results for the

spaces X
L
θ;r,B,q,A: these essentially involve replacing θ by 1− θ, the vector exponents A, B by

their second components, and by omitting all the assumptions on their first components).
For example, the result corresponding to Theorem 4.7∗ reads as follows (compare also

with Theorem 4.7):

Theorem 4.7∗+ Let θ ∈ (0, 1], 0 < r, q ≤ ∞ and α, β ∈ R.

(i) Let

β − α ≤ 0 if r = q =∞,

β − α +
1

r
< 0 if min{r, q} <∞.

Then

(4.25∗+) Xθ,r;β+ 1
min{r,q}

↪→ X
R
θ;r,β,q,α.

(ii) Let

β − α ≤ 0 if r = q =∞,

β − α +
1

r
< 0 if max{r, q} <∞.

Then

(4.26∗+) X
R
θ;r,β,q,α ↪→ Xθ,r;β+ 1

max{r,q}
.

8 Applications

Let (R, µ) denote a totally σ-finite measure space with a non-atomic measure µ. By
M(R, µ) we mean the set of all µ-measurable functions on R. If f ∈ M(R, µ), f ∗ denotes
the non-increasing rearrangement of f with respect to µ, and f ∗∗(t) := t−1

∫ t
0 f ∗(s) ds.

We adopt the convention:

(∗) (+∞)s = +∞ for all s ∈ (0,∞).

Definition 8.1 Let 0 < p, q ≤ ∞ and A = (α0, α∞) ∈ R2. The Lorentz-Zygmund space
Lp,q;A = Lp,q;A(R, µ) is the set of all f ∈M(R, µ) such that

‖ f ; Lp,q;A‖ := ‖t
1
p−

1
q �A(t) f ∗(t)‖q,(0,∞) <∞.(8.1)

(For detail study of spaces Lp,q;A we refer to [OP].)
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J. Peetre [Pe] has shown that

K( f , t ; L1, L∞) =

∫ t

0
f ∗(τ ) dτ .(8.2)

This result has been generalized by P. Krée [Kr] who has proved that

K( f , t ; Ls, L∞) ≈
(∫ t s

0
f ∗(τ )s dτ

)1/s
, 0 < s <∞.(8.3)

When the space Ls is replaced by Ls,∞, then (cf., e.g. , [Ho])

K( f , t ; Ls,∞, L∞) ≈ sup
0<τ<t s

τ
1
s f ∗(τ ), 0 < s <∞.(8.4)

We shall need the following two lemmas (where we make use of the convention (∗)).

8.2. Lemma Let θ ∈ (0, 1), 0 < q ≤ ∞, 0 < s <∞, and A = (α0, α∞) ∈ R2. Then for all
t ∈ (0,∞] and every f ∈ Ls + L∞,

‖τ−θ−
1
q �A(τ )K( f , τ ; Ls, L∞)‖q,(0,t) ≈ ‖y

1−θ
s −

1
q �A(y) f ∗(y)‖q,(0,t s).(8.5)

Proof Put N(t) = ‖τ−θ−
1
q �A(τ )K( f , τ ; Ls, L∞)‖q,(0,t). On using (8.3) and the change of

variables τ s = y, we get

N(t) ≈
∥∥∥τ−θ− 1

q �A(τ )
(∫ τ s

0
f ∗(z)s dz

)1/s∥∥∥
q,(0,t)

(8.6)

≈
∥∥∥y−

θ
s−

1
q �A(y)

(∫ y

0
f ∗(z)s dz

)1/s∥∥∥
q,(0,t s)

.

The estimate ∫ y

0
f ∗(z)s dz ≥ y f ∗(y)s, y ∈ (0,∞),

implies that

N(t) ≥ ‖y
1−θ

s −
1
q �A(y) f ∗(y)‖q,(0,t s).(8.7)

On the other hand, by (8.6),

N(t) ≈
∥∥∥y−θ−

s
q �As(y)

∫ y

0
f ∗(z)s dz

∥∥∥ 1
s

q
s ,(0,t s)

.

Consequently, putting g = f ∗χ(0,t s) (note that g ∈ M+(0,∞; ↓)) and applying
Lemma 3.8(i) and Lemma 3.11 if q

s ≥ 1 and q
s ∈ (0, 1), respectively, we obtain

N(t) ≤
∥∥∥y−θ−

s
q �As(y)

∫ y

0
g(z)s dz

∥∥∥ 1
s

q
s ,(0,∞)

� ‖y−θ+1/( q
s ) ′�As(y)g(y)s‖

1
s
q
s ,(0,∞)

= ‖y1−θ− s
q �As(y) f ∗(y)s‖

1
s
q
s ,(0,t s)

= ‖y
1−θ

s −
1
q �A(y) f ∗(y)‖q,(0,t s).
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This estimate and (8.7) yield the result.

Lemma 8.3 Let θ ∈ (0, 1), 0 < q ≤ ∞, 0 < s <∞ and A = (α0, α∞) ∈ R2. Then for all
t ∈ (0,∞] and every f ∈ Ls,∞ + L∞,

‖τ−θ−
1
q �A(τ )K( f , τ ; Ls,∞, L∞)‖q,(0,t) ≈ ‖y

1−θ
s −

1
q �A(y) f ∗(y)‖q,(0,t s).(8.8)

Proof Put N(t) = ‖τ−θ−
1
q �A(y)K( f , τ ; Ls,∞, L∞)‖q,(0,t). On using (8.4) and the change of

variables τ s = y, we get

N(t) ≈ ‖τ−θ−
1
q �A(τ ) sup

0<z<τ s
z

1
s f ∗(z)‖q,(0,t)(8.9)

≈ ‖y−
θ
s−

1
q �A(y) sup

0<z<y
z

1
s f ∗(z)‖q,(0,t s).

The estimate
sup

0<z<y
z

1
s f ∗(z) ≥ y

1
s f ∗(y), y ∈ (0,∞),

implies that

N(t) � ‖y
1−θ

s −
1
q �A(y) f ∗(y)‖q,(0,t s).(8.10)

On the other hand,

sup
0<z<y

z
1
s f ∗(z) ≈ sup

0<z<y
f ∗(z)

∫ z

0
σ

1
s−1 dσ

≤ sup
0<z<y

∫ z

0
σ

1
s−1 f ∗(σ) dσ =

∫ y

0
σ

1
s−1 f ∗(σ) dσ,

which, together with (8.9), yields

N(t) �
∥∥∥y−

θ
s−

1
q �A(y)

∫ y

0
σ

1
s−1 f ∗(σ) dσ

∥∥∥
q,(0,t s)

.

Consequently, putting g = f ∗χ(0,t s) (note that g ∈ M+(0,∞; ↓)) and applying
Lemma 3.8(i) and Theorem 3.2, respectively, if q ≥ 1 and q ∈ (0, 1), we obtain

N(t) ≤
∥∥∥y−

θ
s−

1
q �A(y)

∫ y

0
σ

1
s−1g(σ) dσ

∥∥∥
q,(0,∞)

� ‖y
1−θ

s −
1
q �A(y)g(y)‖q,(0,∞) = ‖y

1−θ
s −

1
q �A(y) f ∗(y)‖q,(0,t s).

Together with (8.10), this gives the result.

Corollary 8.4 Let 0 < s < p < ∞, θ = 1 − s
p , 0 < q ≤ ∞, and A = (α0, α∞) ∈ R2.

Then

(Ls, L∞)θ,q;A = Lp,q;A,(8.11)

(Ls,∞, L∞)θ,q;A = Lp,q;A.(8.12)
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In particular:

(Ls, L∞)θ,p = Lp (cf. [Ho, Lemma 4.1]),(8.13)

(Ls,∞, L∞)θ,p = Lp (cf. [Ho,Lemma 4.2]),(8.14)

(L1, L∞) 1
p ′
,q;A = Lp,q;A if 1 < p <∞,(8.15)

(L1,∞, L∞) 1
p ′
,p;A = Lp,q;A if 1 < p <∞.(8.16)

Proof Put Xθ,q;A = (X0,X1)θ,q;A, where X0 = Ls or X0 = Ls,∞, and X1 = L∞. Then for all

f ∈ X0 + X1, ‖ f ; Xθ,q;A‖ = ‖τ
−θ− 1

q �A(τ )K( f , τ ; X0,X1)‖q,(0,∞). Applying Lemma 8.2 or
8.3 (with t =∞), respectively, and using the identity (1− θ)/s = 1/p and (8.1), we get

‖ f ; Xθ,q;A‖ ≈ ‖y
1−θ

s −
1
q �A(y) f ∗(y)‖q,(0,∞) = ‖ f ; Lp,q;A‖

which proves (8.11) and (8.12).

Lemma 8.5 Let 0 < s < p < ∞, θ = 1 − s
p , 0 < q, r ≤ ∞, and A = (α0, α∞),

B = (β0, β∞) ∈ R2. Then

(Ls, L∞)L
θ;r,B,q,A = (Ls,∞, L∞)L

θ;r,B,q,A = LL
p;r,B,q,A = LL,(8.17)

where

LL
p;r,B,q,A = { f ∈M(R, µ); ‖ f ; LL‖ <∞}(8.18)

and

‖ f ; LL‖ = ‖ f ; LL
p;r,B,q,A‖ = ‖t

− 1
r �B−A(t)‖τ

1
p−

1
q �A(τ ) f ∗(τ )‖q,(0,t)‖r,(0,∞).(8.19)

Proof Put X
L
= (X0,X1)L

θ;r,B,q,A , where X0 = Ls or X0 = Ls,∞, respectively, and X1 = L∞.
Then, by (2.2)

‖ f ; X
L
‖ = ‖t−

1
r �B−A(t)N(t)‖r,(0,∞),

where
N(t) = ‖τ−θ−

1
q �A(τ )K( f , τ ; X0,X1)‖q,(0,t).

Using Lemma 8.2 or 8.3, and the identity (1− θ)/s = 1/p, we obtain

‖ f ; LL‖ ≈ ‖t−
1
r �B−A(t)‖y

1
p−

1
q �A(y) f ∗(y)‖q,(0,t s)‖r,(0,∞)

and, on changing the variable to x = ts,

‖ f ; X
L
‖ ≈ ‖x−

1
r �B−A(x)‖y

1
p−

1
q �A(y) f ∗(y)‖q,(0,x)‖r,(0,∞) = ‖ f ; LL‖.
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Lemma 8.6 Let 1 < p < ∞, θ = 1
p ′ , 0 < q, r ≤ ∞, and A = (α0, α∞), B = (β0, β∞) ∈

R2. Then

(L1, L∞)R
θ;r,B,q,A = L(R)

p;r,B,q,A = L(R),(8.20)

where

L(R)
p;r,B,q,A = { f ∈M(R, µ); ‖ f ; L(R)‖ <∞}(8.21)

and

‖ f ; L(R)‖ = ‖ f ; L(R)
p;r,B,q,A‖ = ‖t

− 1
r �B−A(t)‖τ

1
p−

1
q �A(τ ) f ∗∗(τ )‖q,(t,∞)‖r,(0,∞).(8.22)

The proof is trivial and is hence omitted.

In [EOP, Section 8] we have used the spaces

Mp,A(Ω) :=
(
L1(Ω), Lp,1(Ω)

)
1,∞;A

, 1 < p <∞,(8.23)

and

Sp,A(Ω) :=
(
Lp,∞(Ω), L∞(Ω)

)
0,1;A

, 1 ≤ p <∞,(8.24)

with Ω ⊆ Rn to describe mapping properties of certain (quasi-) linear operators. The
following theorem shows that these spaces are particular cases of L(R)

p;r,B,q,A and LL
p;r,B,q,A (with

(R, µ) = (Ω, dx)).

Theorem 8.7

(i) Let 1 < p <∞ and A = (α0, α∞) ∈ R2. Then

Mp,A(Ω) = L(R)
p;∞,A,1,(0,0) =

(
L1(Ω), L∞(Ω)

)R
1

p ′
;∞,A,1,(0,0)

.

(ii) Let 1 ≤ p <∞, 0 < s < p, θ = 1− s
p , and A = (α0, α∞) ∈ R2. Then

Sp,A = LL
p;1,A,∞,(0,0) =

(
Ls,∞(Ω), L∞(Ω)

)L
θ;1,A,∞,(0,0)

.

Proof (i) Put X0 = L1 = L1(Ω), X1 = L∞ = L∞(Ω). Since, by (8.15),

Lp,1 = (L1, L∞) 1
p ′
,1, 1 < p <∞,

we have by (8.23), a symmetric analogue (dealing with the right end of the interpolation
scale) of Theorem 5.7, and Lemma 8.6,

Mp,A(Ω) =
(
X0, (X0,X1) 1

p ′
,1

)
1,∞;A

= X
R

1
p ′

;∞,A,1,(0,0)

=
(
L1(Ω), L∞(Ω)

)R
1

p ′
;∞,A,1,(0,0)

= L(R)
p;∞,A,1,(0,0).
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(ii) Put Y0 = Ls,∞ = Ls,∞(Ω), Y1 = L∞ = L∞(Ω). Since, by (8.12),

Lp,∞ = (Ls,∞, L∞)θ,∞,

we have by (8.24), Theorem 5.7, and Lemma 8.5,

Sp,A(Ω) =
(
(Y0,Y1)θ,∞,Y1

)
0,1;A
= Y

L
θ;1,A,∞,(0,0)

=
(
Ls,∞(Ω), L∞(Ω)

)L
θ;1,A,∞,(0,0)

= LL
p;1,A,∞,(0,0).

Next, recall the result of [Me 1, Example 3]:
Let 0 < p0, p1 <∞, p0 �= p1, 0 < q0, q1, q ≤ ∞, α0, α1, α ∈ R, 0 < θ < 1, and

1

pθ
=

1− θ

p0
+
θ

p1
, αθ = (1− θ)α0 + θα1.

Then

(Lp0,q0;(α0,α0), Lp1,q1;(α1,α1))θ,q;(α,α) = Lpθ,q;(αθ,αθ).

In the next theorem we determine the corresponding space with θ = 0.

Theorem 8.9 Let 0 < p0 < p1 < ∞, 0 < q0, q1, q ≤ ∞, Ai = (αi0, αi∞) ∈ R2, i = 0, 1.
Assume that A = (α0, α∞) ∈ R2 is such that

α∞ ≤ 0 ≤ α0 if q = q0 =∞

and

α∞ +
1

q
< 0 < α0 +

1

q
if max{q, q0} <∞.

Then

(Lp0,q0;A0 , Lp1,q1;A1 )0,q;A = LL
p0;q,A+A0,q0,A0

.(8.25)

In particular,

(Lp0,q0;A0 , Lp1,q1;A1 )0,q0;A = Lp0,q0;A+A0+ 1
q0

(8.26)

provided that

α∞ ≤ 0 ≤ α0 and q0 =∞

and

α∞ +
1

q0
< 0 < α0 +

1

q0
and q0 <∞.
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Proof Let 0 < s < min{p0, p1}, θi = 1 − s
pi

, i = 0, 1, and X0 = Ls, X1 = L∞. Then by
(8.11), Theorem 5.9, and Lemma 8.5,

(Lp0,q0;A0 , Lp1,q1;A1 )0,q;A =
(
(Ls, L∞)θ0,q0;A0 , (Ls, L∞)θ1,q1;A1

)
0,q;A

= (Xθ0,q0;A0 ,Xθ1,q1;A1 )0,q;A = X
L
θ0;q,A+A0,q0,A0

= (Ls, L∞)L
θ0;q,A+A0,q0,A0

= LL
p0;q,A+A0,q0,A0

,

which proves (8.25). Taking q = q0 in (8.25) and applying Lemma 4.9, we obtain (8.26).

Remarks 8.10 (i) By Theorem 5.9, the assertion of Theorem 8.9 remains true if the space
Lp1,q1;A1 is replaced in (8.25) or (8.26) by L∞.

(ii) Suppose that the assumption 0 < p0 < p1 < ∞ of Theorem 8.9 is replaced by
1 < p1 < p0 <∞. Then

(Lp0,q0;A0 , Lp1,q1;A1 )0,q;A = (Lp1,q1;A1 , Lp0,q0;A0 )1,q;Ã = L(R)
p0;q,Ã+A0,q0,A0

,(8.27)

where Ã = (α∞, α0) (the last equality in (8.27) follows from Theorem 5.9∗ and
Lemma 8.6).

(iii) Note that in the case when µ(R) < ∞ the result corresponding to (8.26) (with
A0 = (α0, α0), A1 = (α1, α1), and A = (α, α)) was mentioned without proof in [D].

(iv) Let µ(R) <∞. Taking A0 = (0, 0), A1 = (0, 0) and A = (α, α) in (8.26), we get

Lp0,q0;α+ 1
q0
= (Lp0,q0 , Lp1,q1 )0,q0;α

provided that
0 ≤ α and q0 =∞

or

0 < α +
1

q0
and q0 <∞.

(Compare with extrapolation results in [ET, Section 2.6.2, Theorem 2] and [Mi, (2.26)].)
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