# SPLITTING INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK

## KEI JI IZUCHI<sup>⊠</sup>, KOU HEI IZUCHI and YUKO IZUCHI

(Received 28 May 2015; accepted 25 October 2015; first published online 12 May 2016)

Communicated by Chris Meaney

#### Abstract

Let  $H^2$  be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of  $H^2$  have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with  $\overline{\mathbb{D}}$  is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.

2010 Mathematics subject classification: primary 47A15; secondary 32A35, 47B35.

Keywords and phrases: Hardy space over the bidisk, splitting invariant subspace, Hilbert-Schmidt invariant subspace, Rudin type invariant subspace.

## **1. Introduction**

Let  $H^2 = H^2(\mathbb{D}^2)$  be the Hardy space over the bidisk  $\mathbb{D}^2$  with variables z and w. Then  $H^2 = H^2(z) \otimes H^2(w)$ , where  $H^2(z)$  is the z-variable Hardy space. A nonzero closed subspace M of  $H^2$  is said to be invariant if  $zM \subset M$  and  $wM \subset M$ . For an invariant subspace L of  $H^2(z)$ , by the Beurling theorem,  $L = \varphi(z)H^2(z)$  for some inner function  $\varphi(z)$ . The structure of invariant subspaces of  $H^2 = H^2(\mathbb{D}^2)$  is extremely complicated (see [3, 14]). For a function  $\phi$  in  $H^\infty(\mathbb{D}^2)$ , we denote by  $T_{\phi}$  the multiplication operator on  $H^2$  by  $\phi$ . For an invariant subspace M of  $H^2$ , we write  $R_z^M = T_z|_M$  and  $R_w^M = T_w|_M$ . We will simply write  $R_z, R_w$  when no confusion occurs. Then  $(R_z, R_w)$  is a pair of commuting isometries on M. In the study of invariant subspaces of  $H^2$ , the operators  $R_z, R_w$  play important roles in the study of operator theory and function theory. Since

$$M = \bigoplus_{n=0}^{\infty} w^n (M \ominus wM),$$

the space  $M \ominus wM$  contains much information about the properties of M.

$$[R_{w}^{*}, R_{w}] := R_{w}^{*}R_{w} - R_{w}R_{w}^{*} = I_{M} - P_{wM} = P_{M \ominus wM},$$

The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (no. 24540164).

<sup>© 2016</sup> Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

where  $P_E$  is the orthogonal projection from  $H^2$  onto the closed subspace E of  $H^2$ ,  $[R_w^*, R_z] = 0$  on wM and  $[R_w^*, R_z] = R_w^* R_z$  on  $M \ominus wM$ . So  $[R_z^*, R_z][R_w^*, R_w]$  and  $[R_w^*, R_z]$  are key operators in the study of invariant subspaces of  $H^2$  (see [4, 5, 7– 9, 11, 12, 15, 16, 18–23]).

In [19], Yang defined two numerical invariants for *M*,

$$\Sigma_0(M) = \left\| [R_z^*, R_z] [R_w^*, R_w] \right\|_{\text{HS}}^2, \quad \Sigma_1(M) = \left\| [R_w^*, R_z] \right\|_{\text{HS}}^2,$$

where  $\|\cdot\|_{HS}$  is the Hilbert–Schmidt norm, and showed that

$$\left\| [R_{z}^{*}, R_{z}][R_{w}^{*}, R_{w}] \right\|_{\mathrm{HS}}^{2} = \left\| [R_{w}^{*}, R_{w}][R_{z}^{*}, R_{z}] \right\|_{\mathrm{HS}}^{2}$$

and

$$\|[R_w^*, R_z]\|_{\mathrm{HS}}^2 = \|[R_z^*, R_w]\|_{\mathrm{HS}}^2.$$

In [19, Proposition 3.3], he showed also that if *M* is unitarily equivalent to  $M_1$ , then  $\Sigma_0(M) = \Sigma_0(M_1)$  and  $\Sigma_1(M) = \Sigma_1(M_1)$ . In [22], Yang introduced the concept of Hilbert–Schmidtness for *M*. It is equivalent to the fact that  $P_M - R_z R_z^* - R_w R_w^* - R_z T_w R_z^* R_w^*$  is Hilbert–Schmidt (see [5, Proposition 1.1]). By [5, Corollary 3.3], *M* is Hilbert–Schmidt if and only if  $\Sigma_0(M) + \Sigma_1(M) < \infty$ . For a given *M*, it is generally difficult to compute the exact values of  $\Sigma_0(M)$  and  $\Sigma_1(M)$ .

Hilbert–Schmidt invariant subspaces have many nice properties (see [5, 15, 16, 19– 23]). Let  $F_z^M$  be the compression operator of  $T_z$  on  $M \ominus wM$ . In [19], Yang called  $F_z^M$  the fringe operator and studied properties of  $F_z^M$ . If M is Hilbert–Schmidt, then, by [21],  $F_z^M$  is Fredholm. Hence, by [19, Corollary 4.3], zM + wM is closed and dim  $(M \ominus (zM + wM)) < \infty$ .

Let  $N = H^2 \oplus M$ . Let  $S_z^N$  and  $S_w^N$  be the compression operators of  $T_z$  and  $T_w$  on N, that is,  $S_z^N f = P_N T_z f$  for  $f \in N$ . We have  $(S_z^N)^* = T_z^*|_N$  and  $(S_w^N)^* = T_w^*|_N$ . We will simply write  $S_z, S_w$  when no confusion occurs. We denote by  $\sigma_c(S_z)$  and  $\sigma_c(S_w)$  the continuous spectra of  $S_z$  and  $S_w$ , that is,  $\lambda \in \sigma_c(S_z)$  if and only if either dim  $(S_z - \lambda I_N) = \infty$  or  $S_z - \lambda I_N$  does not have closed range. Set  $\sigma_c(M) = \sigma_c(S_z) \cap \sigma_c(S_w)$ . In [19, Theorem 2.3], Yang showed that if  $\sigma_c(M) \neq \overline{\mathbb{D}}$ , then  $\Sigma_0(M) + \Sigma_1(M) < \infty$ , so M is Hilbert–Schmidt. If  $\varphi(z)H^2 \subset M$  for some inner function  $\varphi(z)$ , then, by the model theory of Sz.-Nagy and Foiaş [13, 17],  $\sigma_c(M) \neq \overline{\mathbb{D}}$ , so there are a lot of Hilbert– Schmidt invariant subspaces. If M is a unitarily equivalent to an invariant subspace  $M_1$  such that  $\sigma_c(M_1) \neq \overline{\mathbb{D}}$ , then M is Hilbert–Schmidt. In this paper, we shall study a Hilbert–Schmidt invariant subspace M satisfying that  $\sigma_c(M_1) = \overline{\mathbb{D}}$  for every  $M_1$  that is unitarily equivalent to M.

In Section 2, we shall define splitting invariant subspaces of  $H^2$  and prove that they are Hilbert–Schmidt. In Section 3, we shall study a Rudin-type invariant subspace  $\mathcal{M}$  which was first studied in [14, page 72]. We shall show that  $\mathcal{M}$  is splitting, and that  $\sigma_c(\mathcal{M}_1) = \overline{\mathbb{D}}$  for every  $\mathcal{M}_1$  that is unitarily equivalent to  $\mathcal{M}$ .

Let  $\mathcal{M}_0 = z\mathcal{M} + w\mathcal{M}$ . Then  $\mathcal{M}_0$  is an invariant subspace. We shall show that, under some additional assumptions,  $\mathcal{M}_0$  is Hilbert–Schmidt,  $\mathcal{M}_0$  is not splitting and  $\sigma_c(\mathcal{M}_2) = \overline{\mathbb{D}}$  for every  $\mathcal{M}_2$  that is unitarily equivalent to  $\mathcal{M}_0$ .

#### Splitting invariant subspaces

### 2. Splitting invariant subspaces

Let  $\varphi(z)$  be a nonconstant inner function. An invariant subspace *M* of  $H^2$  is said to be *splitting* for  $\varphi(z)$  if

$$(#1) \quad M = (M \cap \varphi(z)H^2) \oplus (M \cap (H^2 \ominus \varphi(z)H^2))$$

and

$$(#2) \quad M \cap (H^2 \ominus \varphi(z)H^2) \neq \{0\}.$$

Similarly, we may define a splitting invariant subspace for a nonconstant inner function  $\psi(w)$ . We say simply that *M* is splitting if *M* is splitting either for  $\varphi(z)$  or for  $\psi(w)$ . In this section, we shall study splitting invariant subspaces *M* for  $\varphi(z)$ . We set

$$A = A(\varphi) = M \cap (H^2 \ominus \varphi(z)H^2).$$
(2.1)

We write

$$K_{\varphi}(z) = H^2(z) \ominus \varphi(z) H^2(z)$$
 and  $K_{\psi}(w) = H^2(w) \ominus \psi(w) H^2(w)$ .

**LEMMA** 2.1. Let M be a splitting invariant subspace for  $\varphi(z)$ . Then  $wA \subset A$  and there is an inner function  $\psi(w)$  (may be constant) such that  $M \cap \psi(w)H^2 = A \oplus \varphi(z)\psi(w)H^2$ ,  $A \subset \psi(w)K_{\varphi}(z) \otimes H^2(w)$ ,  $K_{\varphi}(z) \otimes K_{\psi}(w) \perp M$  and  $T_z^*\varphi(z)\psi(w) \not\perp A$ . Moreover, if  $\eta(w)$ is an inner function satisfying  $A \subset \eta(w)H^2$ , then  $\psi(w)H^2 \subset \eta(w)H^2$ .

**PROOF.** By (#2) and (2.1),  $A \neq \{0\}$ ,  $wA \subset A$  and  $zA \notin A$ . For  $f \in A$ , we write

$$zf = f_1 \oplus f_2 \in \varphi(z)H^2 \oplus (H^2 \ominus \varphi(z)H^2).$$

Since  $f \in H^2 \ominus \varphi(z)H^2$ ,  $f_1 \in \varphi(z)H^2(w)$ ,

$$zw^n f = w^n f_1 \oplus w^n f_2 \in \varphi(z)H^2(w) \oplus (H^2 \ominus \varphi(z)H^2)$$

for every  $n \ge 0$  and  $\{f_1 : f \in A\} \ne \{0\}$ . Then, by the Beurling theorem, there is an inner function  $\psi(w)$  such that

$$\bigvee_{n\geq 0} w^n \{f_1 : f \in A\} = \varphi(z)\psi(w)H^2(w),$$

where  $\bigvee_{n\geq 0} E_n$  is the closed linear span of  $E_0, E_1, \ldots$ . This shows that  $T_z^*\varphi(z)\psi(w) \not\perp A$ . By (#1),  $f_1 \in M \cap \varphi(z)H^2$ . Hence  $\varphi(z)\psi(w)H^2(w) \subset M$ , so  $\varphi(z)\psi(w)H^2 \subset M$ . One easily sees that  $A \subset \psi(w)H^2$ , and  $\psi(w)H^2 \subset \eta(w)H^2$  for every inner function  $\eta(w)$  satisfying  $A \subset \eta(w)H^2$ . By (#1) and (2.1),  $M \cap \psi(w)H^2 = A \oplus \varphi(z)\psi(w)H^2$ ,  $A \subset \psi(w)K_{\varphi}(z) \otimes H^2(w)$  and  $K_{\varphi}(z) \otimes K_{\psi}(w) \perp M$ .

An inner function  $\psi(w)$  given in Lemma 2.1 is unique except for constant multiplication and depends on  $\varphi(z)$ . So  $\psi(w)$  is said to be the associated inner function of  $\varphi(z)$  for *M*.

Let *M* be a splitting invariant subspace for  $\varphi(z)$  and  $\psi(w)$  be the associated inner function of  $\varphi(z)$ . By Lemma 2.1,

$$L_1 := A \oplus \varphi(z)\psi(w)H^2 = M \cap \psi(w)H^2.$$
(2.2)

Since  $\varphi(z)\psi(w)H^2 \subset M \cap \varphi(z)H^2$ , let

$$B = B(\varphi) = (M \cap \varphi(z)H^2) \ominus \varphi(z)\psi(w)H^2.$$

Then  $zB \subset B$  and  $B \subset \varphi(z)H^2(z) \otimes K_{\psi}(w)$ . By Lemma 2.1, again,  $A \subset \psi(w)K_{\varphi}(z) \otimes H^2(w)$ , so  $A \perp B$ . By (#1) and (2.1),

$$M = A \oplus B \oplus \varphi(z)\psi(w)H^2.$$
(2.3)

We set

$$L_2 := B \oplus \varphi(z)\psi(w)H^2 = M \cap \varphi(z)H^2.$$
(2.4)

Then  $L_1$  and  $L_2$  are invariant subspaces and  $L_1 \cap L_2 = \varphi(z)\psi(w)H^2$ . Since  $\psi(w)$  is the associated inner function of  $\varphi(z)$ ,

$$\bigvee \{f(0,w): f \in A\} = \psi(w)H^2(w).$$

When  $B \neq \{0\}$ ,  $\psi(w)$  is nonconstant and M is splitting for  $\psi(w)$ . Let  $\varphi_1(z)$  be the associated inner function of  $\psi(w)$  for M. Then  $\varphi_1(z)H^2(z) \subset \varphi(z)H^2(z)$ . We shall show the following theorem.

**THEOREM 2.2.** If M is a splitting invariant subspace of  $H^2$ , then M is Hilbert–Schmidt.

To show Theorem 2.2, we use several known facts, as mentioned in the introduction. We will list them as lemmas.

## Lемма 2.3.

(i)  $\Sigma_0(M) = \|P_{M \ominus zM} P_{M \ominus wM}\|_{\mathrm{HS}}^2$ .

(ii) If  $\{\psi_n\}_{n\geq 1}$  is an orthonormal basis of  $M \ominus wM$ , then  $\Sigma_1(M) = \sum_{n=1}^{\infty} ||R_w^* R_z \psi_n||^2$ .

**LEMMA** 2.4. Let *M* be an invariant subspace of  $H^2$ . Then *M* is Hilbert–Schmidt if and only if  $\Sigma_0(M) + \Sigma_1(M) < \infty$ .

**LEMMA** 2.5. Let M be an invariant subspace of  $H^2$ . If  $\sigma_c(M) \neq \overline{\mathbb{D}}$ , then  $\Sigma_0(M) + \Sigma_1(M) < \infty$ .

Let  $M_1$  and  $M_2$  be invariant subspaces of  $H^2$ . A unitary operator  $T: M_1 \to M_2$  is called a unitary module map if  $T_zT = TT_z$  and  $T_wT = TT_w$  on  $M_1$ . We say that  $M_1$  is unitarily equivalent to  $M_2$  if there is a unitary module map  $T: M_1 \to M_2$ .

**LEMMA** 2.6. Let  $M_1$  and  $M_2$  be invariant subspaces of  $H^2$ . If  $M_1$  is unitarily equivalent to  $M_2$ , then  $\Sigma_0(M_1) = \Sigma_0(M_2)$  and  $\Sigma_1(M_1) = \Sigma_1(M_2)$ .

**PROOF OF THEOREM 2.2.** We may assume that *M* is splitting for  $\varphi(z)$ . Let  $\psi(w)$  be the associated inner function of  $\varphi(z)$ . By (2.2),  $L_1 \subset \psi(w)H^2$ . Then  $T^*_{\psi(w)}L_1$  is an invariant subspace and  $T^*_{\psi(w)} : L_1 \to T^*_{\psi(w)}L_1$  is a unitary module map. By Lemma 2.6,  $\Sigma_0(L_1) = \Sigma_0(T^*_{\psi(w)}L_1)$  and  $\Sigma_1(L_1) = \Sigma_1(T^*_{\psi(w)}L_1)$ . By (2.2), again,  $T^*_{\psi(w)}L_1 = T^*_{\psi(w)}A \oplus \varphi(z)H^2$ .

Let  $N_1 = H^2 \ominus T^*_{\psi(w)} L_1$ . Then  $N_1 \subset H^2 \ominus \varphi(z) H^2$ . Hence  $\varphi(S_z^{N_1}) = 0$ , so, by the model theory of Sz.-Nagy and Foiaş [13, 17]

$$\sigma_c(S_z^{N_1}) \subset \sigma(S_z^{N_1}) \subset \{z \in \mathbb{D} : \varphi(z) = 0\} \cup \partial \mathbb{D} \neq \overline{\mathbb{D}}.$$

Hence  $\sigma_c(T^*_{\psi(w)}L_1) \neq \overline{\mathbb{D}}$ . By Lemma 2.5,  $\Sigma_0(T^*_{\psi(w)}L_1) + \Sigma_1(T^*_{\psi(w)}L_1) < \infty$ , so

$$\Sigma_0(L_1) + \Sigma_1(L_1) < \infty. \tag{2.5}$$

Similarly,

$$\Sigma_0(L_2) + \Sigma_1(L_2) < \infty. \tag{2.6}$$

To show that *M* is Hilbert–Schmidt, we shall compute the values  $\Sigma_0(M)$  and  $\Sigma_1(M)$ , respectively. First, we shall show that  $\Sigma_0(M) < \infty$ . By (2.3) and (2.4),  $M = A \oplus L_2$ . Since  $wA \subset A$  and  $wL_2 \subset L_2$ ,

$$M \ominus wM = (A \ominus wA) \oplus (L_2 \ominus wL_2).$$

Let  $\{g_n\}_{n\geq 1}$  and  $\{f_n\}_{n\geq 1}$  be orthonormal bases of  $A \ominus wA$  and  $L_2 \ominus wL_2$ , respectively. By Lemma 2.3(i),

$$\Sigma_0(M) = \sum_{n=1}^{\infty} (\|P_{M \ominus zM} g_n\|^2 + \|P_{M \ominus zM} f_n\|^2).$$
(2.7)

Since  $M = B \oplus L_1$  and  $zB \subset B$ ,

$$M \ominus zM = (B \ominus zB) \oplus (L_1 \ominus zL_1).$$

By (2.3),  $A \perp B$ , so  $g_n \perp B \ominus zB$ . Since  $L_1 = A \oplus \varphi(z)\psi(w)H^2$  and

 $L_1 \ominus wL_1 = (A \ominus wA) \oplus \varphi(z)\psi(w)H^2(z),$ 

$$\sum_{n=1}^{\infty} \|P_{M \ominus zM} g_n\|^2 = \sum_{n=1}^{\infty} \|P_{L_1 \ominus zL_1} g_n\|^2$$
$$= \sum_{n=1}^{\infty} \|P_{L_1 \ominus zL_1} P_{L_1 \ominus wL_1} g_n\|^2$$
$$\leq \|P_{L_1 \ominus zL_1} P_{L_1 \ominus wL_1}\|_{\text{HS}}^2$$
$$= \Sigma_0(L_1) \quad \text{by Lemma 2.3.}$$

By (2.7),

$$\Sigma_0(M) \le \Sigma_0(L_1) + \sum_{n=1}^{\infty} \|P_{M \ominus zM} f_n\|^2.$$
(2.8)

Also

$$\sum_{n=1}^{\infty} \|P_{M\ominus zM} f_n\|^2 = \sum_{n=1}^{\infty} (\|P_{B\ominus zB} f_n\|^2 + \|P_{L_1\ominus zL_1} f_n\|^2)$$

Since

$$L_2 \ominus zL_2 = (B \ominus zB) \oplus \varphi(z)\psi(w)H^2(w),$$

$$\begin{split} \sum_{n=1}^{\infty} \|P_{M\ominus zM}f_n\|^2 &\leq \sum_{n=1}^{\infty} \|P_{L_2\ominus zL_2}f_n\|^2 + \sum_{n=1}^{\infty} \|P_{L_1\ominus zL_1}f_n\|^2 \\ &= \sum_{n=1}^{\infty} \|P_{L_2\ominus zL_2}P_{L_2\ominus wL_2}f_n\|^2 + \sum_{n=1}^{\infty} \|P_{L_1\ominus zL_1}f_n\|^2 \\ &= \|P_{L_2\ominus zL_2}P_{L_2\ominus wL_2}\|_{\mathrm{HS}}^2 + \sum_{n=1}^{\infty} \|P_{L_1\ominus zL_1}f_n\|^2 \\ &= \Sigma_0(L_2) + \sum_{n=1}^{\infty} \|P_{L_1\ominus zL_1}f_n\|^2. \end{split}$$

Hence, by (2.8),

$$\Sigma_0(M) \le \Sigma_0(L_1) + \Sigma_0(L_2) + \sum_{n=1}^{\infty} \|P_{L_1 \ominus z L_1} f_n\|^2.$$
(2.9)

Let  $\{h_k\}_{k\geq 1}$  be an orthonormal basis of  $L_1 \ominus zL_1$ . Then, for each  $n \geq 1$ ,

$$||P_{L_1 \ominus z L_1} f_n||^2 = \sum_{k=1}^{\infty} |\langle P_{L_1 \ominus z L_1} f_n, h_k \rangle|^2 = \sum_{k=1}^{\infty} |\langle f_n, h_k \rangle|^2.$$

Since  $L_1 \ominus zL_1 \perp z\varphi(z)\psi(w)H^2$ , we may write

$$h_k = h_{k,1} \oplus \varphi(z)\psi(w)\eta_k(w) \in A \oplus \varphi(z)\psi(w)H^2(w).$$

Since  $f_n \in L_2$  and  $L_2 \perp A$ ,

$$\|P_{L_1\ominus zL_1}f_n\|^2 = \sum_{k=1}^{\infty} |\langle f_n, h_k \rangle|^2 = \sum_{k=1}^{\infty} |\langle f_n, \varphi(z)\psi(w)\eta_k(w)\rangle|^2.$$

Since  $f_n \in L_2 \ominus wL_2$ ,  $f_n \perp w\varphi(z)\psi(w)H^2$ . Hence we may write

$$f_n = f_{n,1} \oplus \varphi(z)\psi(w)\sigma_n(z) \in B \oplus \varphi(z)\psi(w)H^2(z).$$

Since  $B \perp \varphi(z)\psi(w)H^2$ ,

$$\begin{split} \|P_{L_1 \ominus z L_1} f_n\|^2 &= \sum_{k=1}^{\infty} |\langle \varphi(z) \psi(w) \sigma_n(z), \varphi(z) \psi(w) \eta_k(w) \rangle|^2 \\ &= |\sigma_n(0)|^2 \sum_{k=1}^{\infty} |\eta_k(0)|^2. \end{split}$$

Here

$$\begin{split} \sum_{k=1}^{\infty} |\eta_k(0)|^2 &= \sum_{k=1}^{\infty} |\langle h_k, \varphi(z)\psi(w)\rangle|^2 = \sum_{k=1}^{\infty} ||P_{\mathbb{C}\cdot\varphi\psi}h_k||^2 \\ &\leq \sum_{k=1}^{\infty} ||P_{L_1 \ominus wL_1}h_k||^2 = \sum_{k=1}^{\infty} ||P_{L_1 \ominus wL_1}P_{L_1 \ominus zL_1}h_k||^2 \\ &= ||P_{L_1 \ominus wL_1}P_{L_1 \ominus zL_1}||_{\mathrm{HS}}^2 = \Sigma_0(L_1) \quad \text{by Lemma 2.3.} \end{split}$$

Similarly,  $\sum_{n=1}^{\infty} |\sigma_n(0)|^2 \le \Sigma_0(L_2)$ . Hence

$$\sum_{n=1}^{\infty} \|P_{L_1 \ominus z L_1} f_n\|^2 \le \Sigma_0(L_1) \sum_{n=1}^{\infty} |\sigma_n(0)|^2 \le \Sigma_0(L_1) \Sigma_0(L_2).$$

By (2.5), (2.6) and (2.9),

$$\Sigma_0(M) \le \Sigma_0(L_1) + \Sigma_0(L_2) + \Sigma_0(L_1)\Sigma_0(L_2) < \infty.$$

Next, we shall prove that  $\Sigma_1(M) < \infty$ . Since  $\{g_n, f_n : n \ge 1\}$  is an orthonormal basis of  $M \ominus wM$ , by Lemma 2.3(ii),

$$\Sigma_1(M) = \sum_{n=1}^{\infty} (||R_w^* R_z g_n||^2 + ||R_w^* R_z f_n||^2).$$

Since  $M \ominus wM = (A \ominus wA) \oplus (L_2 \ominus wL_2)$  and  $wA \perp L_2$ ,

$$R_w^* R_z = R_w^{M*} R_z^M = R_w^{L_2*} R_z^{L_2}$$
 on  $L_2$ .

Since  $\{f_n\}_{n\geq 1}$  is an orthonormal basis of  $L_2 \ominus wL_2$ , by Lemma 2.3, again,

$$\sum_{n=1}^{\infty} \|R_{w}^{*}R_{z}f_{n}\|^{2} = \Sigma_{1}(L_{2}).$$

Hence

$$\Sigma_1(M) = \Sigma_1(L_2) + \sum_{n=1}^{\infty} ||R_w^* R_z g_n||^2.$$
(2.10)

Since  $\{g_n\}_{n\geq 1}$  is an orthonormal basis of  $A \ominus wA$  and  $A \ominus wA \subset L_1 \ominus wL_1$ ,

$$\sum_{n=1}^{\infty} \|R_w^{L_1*} R_z^{L_1} g_n\|^2 \le \Sigma_1(L_1).$$
(2.11)

By Lemma 2.1,  $P_A T_z^* \varphi(z) \psi(w) \neq 0$ . Since  $zwA \perp \varphi(z) \psi(w)$ ,  $P_A T_z^* \varphi(z) \psi(w) \in A \ominus wA$ , so we may assume that

$$g_1 = \frac{P_A T_z^* \varphi(z) \psi(w)}{\|P_A T_z^* \varphi(z) \psi(w)\|}.$$

For each  $n \ge 2$ ,

$$0 = \langle g_n, g_1 \rangle = \frac{1}{\|P_A T_z^* \varphi(z) \psi(w)\|} \langle g_n, P_A T_z^* \varphi(z) \psi(w) \rangle,$$

so  $zg_n \perp \varphi(z)\psi(w)$ . Hence

$$zg_n \in A \oplus \varphi(z)\psi(w)wH^2(w) \subset A \oplus \varphi(z)\psi(w)H^2 = L_1.$$

This shows that  $R_w^* R_z g_n = R_w^{L_1*} R_z^{L_1} g_n$  for every  $n \ge 2$ . Therefore, by (2.11),

$$\sum_{n=1}^{\infty} \|R_{w}^{*}R_{z}g_{n}\|^{2} = \|R_{w}^{*}R_{z}g_{1}\|^{2} + \sum_{n\geq 2}^{\infty} \|R_{w}^{L_{1}}R_{z}^{L_{1}}g_{n}\|^{2}$$
$$\leq \|R_{w}^{*}R_{z}g_{1}\|^{2} + \Sigma_{1}(L_{1}).$$

Thus, by (2.5), (2.6) and (2.10),  $\Sigma_1(M) < \infty$ . By Lemma 2.4, M is Hilbert–Schmidt.  $\Box$ 

As mentioned in the introduction, by Yang's works we have the following corollary.

COROLLARY 2.7. Let M be a splitting invariant subspace of  $H^2$ . Then zM + wM is closed,  $1 \le \dim(M \ominus (zM + wM)) < \infty$  and  $F_z^M$  on  $M \ominus wM$  is Fredholm.

**EXAMPLE 2.8.** Let  $\varphi(z), \psi(w)$  be nonconstant inner functions and  $M = \varphi(z)H^2 + \psi(w)H^2$ . Then *M* is a splitting invariant subspace for  $\varphi(z)$ .

EXAMPLE 2.9. Let  $\mu$ ,  $\nu$  be bounded positive singular measures on  $\partial \mathbb{D}$ . Let

$$\psi_{\mu}(z) = \exp\left(-\int_{\partial \mathbb{D}} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(e^{i\theta})\right), \quad z \in \mathbb{D}.$$

Then  $\psi_{\mu}(z)$  is an inner function (see [6]). Let

$$M = \bigvee_{0 < t < \infty} \psi_{\mu}(z)^{t} \psi_{\nu}(w)^{1/t} H^{2}$$

Then it is clear that M is a splitting invariant subspace for  $\psi_{\mu}(z)$ .

**PROPOSITION** 2.10. Let  $\eta$  be an inner function on  $\mathbb{D}^2$ . If  $\eta H^2$  is splitting, then  $\eta = \varphi_1(z)\psi_1(w)$  for some inner functions  $\varphi_1(z)$  and  $\psi_1(w)$ .

**PROOF.** We may assume that  $\eta H^2$  is splitting for a nonconstant inner function  $\varphi(z)$ . Let  $\psi(w)$  be the associated inner function of  $\varphi(z)$  for  $\eta H^2$ . Then, by Lemma 2.1,  $\varphi(z)\psi(w)H^2 \subset \eta H^2$  and  $K_{\varphi}(z) \otimes K_{\psi}(w) \perp \eta H^2$ . There is  $\sigma \in H^2$  satisfying  $\eta \sigma = \varphi(z)\psi(w)$ . We note that  $\sigma$  is an inner function on  $\mathbb{D}^2$ . We have  $T_z^*\varphi(z)T_w^*\psi(w) \perp \eta H^2$ , so  $\varphi(z)\psi(w) \perp zw\eta H^2$ . Hence  $\sigma \perp zwH^2$ .

Suppose that  $\sigma$  is not a one variable function. Then we may write  $\sigma = f(z) \oplus g(w)$ , where  $f(z) \in H^2(z)$ ,  $g(w) \in H^2(w)$  and g(0) = 0. Also  $g(w) \neq 0$  and f(z) is not constant. For every  $n \ge 1$ ,  $\langle f(z), z^n f(z) \rangle = \langle \sigma, z^n \sigma \rangle = 0$ , so  $f(z) = c\varphi_1(z)$  for some nonconstant inner function  $\varphi_1(z)$  and nonzero constant *c*. Since

$$1 = ||\sigma||^{2} = ||f(z)||^{2} + ||g(w)||^{2} = |c|^{2} + ||g(w)||^{2}$$

212

213

and  $||g(w)||^2 \neq 0, 0 < |c| < 1$ . Since  $\sigma$  is inner,  $\sigma(z, \lambda)$  is inner for almost every  $\lambda \in \partial \mathbb{D}$ . We have  $\sigma(z, \lambda) = c\varphi_1(z) + g(\lambda)$ . Since  $g(w) \neq 0$ , this leads to a contradiction. Then  $\sigma$  is a one variable inner function.

Suppose that  $\sigma = \sigma(z)$ . Since  $\eta \sigma = \varphi(z)\psi(w)$ ,  $\varphi(z)/\sigma \in H^2(z)$ . Put  $\varphi_1(z) = \varphi(z)/\sigma$ and  $\psi_1(w) = \psi(w)$ . Then  $\eta = \varphi_1(z)\psi_1(w)$ . Similarly, we get the assertion for the case  $\sigma = \sigma(w)$ .

## 3. Rudin-type invariant subspaces

Let  $\{\varphi(z)\}_{n=-\infty}^{\infty}$  and  $\{\psi(w)\}_{n=-\infty}^{\infty}$  be sequences of nonconstant one variable inner functions satisfying the following conditions:

 $\begin{aligned} &(\alpha 1) \ \zeta_n(z) := \varphi_n(z)/\varphi_{n+1}(z) \text{ is a nonconstant inner function for every } -\infty < n < \infty; \\ &(\alpha 2) \ \varphi_n(z) \to 1 \text{ as } n \to \infty \text{ for every } z \in \mathbb{D}; \\ &(\alpha 3) \ \varphi_n(z) \to 0 \text{ as } n \to -\infty \text{ for every } z \in \mathbb{D}; \\ &(\alpha 4) \ \xi_n(w) := \psi_{n+1}(w)/\psi_n(w) \text{ is a nonconstant inner function for every } -\infty < n < \infty; \\ &(\alpha 5) \ \psi_n(w) \to 1 \text{ as } n \to -\infty \text{ for every } w \in \mathbb{D}; \text{ and} \\ &(\alpha 6) \ \psi_n(w) \to 0 \text{ as } n \to \infty \text{ for every } w \in \mathbb{D}. \end{aligned}$ 

Moreover, we assume that

$$(\alpha 7) \varphi_n(0) \ge 0, \quad \psi_n(0) \ge 0, \quad \zeta_n(0) \ge 0 \text{ and } \xi_n(0) \ge 0 \text{ for every } -\infty < n < \infty.$$

Let

$$\mathcal{M} = \bigvee_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_n(w) H^2.$$
(3.1)

Then  $\mathcal{M}$  is an invariant subspace. This type of invariant subspace was first studied by Rudin [14, page 72] (see also [8–10, 15, 16]), so  $\mathcal{M}$  is called a Rudin-type invariant subspace. By ( $\alpha$ 2) and ( $\alpha$ 3),  $\mathcal{M} \notin \varphi(z)H^2$  and  $\varphi(z)H^2 \notin \mathcal{M}$  for every nonconstant inner function  $\varphi(z)$ . By ( $\alpha$ 5) and ( $\alpha$ 6),  $\mathcal{M} \notin \psi(w)H^2$  and  $\psi(w)H^2 \notin \mathcal{M}$  for every nonconstant inner function  $\psi(w)$ .

By  $(\alpha 1)$ ,  $(\alpha 2)$ ,  $(\alpha 4)$ ,  $(\alpha 5)$  and  $(\alpha 7)$ , we may assume that

$$\varphi_n(z) = \prod_{k=n}^{\infty} \zeta_k(z), \quad \psi_n(w) = \prod_{k=-\infty}^{n-1} \xi_k(w)$$

and

$$\mathcal{M} = \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_n(w) H^2(z) \otimes K_{\xi_n}(w)$$
$$= \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_n(w) K_{\xi_n}(z) \otimes H^2(w).$$

Now it is clear that  $\mathcal{M}$  is splitting for  $\varphi_1(z)$  and  $\psi_1(w)$  is the associated inner function of  $\varphi_1(z)$ , so, by Theorem 2.2 and Corollary 2.7, we have the following corollary.

**COROLLARY** 3.1. *M* is Hilbert–Schmidt, zM + wM is closed, dim  $(M \ominus (zM + wM))$  $< \infty$  and  $F_z^M$  on  $M \ominus wM$  is Fredholm.

Let  $\mathcal{N} = H^2 \ominus \mathcal{M}$ . Then

$$\mathcal{N} = \bigoplus_{n=-\infty}^{\infty} \psi_n(w) K_{\varphi_{n+1}}(z) \otimes K_{\xi_n}(w)$$
$$= \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) K_{\zeta_n}(z) \otimes K_{\psi_n}(w).$$

We shall prove the following theorem.

THEOREM 3.2.  $\sigma_c(\mathcal{M}) = \overline{\mathbb{D}}$ .

To prove Theorem 3.2, we use the following lemma freely (see [2, 13, 17]). For a one variable inner function  $\varphi(z)$ , we define the operator  $S_z^{K_{\varphi}}$  on  $K_{\varphi}(z)$  by  $S_z^{K_{\varphi}} = P_{K_{\varphi}(z)}T_z|_{K_{\varphi}(z)}$ . We write  $S_z$  when no confusion occurs. We have  $S_z^* = T_z^*|_{K_{\varphi}(z)}$ .

**LEMMA** 3.3. Let  $\varphi(z)$  be a nonconstant inner function. Then:

(i)  $T_z^*\varphi(z) \in K_{\varphi}(z);$ (ii)  $S_z = T_z \text{ on } K_{\varphi}(z) \ominus \mathbb{C} \cdot T_z^*\varphi(z);$  and (iii)  $S_z T_z^*\varphi(z) = -\varphi(0)(1 - \overline{\varphi(0)}\varphi(z)).$ 

For  $\alpha \in \mathbb{D}$ , let  $k_{\alpha}(z) = 1/(1 - \overline{\alpha}z)$ . We have  $k_{\alpha}(z) \in H^2(z)$  and  $T_z^* k_{\alpha}(z) = \overline{\alpha}k_{\alpha}(z)$ .

**LEMMA** 3.4. Let  $\varphi(z)$  be a nonconstant inner function. Then, for every  $\alpha \in \mathbb{D}$ , there exists  $f(z) \in K_{\varphi}(z)$  with ||f(z)|| = 1 satisfying  $||(S_z^* - \overline{\alpha}I)f(z)|| \le 4|\varphi(\alpha)|/\sqrt{1 - |\varphi(\alpha)|^2}$ .

**PROOF.** We note that  $S_z^* = T_z^*|_{K_{\varphi}(z)}$ . Let

$$\eta(z) = (1 - \overline{\varphi(\alpha)}\varphi(z))k_{\alpha}(z) \in K_{\varphi}(z).$$

Then  $\eta(z)$  is the reproducing kernel of  $K_{\varphi}(z)$  for the point  $z = \alpha$ . We have  $||\eta(z)||^2 = (1 - |\varphi(a)|^2)/(1 - |\alpha|^2)$ . For  $h(z), g(z) \in H^2(z)$  satisfying  $(hg)(z) \in H^2(z), T_z^*h(z) = (h(z) - h(0))/z$  and

$$T_z^*(hg)(z) = T_z^*(h(z))g(z) + h(0)T_z^*g(z).$$

Hence

$$(S_{z}^{*} - \overline{\alpha}I)\eta(z) = -\overline{\varphi(\alpha)}\frac{\varphi(z) - \varphi(0)}{z}k_{\alpha}(z) + \overline{\alpha}(1 - \overline{\varphi(\alpha)}\varphi(0))k_{\alpha}(z)$$
$$-\overline{\alpha}(1 - \overline{\varphi(\alpha)}\varphi(z))k_{\alpha}(z)$$
$$= \overline{\varphi(\alpha)}\frac{\varphi(z) - \varphi(0)}{z}(\overline{\alpha}z - 1)k_{\alpha}(z).$$

https://doi.org/10.1017/S1446788716000203 Published online by Cambridge University Press

Therefore

[11]

$$\frac{\|(S_z^*-\overline{\alpha}I)\eta(z)\|}{\|\eta(z)\|} \leq \frac{4\sqrt{1-|\alpha|^2}|\varphi(\alpha)||k_\alpha(z)||}{\sqrt{1-|\varphi(\alpha)|^2}} = \frac{4|\varphi(\alpha)|}{\sqrt{1-|\varphi(\alpha)|^2}}$$

Set  $f = \eta(z)/||\eta(z)||$ . Then we get the assertion.

For an invariant subspace *M* of  $H^2$ , let  $N = H^2 \ominus M$ . Then  $T_z^* N \subset N$  and  $T_w^* N \subset N$ , so N is called a backward shift invariant subspace. We may define the compression operators  $S_z^N$ ,  $S_w^N$  of  $T_z$ ,  $T_w$  on N. We have  $(S_z^N)^* = T_z^*|_N$  and  $(S_w^N)^* = T_w^*|_N$ .

LEMMA 3.5. Let N be a backward shift invariant subspace of  $H^2$ . If there are sequences of nonconstant inner functions  $\{\varphi_n(z)\}_{n\geq 0}$  and  $\{\psi_n(w)\}_{n\geq 0}$  such that  $K_{\varphi_n}(z) \otimes K_{\psi_n}(w) \subset N$ for every  $n \ge 0$  and  $\varphi_n(\alpha) \to 0$  for every  $\alpha \in \mathbb{D}$ , then  $\sigma(S_{\tau}^N) = \overline{\mathbb{D}}$ .

**PROOF.** Let  $\alpha \in \mathbb{D}$ . By Lemma 3.4, for each  $n \ge 0$  there exists  $f_n(z) \in K_{\varphi_n}(z)$  with  $||f_n(z)|| = 1$  satisfying

$$\|((S_z^{K_{\varphi_n}})^* - \overline{\alpha}I)f_n(z)\| \le \frac{4|\varphi_n(\alpha)|}{\sqrt{1 - |\varphi_n(\alpha)|^2}}.$$

Let  $g_n(w) \in K_{\psi_n}(w)$  with  $||g_n(w)|| = 1$ . Then  $f_n(z)g_n(w) \in K_{\varphi_n}(z) \otimes K_{\psi_n}(w) \subset N$  and  $||f_n(z)g_n(w)|| = 1$ . By the assumption,

$$\begin{aligned} \|((S_z^N)^* - \overline{\alpha}I)f_n(z)g_n(w)\| &= \|g_n(w)\| \left\|((S_z^{K_{\varphi_n}})^* - \overline{\alpha}I)f_n(z)\right\| \\ &\leq \frac{4|\varphi_n(\alpha)|}{\sqrt{1 - |\varphi_n(\alpha)|^2}} \to 0 \end{aligned}$$

as  $n \to \infty$ . Hence  $(S_z^N)^* - \overline{\alpha}I$  is not invertible, so  $\overline{\alpha} \in \sigma((S_z^N)^*) = \overline{\sigma(S_z^N)}$ . Thus we get  $\sigma(S_{\tau}^{N}) = \overline{\mathbb{D}}.$ 

Recall that  $S_z^N = P_N T_z|_N$  and  $S_w^N = P_N T_w|_N$ . We have  $K_{\varphi_n}(z) \otimes K_{\psi_n}(w) \subset N$  for every  $-\infty < n < \infty$ . By ( $\alpha$ 3) and ( $\alpha$ 6) and by applying Lemma 3.5 we obtain the following corollary, which is proved by Yang [24, Theorem 4.3].

COROLLARY 3.6.  $\sigma(S_z^N) = \sigma(S_w^N) = \overline{\mathbb{D}}.$ 

**PROOF OF THEOREM 3.2.** Recall that  $\sigma_c(\mathcal{M}) = \sigma_c(S_z^{\mathcal{N}}) \cap \sigma_c(S_w^{\mathcal{N}})$ . Since we are working on N, we write  $S_z$  and  $S_w$ , for short. It is sufficient to prove that  $\sigma_c(S_z) = \overline{\mathbb{D}}$ . Let  $Z(\varphi_n) = \{z \in \mathbb{D} : \varphi_n(z) = 0\}$ . By  $(\alpha 1), Z(\varphi_n) \subset Z(\varphi_k)$  for  $-\infty < k < n < \infty$  and  $\bigcup_{n=-\infty}^{\infty} Z(\varphi_n)$  is at most a countable set. Let  $\lambda \in \mathbb{D}$ . We shall show that  $\lambda \in \sigma_c(S_z)$ . We study two cases separately.

*Case 1.* Suppose that  $\lambda \in \bigcup_{n=-\infty}^{\infty} Z(\varphi_n)$ . Then there is an integer  $n_0$  such that  $\varphi_n(\lambda) = 0$ for every  $-\infty < n \le n_0$ . We write

$$b_{\lambda}(z) = \frac{z - \lambda}{1 - \overline{\lambda} z}, \quad z \in \mathbb{D}.$$

For each  $n \le n_0$ , there is an inner function  $\sigma_n(z)$  satisfying  $\varphi_n(z) = b_\lambda(z)\sigma_n(z)$ . Then  $\sigma_n(z)/(1-\overline{\lambda}z) \in K_{\varphi_n}(z)$ . Let

$$f_n = \frac{\sigma_n(z)}{1 - \overline{\lambda} z} \psi_{n-1}(w) T_w^* \xi_{n-1}(w).$$

We have  $f_n \in \mathcal{N}$  and

$$(z-\lambda)f_n = \varphi_n(z)\psi_{n-1}(w)T_w^*\xi_{n-1}(w) \in \mathcal{M}.$$

Hence

$$\{f_n : -\infty < n \le n_0\} \subset \ker(S_z - \lambda I_N).$$

Since  $f_n \perp f_k$  for  $k < n \le n_0$ , ker $(S_z - \lambda I_N) = \infty$ . Hence  $\lambda \in \sigma_c(S_z)$ .

*Case 2.* Suppose that  $\lambda \notin \bigcup_{n=-\infty}^{\infty} Z(\varphi_n)$ . Let  $g \in \ker(S_z - \lambda I_N)^*$ . Then  $(S_z - \lambda I_N)^* g = 0$ , so  $g \perp (z - \lambda)H^2$ . Hence there is  $h(w) \in H^2(w)$  such that  $g = h(w)/(1 - \overline{\lambda} z)$ . Since  $g \in N$ ,  $g \perp \varphi_{n+1}(z)\psi_n(w)K_{\xi_n}(w)$  for every  $-\infty < n < \infty$ . Since  $\varphi_{n+1}(\lambda) \neq 0$ ,  $h(w) \perp \psi_n(w)K_{\xi_n}(w)$ . By condition ( $\alpha 6$ ),

$$\psi_k(w)H^2(w) = \bigoplus_{n=k}^{\infty} \psi_n(w) K_{\xi_n}(w)$$

for every  $-\infty < k < \infty$ . Hence  $h(w) \perp \psi_k(w) H^2(w)$ . By condition ( $\alpha$ 5),

$$H^{2}(w) = \bigvee_{k=-\infty}^{\infty} \psi_{k}(w) H^{2}(w),$$

so  $h(w) \perp H^2(w)$ . This shows that h(w) = 0 and g = 0. Thus we get ker $(S_z - \lambda I_N)^* = \{0\}$ .

Next, we shall show that  $\ker(S_z - \lambda I_N) = \{0\}$ . Let  $f \in N$  and  $(S_z - \lambda I_N)f = 0$ . For each integer *j*, let

$$\mathcal{M}_j = T^*_{\psi_j(w)}\mathcal{M}$$
 and  $\mathcal{N}_j = T^*_{\psi_j(w)}\mathcal{N}$ .

Then  $\mathcal{M}_j$  is an invariant subspace and  $\mathcal{N}_j = H^2 \ominus \mathcal{M}_j$ .

$$\mathcal{M}_j = \bigvee_{n=j}^{\infty} \varphi_{n+1}(z) \frac{\psi_n(w)}{\psi_j(w)} H^2.$$

Hence  $\varphi_{j+1}(S_z^{N_j}) = 0.$ 

Set  $N_{j,1} = \psi_j(w)N_j$ . Then  $N_{j,1} \subset N$ . Let  $N_{j,2} = N \ominus N_{j,1}$ . We have  $S_z N_{j,1} \subset N_{j,1}$ and  $S_z N_{j,2} \subset N_{j,2}$ . Hence  $S_z P_{N_{j,1}} = P_{N_{j,1}}S_z$ . It is not difficult to show that  $S_z|_{N_{j,1}}$  is unitarily equivalent to  $S_z^{N_j}$ , that is,  $T_{\psi_j(w)}^* S_z|_{N_{j,1}} = S_z^{N_j} T_{\psi_j(w)}^*|_{N_{j,1}}$ . Hence

$$\sigma(S_z|_{N_{j,1}}) = \sigma(S_z^{N_j}) \subset Z(\varphi_{j+1}) \cup \partial \mathbb{D}.$$

Since  $\varphi_{j+1}(\lambda) \neq 0$ ,  $\lambda \notin \sigma(S_z|_{N_{i,1}})$ . Since  $(S_z - \lambda I_N)f = 0$ ,

$$0 = P_{N_{j,1}}(S_z - \lambda I_N)f = (S_z|_{N_{j,1}} - \lambda I_{N_{j,1}})P_{N_{j,1}}f.$$

[12]

Hence  $P_{N_{j,1}}f = 0$ , so  $f \perp N_{j,1}$  for every  $-\infty < j < \infty$ . We have  $N_{j,1} \subset N_{k,1}$  for k < jand  $N = \bigvee_{j=-\infty}^{\infty} N_{j,1}$ . Therefore  $f \perp N$ . Since  $f \in N$ , f = 0. Thus ker $(S_z - \lambda I_N) = \{0\}$ .

To show that  $\lambda \in \sigma_c(S_z)$ , suppose that  $\lambda \notin \sigma_c(S_z)$ . Then  $S_z - \lambda I_N$  has closed range. Since ker $(S_z - \lambda I_N) = \text{ker}(S_z - \lambda I_N)^* = \{0\}, \lambda \notin \sigma(S_z)$ . This contradicts the fact given in Corollary 3.6. Hence  $\lambda \in \sigma_c(S_z)$ .

By Cases 1 and 2,  $\mathbb{D} \subset \sigma_c(S_z) \subset \overline{\mathbb{D}}$ . To show that  $\sigma_c(S_z) = \overline{\mathbb{D}}$ , let  $\lambda \in \partial \mathbb{D}$  satisfy  $\lambda \notin \sigma_c(S_z)$ . Then  $S_z - \lambda I_N$  has closed range. Let  $g \in \mathcal{N}$  satisfy  $(S_z - \lambda I_N)^* g = 0$ . Then  $g \perp (z - \lambda)H^2$ , so  $g \perp H^2$ . Hence g = 0 and ker $(S_z - \lambda I_N)^* = \{0\}$ . Let  $h \in \mathcal{N}$  satisfy  $S_z h = \lambda h$ . Then  $||S_z h|| = ||h||$ . Hence  $zh \in \mathcal{N}$  and  $(z - \lambda)h = 0$ . This shows that h = 0 and ker $(S_z - \lambda I_N) = \{0\}$ . Therefore  $\lambda \notin \sigma(S_z)$ . This also contradicts the fact given in Corollary 3.6. Thus we get  $\sigma_c(S_z) = \overline{\mathbb{D}}$ .

As mentioned in the introduction, if M is a unitarily equivalent to an invariant subspace  $M_1$  such that  $\sigma_c(M_1) \neq \overline{\mathbb{D}}$ , then M is Hilbert–Schmidt. We shall show the following theorem.

**THEOREM** 3.7. Let  $M_1$  be an invariant subspace of  $H^2$  which is unitarily equivalent to  $\mathcal{M}$ . Then  $\sigma_c(M_1) = \overline{\mathbb{D}}$ .

To prove Theorem 3.7, we first show the following lemma.

**LEMMA** 3.8. Let M be an invariant subspace of  $H^2$  and  $\eta$  be an inner function on  $\mathbb{D}^2$ . If  $\sigma_c(M) = \overline{\mathbb{D}}$ , then  $\sigma_c(\eta M) = \overline{\mathbb{D}}$ .

**PROOF.** Let  $N = H^2 \ominus M$ ,  $M_1 = \eta M$  and  $N_1 = H^2 \ominus M_1$ . To show that  $\sigma_c(M_1) = \overline{\mathbb{D}}$ , we suppose the contrary. We may assume that there is  $\lambda \in \mathbb{D}$  such that  $\lambda \notin \sigma_c(S_z^{N_1})$  (see the proof of Theorem 3.2). Then  $S_z^{N_1} - \lambda I_{N_1}$  has closed range and dim ker $(S_z^{N_1} - \lambda I_{N_1}) < \infty$ .

First, we shall show that dim ker $(S_z^N - \lambda I_N) < \infty$ . Since  $\eta$  is inner,

$$\eta H^2 = \eta (M \oplus N) = M_1 \oplus \eta N \subset H^2.$$

Then  $\eta N \subset N_1$  and  $T_{\eta|N}: N \to \eta N$  is a unitary operator. Let  $f \in N$  and write  $zf = f_1 \oplus f_2 \in M \oplus N$ . Then  $S_z^N f = f_2$  and  $T_\eta S_z^N f = \eta f_2$ . Since  $z\eta f = \eta f_1 \oplus \eta f_2 \in M_1 \oplus \eta N$ ,  $S_z^{N_1} T_\eta f = \eta f_2 = T_\eta S_z^N f$ . Hence  $S_z^{N_1} T_\eta = T_\eta S_z^N$  on N, so

$$(S_z^{N_1} - \lambda I_{N_1})T_\eta = T_\eta(S_z^N - \lambda I_N) \quad \text{on } N.$$

Therefore

$$\dim \ker(S_z^N - \lambda I_N) \le \dim \ker(S_z^{N_1} - \lambda I_{N_1}) < \infty.$$

Next, we shall show that  $S_z^N - \lambda I_N$  has closed range. Since  $S_z^{N_1} - \lambda I_{N_1}$  has closed range, there exists  $\delta > 0$  such that  $\delta ||g|| \le ||(S_z^{N_1} - \lambda I_{N_1})g||$  for every  $g \in N_1 \ominus \ker(S_z^{N_1} - \lambda I_{N_1})$ . Since dim  $\ker(S_z^{N_1} - \lambda I_{N_1}) < \infty$ ,

$$\dim P_{\eta N} \ker(S_z^{N_1} - \lambda I_{N_1}) < \infty$$

Let E be a closed subspace of N such that

$$P_{\eta N} \ker(S_z^{N_1} - \lambda I_{N_1}) = \eta E.$$

Then dim  $E < \infty$  and  $\eta N = \eta (N \ominus E) \oplus \eta E$ . Let  $f \in N \ominus E$  and  $h \in \ker(S_z^{N_1} - \lambda I_{N_1})$ . Then  $\eta f \perp M_1$ ,  $P_{\eta N}h = \eta \sigma$  for some  $\sigma \in E$  and

$$\langle \eta f, h \rangle = \langle \eta f, P_{\eta N} h \rangle = \langle \eta f, \eta \sigma \rangle = \langle f, \sigma \rangle = 0.$$

Hence

$$\eta(N \ominus E) \subset H^2 \ominus (M_1 + \ker(S_z^{N_1} - \lambda I_{N_1})).$$

Therefore  $\eta(N \ominus E) \subset N_1 \ominus \ker(S_z^{N_1} - \lambda I_{N_1})$  and

$$\delta ||f|| = \delta ||\eta f|| \le ||(S_z^{N_1} - \lambda I_{N_1})\eta f||, \quad f \in N \ominus E.$$

Thus we get

$$\delta ||f|| \le ||T_{\eta}(S_z^N - \lambda I_N)f|| = ||(S_z^N - \lambda I_N)f||, \quad f \in N \ominus E.$$

This shows that  $(S_z^N - \lambda I_N)(N \ominus E)$  is closed. Since dim  $E < \infty$ ,  $(S_z^N - \lambda I_N)N$  is closed. By the last paragraph,  $\lambda \notin \sigma_c(S_z^N)$ , so  $\lambda \notin \sigma_c(M)$ . This contradicts the assumption. Thus we get  $\mathbb{D} \subset \sigma_c(M_1)$  and  $\sigma_c(M_1) = \overline{\mathbb{D}}$ .

**PROOF OF THEOREM 3.7.** By [1], there is a unimodular function u on  $\partial \mathbb{D} \times \partial \mathbb{D}$  such that  $M_1 = u\mathcal{M}$ . We write  $H_z^2 = H^2(z) \otimes L^2(w)$ , where  $L^2(w)$  is the *w*-variable Lebesgue space on  $\partial \mathbb{D}$ . Since  $\varphi_{n+1}(z)\psi_n(w) \in \mathcal{M}$ ,

$$u\varphi_{n+1}(z)\psi_n(w) \in M_1 \subset H^2 \subset H_z^2.$$

Hence  $u\varphi_{n+1}(z) \in H_z^2$  for every  $-\infty < n < \infty$ . We have  $\varphi_{n+1}(z) = \varphi_{n+1}(0) + zT_z^*\varphi_{n+1}(z)$ . Then  $1 = |\varphi_{n+1}(0)|^2 + ||T_z^*\varphi_{n+1}(z)||^2$ . By ( $\alpha 2$ ),  $||T_z^*\varphi_{n+1}(z)|| \to 0$  as  $n \to \infty$ .

$$zT_z^*\varphi_{n+1}(z) = \varphi_{n+1}(z) - \varphi_{n+1}(0) = \varphi_{n+1}(z) - 1 + 1 - \varphi_{n+1}(0),$$

so

$$||T_z^*\varphi_{n+1}(z)|| = ||zT_z^*\varphi_{n+1}(z)|| \ge ||\varphi_{n+1}(z) - 1|| - |1 - \varphi_{n+1}(0)|.$$

By ( $\alpha 2$ ), again,  $\|\varphi_{n+1}(z) - 1\| \to 0$  as  $n \to \infty$ . Hence  $u \in H_z^2$ . Similarly,  $u \in H_w^2$ . Then  $u \in H_z^2 \cap H_w^2 = H^2$ . Therefore *u* is an inner function. By Theorem 3.2,  $\sigma_c(\mathcal{M}) = \overline{\mathbb{D}}$ . By Lemma 3.8,  $\sigma_c(\mathcal{M}_1) = \sigma_c(u\mathcal{M}) = \overline{\mathbb{D}}$ .

Let *M* be an invariant subspace of  $H^2$ . Let

$$\Omega = \Omega(M) = M \ominus (zM + wM)$$

and

$$M_0 = \overline{zM + wM} = M \ominus \Omega.$$

Then  $M_0$  is an invariant subspace,  $z\Omega \subset M_0$  and  $w\Omega \subset M_0$ . We write  $N = H^2 \ominus M$  and  $N_0 = H^2 \ominus M_0$ . Then  $N_0 = N \oplus \Omega$ . In the last part of this paper, we shall show the following theorem.

THEOREM 3.9.

- (i)  $\mathcal{M}_0$  is Hilbert–Schmidt.
- (ii) Let  $M_1$  be an invariant subspace of  $H^2$ . If  $M_1$  is unitarily equivalent to  $\mathcal{M}_0$ , then  $\sigma_c(M_1) = \mathbb{D}.$
- (iii)  $\mathcal{M}_0$  is splitting if and only if  $\varphi_n(0)\psi_n(0) = 0$  for some  $-\infty < n < \infty$ .

To prove this theorem, we need two lemmas.

LEMMA 3.10. 
$$(S_z^N - \lambda I_N)N = N \cap (S_z^{N_0} - \lambda I_{N_0})N_0$$
 for every  $\lambda \in \overline{\mathbb{D}} \setminus \{0\}$ .

**PROOF.** Let  $h \in N \cap (S_z^{N_0} - \lambda I_{N_0})N_0$ . Then there is  $f_1 \oplus f_2 \in N \oplus \Omega$  such that  $h = (S_z^{N_0} - \lambda I_{N_0})(f_1 \oplus f_2)$ .

$$h = (S_z^{N_0} - \lambda I_{N_0})f_1 - \lambda f_2$$
  
=  $(S_z^N - \lambda I_N)f_1 + P_\Omega S_z^{N_0}f_1 - \lambda f_2$   
=  $(S_z^N - \lambda I_N)f_1$  because  $h \in N \in (S_z^N - \lambda I_N)N$ .

Hence  $N \cap (S_z^{N_0} - \lambda I_{N_0})N_0 \subset (S_z^N - \lambda I_N)N$ . Let  $g_1 \in N$  and  $\lambda \in \overline{\mathbb{D}} \setminus \{0\}$ . Set  $g_2 = P_{\Omega}S_z^{N_0}g_1/\lambda$ .

$$(S_{z}^{N} - \lambda I_{N})g_{1} = (S_{z}^{N} - \lambda I_{N})g_{1} + P_{\Omega}S_{z}^{N_{0}}g_{1} - P_{\Omega}S_{z}^{N_{0}}g_{1}$$
$$= (S_{z}^{N_{0}} - \lambda I_{N_{0}})g_{1} - \lambda g_{2}$$
$$= (S_{z}^{N_{0}} - \lambda I_{N_{0}})(g_{1} \oplus g_{2}).$$

Since  $g_1 \oplus g_2 \in N_0$ , we get  $(S_z^N - \lambda I_N)N \subset N \cap (S_z^{N_0} - \lambda I_{N_0})N_0$ .

LEMMA 3.11. If  $\sigma_c(M) = \overline{\mathbb{D}}$  and dim  $\Omega < \infty$ , then  $\sigma_c(M_0) = \overline{\mathbb{D}}$ .

**PROOF.** Suppose that  $\sigma_c(M_0) \neq \overline{\mathbb{D}}$ . We may assume that  $\sigma_c(S_z^{N_0}) \neq \overline{\mathbb{D}}$ . Then there is  $\lambda \in \mathbb{D}$  such that dim ker $(S_z^{N_0} - \lambda I_{N_0}) < \infty$  and  $S_z^{N_0} - \lambda I_{N_0}$  has closed range (see the proof of Theorem 3.2).

Since

$$(S_z^{N_0} - \lambda I_{N_0}) \ker(S_z^N - \lambda I_N) \subset \Omega$$

and dim  $\Omega < \infty$ , there are  $f_1, \ldots, f_n \in \ker(S_{\tau}^N - \lambda I_N)$  such that

$$\ker(S_z^N - \lambda I_N) \ominus (\mathbb{C} \cdot f_1 + \dots + \mathbb{C} \cdot f_n) \subset \ker(S_z^{N_0} - \lambda I_{N_0}).$$

Since dim ker $(S_z^{N_0} - \lambda I_{N_0}) < \infty$ , dim ker $(S_z^N - \lambda I_N) < \infty$ . Suppose that  $\lambda \neq 0$ . By Lemma 3.10,  $S_z^N - \lambda I_N$  has closed range. Hence  $\lambda \notin \sigma_c(S_z^N)$ , so  $\lambda \notin \sigma_c(M)$ . This contradicts that  $\sigma_c(M) = \overline{\mathbb{D}}$ .

Next, suppose that  $\lambda = 0$ . Then  $S_z^{N_0} N_0$  is closed. Since  $S_z^{N_0} N_0 = S_z^{N_0} N$ ,  $S_z^{N_0} N$  is closed. Since dim  $\Omega < \infty$ , there are  $g_1, \ldots, g_m \in S_z^{N_0} N$  such that

$$S_z^{N_0}N \ominus (\mathbb{C} \cdot g_1 + \dots + \mathbb{C} \cdot g_m) = N \cap S_z^{N_0}N.$$

Hence

$$S_z^N N = P_N S_z^{N_0} N = (N \cap S_z^{N_0} N) + P_N(\mathbb{C} \cdot g_1 + \dots + \mathbb{C} \cdot g_m)$$

so  $S_z^N N$  is closed. Therefore  $0 \notin \sigma_c(S_z^N)$ , so  $0 \notin \sigma_c(M)$ . This contradicts that  $\sigma_c(M) = \overline{\mathbb{D}}$ . Thus we get the assertion.

Now we shall study  $\mathcal{M}$  given in (3.1) and  $\mathcal{M}_0$ . By Corollary 3.1,  $\mathcal{M}$  is Hilbert–Schmidt,  $z\mathcal{M} + w\mathcal{M}$  is closed and dim  $(\mathcal{M} \ominus (z\mathcal{M} + w\mathcal{M})) < \infty$ . We note that  $\mathcal{M}_0 = z\mathcal{M} + w\mathcal{M}$ ,  $\Omega(\mathcal{M}) = \mathcal{M} \ominus \mathcal{M}_0$  and  $\mathcal{N}_0 = \mathcal{N} \oplus \Omega(\mathcal{M})$ .

**PROOF OF THEOREM 3.9.** (i) We have  $\mathcal{M}_0 \subset \mathcal{M}$  and dim  $(\mathcal{M} \ominus \mathcal{M}_0) = \dim \Omega(\mathcal{M}) < \infty$ . Since  $\mathcal{M}$  is Hilbert–Schmidt, it is not difficult to see that  $\mathcal{M}_0$  is Hilbert–Schmidt.

(ii) By Theorem 3.2 and Lemma 3.11,  $\sigma_c(\mathcal{M}_0) = \mathbb{D}$ . By [1], there is a unimodular function u on  $\partial \mathbb{D} \times \partial \mathbb{D}$  such that  $M_1 = u\mathcal{M}_0$ . Since  $\mathcal{M}_0 = z\mathcal{M} + w\mathcal{M}$ ,  $zu\mathcal{M} \subset u\mathcal{M}_0 = M_1 \subset H^2$ . By the proof of Theorem 3.7, zu is inner. Similarly, wu is inner. Then one easily sees that u is inner. By Lemma 3.8,  $\sigma_c(\mathcal{M}_1) = \sigma_c(u\mathcal{M}_0) = \mathbb{D}$ .

(iii) Suppose that  $\psi_n(0) = 0$  for some  $-\infty < n < \infty$ . We shall show that  $\mathcal{M}_0$  is splitting. By ( $\alpha$ 5), there is an integer  $n_0$  such that

$$\psi_{n_0+1}(0) = 0 \quad \text{and} \quad \psi_{n_0}(0) \neq 0.$$
 (3.2)

Since  $\mathcal{M}$  is splitting for  $\varphi_{n_0+1}(z)$  and  $\psi_{n_0+1}(w)$  is the associated inner function of  $\varphi_{n_0+1}(z)$ ,

$$\mathcal{M} = (\mathcal{M} \cap \varphi_{n_0+1}(z)H^2) \oplus (\mathcal{M} \cap (H^2 \ominus \varphi_{n_0+1}(z)H^2))$$

and

$$\mathcal{M} \cap (H^2 \ominus \varphi_{n_0+1}(z)H^2) \subset \psi_{n_0+1}(w) K_{\varphi_{n_0+1}}(z) \otimes H^2(w).$$
(3.3)

We shall show that

$$\Omega(\mathcal{M}) \perp \varphi_{n_0+1}(z)\psi_{n_0+1}(w)H^2.$$
(3.4)

Let  $f \in \Omega(\mathcal{M})$ . Since  $f \perp w\mathcal{M}$ , we may write

$$f = \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z)\psi_n(w)f_n(z) \in \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z)\psi_n(w)K_{\zeta_n}(z).$$

By (3.2),

$$\bigoplus_{n=-\infty}^{n_0} \varphi_{n+1}(z) \psi_n(w) f_n(z) \perp \varphi_{n_0+1}(z) \psi_{n_0+1}(w) H^2.$$

Also

$$\bigoplus_{n=n_0+1}^{\infty} \varphi_{n+1}(z)\psi_n(w)f_n(z) \in \bigoplus_{n=n_0+1}^{\infty} \varphi_{n+1}(z)K_{\zeta_n}(z) \otimes H^2(w)$$
$$= K_{\varphi_{n_0+1}}(z) \otimes H^2(w).$$

Hence

$$\bigoplus_{n=n_0+1}^{\infty} \varphi_{n+1}(z)\psi_n(w)f_n(z) \perp \varphi_{n_0+1}(z)\psi_{n_0+1}(w)H^2.$$

Thus we get (3.4).

For  $f \in \Omega(\mathcal{M})$ , we may write

 $f = f_1 \oplus f_2 \in (\mathcal{M} \cap \varphi_{n_0+1}(z)H^2) \oplus (\mathcal{M} \cap (H^2 \ominus \varphi_{n_0+1}(z)H^2)).$ By (3.4),  $f_1 \in \varphi_{n_0+1}(z)H^2(z) \otimes K_{\psi_{n_0+1}}(w)$  and, by (3.3),

$$f_2 \in \psi_{n_0+1}(w) K_{\varphi_{n_0+1}}(z) \otimes H^2(w).$$

Then it is not difficult to show that  $f_1, f_2 \in \Omega(\mathcal{M})$ . Hence

$$\Omega(\mathcal{M}) = (\Omega(\mathcal{M}) \cap \varphi_{n_0+1}(z)H^2) \oplus (\Omega(\mathcal{M}) \cap (H^2 \ominus \varphi_{n_0+1}(z)H^2)).$$

Thus we get

$$\mathcal{M}_0 = \mathcal{M} \ominus \Omega(\mathcal{M})$$
  
=  $(\mathcal{M}_0 \cap \varphi_{n_0+1}(z)H^2) \oplus (\mathcal{M}_0 \cap (H^2 \ominus \varphi_{n_0+1}(z)H^2))$ 

This shows that  $\mathcal{M}_0$  is splitting.

Similarly, if  $\varphi_n(0) = 0$  for some  $-\infty < n < \infty$ , then we may prove that  $\mathcal{M}_0$  is splitting.

To show the converse assertion, suppose that  $\varphi_n(0) \neq 0$  and  $\psi_n(0) \neq 0$  for every  $-\infty < n < \infty$ . By [19, pages 532–533],  $\Omega(\mathcal{M}) = \mathbb{C} \cdot P_{\mathcal{M}} 1$ . By ( $\alpha$ 7), one can easily check that

$$P_{\mathcal{M}}1 = \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(0)\psi_n(0)\varphi_{n+1}(z)\psi_n(w)(1-\zeta_n(0)\zeta_n(z))$$
$$= \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(0)\psi_n(0)\varphi_{n+1}(z)\psi_n(w)(1-\zeta_n(0)\zeta_n(w)).$$
(3.5)

To prove that  $\mathcal{M}_0$  is not splitting, we assume that  $\mathcal{M}_0$  is splitting. We may assume that  $\mathcal{M}_0$  is splitting for  $\varphi(z)$ . Let  $\psi(w)$  be the associated inner function of  $\varphi(z)$  for  $\mathcal{M}_0$ . We have  $K_{\varphi_n}(z) \otimes K_{\psi_n}(w) \perp \mathcal{M}$ , so  $K_{\varphi_n}(z) \otimes K_{\psi_n}(w) \perp \varphi(z)\psi(w)H^2$  for every  $-\infty < n < \infty$ . Hence either  $T_z^*\varphi_n(z) \perp \varphi(z)H^2(z)$  or  $T_w^*\psi_n(w) \perp \psi(w)H^2(w)$ . This shows that either  $\varphi(z)/\varphi_n(z) \in H^2(z)$  or  $\psi(w)/\psi_n(w) \in H^2(w)$ . By  $(\alpha 6), \psi(w)/\psi_n(w) \notin H^2(w)$  for a large *n*, so  $\varphi(z)/\varphi_n(z) \in H^2(z)$  for a large *n*. By  $(\alpha 3), \varphi(z)/\varphi_n(z) \notin H^2(z)$  for a sufficiently small *n*. Then there is an integer  $n_0$  such that  $\varphi(z)/\varphi_{n_0+1}(z) \in H^2(z)$  and  $\varphi(z)/\varphi_{n_0}(z) \notin H^2(z)$ . We have  $\psi(w)/\psi_{n_0}(w) \in H^2(w)$ . Hence

$$\varphi(z)\psi(w)H^2 \subset \varphi_{n_0+1}(z)\psi_{n_0}(w)H^2.$$

Since  $\psi(w)$  is the associated inner function of  $\varphi(z)$  for  $\mathcal{M}_0$ ,  $K_{\varphi}(z) \otimes K_{\psi}(w) \perp \mathcal{M}_0$ , so  $K_{\varphi}(z) \otimes K_{\psi}(w) \subset \mathcal{N}_0$ . Let

$$\sigma(z) = \varphi(z) / \varphi_{n_0+1}(z)$$
 and  $\eta(w) = \psi(w) / \psi_{n_0}(w)$ .

Then  $\varphi_{n_0+1}(z)K_{\sigma}(z) \subset K_{\varphi}(z), \psi_{n_0}(w)K_{\eta}(w) \subset K_{\psi}(w)$  and

$$\varphi_{n_0+1}(z)\psi_{n_0}(w)K_{\sigma}(z)\otimes K_{\eta}(w)$$
  

$$\subset (K_{\varphi}(z)\otimes K_{\psi}(w))\cap \varphi_{n_0+1}(z)\psi_{n_0}(w)H^2$$
  

$$\subset \mathcal{N}_0\cap \varphi_{n_0+1}(z)\psi_{n_0}(w)H^2$$
  

$$\subset \mathcal{N}_0\cap \mathcal{M}=\Omega(\mathcal{M})=\mathbb{C}\cdot P_{\mathcal{M}}1.$$

https://doi.org/10.1017/S1446788716000203 Published online by Cambridge University Press

If  $K_{\sigma}(z) \otimes K_{\eta}(w) \neq \{0\}$ , then

$$\varphi_{n_0+1}(z)\psi_{n_0}(w)K_{\sigma}(z)\otimes K_{\eta}(w)=\mathbb{C}\cdot P_{\mathcal{M}}1$$

and this contradicts (3.5). Thus  $K_{\sigma}(z) \otimes K_{\eta}(w) = \{0\}$ . Hence we may assume that either  $\varphi(z) = \varphi_{n_0+1}(z)$  or  $\psi(w) = \psi_{n_0}(w)$ . Suppose that  $\varphi(z) = \varphi_{n_0+1}(z)$ . Since  $\mathcal{M}_0$  is splitting for  $\varphi_{n_0+1}(z)$ ,

$$\mathcal{M}_0 = (\mathcal{M}_0 \cap \varphi_{n_0+1}(z)H^2) \oplus (\mathcal{M}_0 \cap (H^2 \ominus \varphi_{n_0+1}(z)H^2)).$$
(3.6)

Let

$$f = \varphi_{n_0+2}(z)\psi_{n_0+1}(w)(1 - \zeta_{n_0+1}(0)\zeta_{n_0+1}(z))$$
  

$$\oplus c\varphi_{n_0+1}(z)\psi_{n_0}(w)(1 - \zeta_{n_0}(0)\zeta_{n_0}(z))$$

for some  $c \in \mathbb{C}$ . Then  $f \in \mathcal{M}$ . We may take  $c \in \mathbb{C}$  such that  $\langle f, P_{\mathcal{M}} 1 \rangle = 0$ . Since  $\mathcal{M} = \mathcal{M}_0 \oplus \mathbb{C} \cdot P_{\mathcal{M}} 1, f \in \mathcal{M}_0$ . By (3.6),

$$f_1 := \varphi_{n_0+2}(z)\psi_{n_0+1}(w)(1 - \zeta_{n_0+1}(0)\zeta_{n_0+1}(z)) \in \mathcal{M}_0$$
  
$$\langle f_1, P_{\mathcal{M}}1 \rangle = \varphi_{n_0+2}(0)\psi_{n_0+1}(0)(1 - \zeta_{n_0+1}(0)^2) \neq 0.$$

This shows  $f_1 \notin \mathcal{M}_0$  and this is a contradiction.

Suppose that  $\psi(w) = \psi_{n_0}(w)$ . Since

$$(\mathcal{M}_0 \cap \varphi_{n_0+1}(z)H^2) \ominus \varphi_{n_0+1}(z)\psi_{n_0}(w)H^2 \neq \{0\},\$$

 $\mathcal{M}_0$  is splitting for  $\psi_{n_0}(w)$  (see above Theorem 2.2). In the same way as the last paragraph, we have a contradiction. As a result,  $\mathcal{M}_0$  is not splitting.

COROLLARY 3.12. The splittingness is not stable under the finite dimensional perturbations.

## Acknowledgement

The authors would like to thank the referee for various comments on the original manuscript.

### References

- O. Agrawal, D. Clark and R. Douglas, 'Invariant subspaces in the polydisk', *Pacific J. Math.* 121 (1986), 1–11.
- H. Bercovici, 'Operator theory and arithmetic in H<sup>∞</sup>', in: *Mathematical Surveys and Monographs*, Vol. 26 (American Mathematical Society, Providence, RI, 1988).
- [3] X. Chen and K. Guo, Analytic Hilbert Modules (Chapman & Hall/CRC, Boca Raton, FL, 2003).
- [4] R. Douglas and R. Yang, 'Operator theory in the Hardy space over the bidisk I', *Integral Equ. Operator Theory* 38 (2000), 207–221.
- [5] K. Guo and R. Yang, 'The core function of submodules over the bidisk', *Indiana Univ. Math. J.* 53 (2004), 205–222.
- [6] K. Hoffman, Banach Spaces of Analytic Functions (Prentice Hall, Englewood Cliffs, NJ, 1962).

- [7] K. J. Izuchi and K. H. Izuchi, 'Rank-one commutators on invariant subspaces of the Hardy space on the bidisk', J. Operator Theory 60 (2008), 239–251.
  - [8] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, 'Blaschke products and the rank of backward shift invariant subspaces over the bidisk', J. Funct. Anal. 261 (2011), 1457–1468.
- [9] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, 'Ranks of invariant subspaces of the Hardy space over the bidisk', J. reine angew. Math. 659 (2011), 67–100.
- [10] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, 'Ranks of backward shift invariant subspaces of the Hardy space over the bidisk', *Math. Z.* 274 (2013), 885–903.
- [11] K. J. Izuchi, T. Nakazi and M. Seto, 'Backward shift invariant subspaces in the bidisc II', J. Operator Theory 51 (2004), 361–375.
- [12] V. Mandreckar, 'The validity of Beurling theorems in polydiscs', Proc. Amer. Math. Soc. 103 (1988), 145–148.
- [13] N. Nikol'skii, Treatise on the Shift Operator (Springer, New York, 1986).
- [14] W. Rudin, Function Theory in Polydiscs (Benjamin, New York, 1969).
- [15] M. Seto, 'Infinite sequences of inner functions and submodules in  $H^2(D^2)$ ', J. Operator Theory 61 (2009), 75–86.
- [16] M. Seto and R. Yang, 'Inner sequence based invariant subspaces in H<sup>2</sup>(D<sup>2</sup>)', Proc. Amer. Math. Soc. 135 (2007), 2519–2526.
- [17] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space (North Holland, Amsterdam, 1970).
- [18] R. Yang, 'The Berger–Shaw theorem in the Hardy module over the bidisk', J. Operator Theory 42 (1999), 379–404.
- [19] R. Yang, 'Operator theory in the Hardy space over the bidisk (III)', J. Funct. Anal. 186 (2001), 521–545.
- [20] R. Yang, 'Beurling's phenomenon in two variables', *Integral Equ. Operator Theory* **48** (2004), 411–423.
- [21] R. Yang, 'The core operator and congruent submodules', J. Funct. Anal. 228 (2005), 469–489.
- [22] R. Yang, 'Hilbert–Schmidt submodules and issues of unitary equivalence', J. Operator Theory 53 (2005), 169–184.
- [23] R. Yang, 'On two variable Jordan block II', Integral Equ. Operator Theory 56 (2006), 431–449.
- [24] Y. Yang, 'Two inner sequences based invariant subspaces in  $H^2(\mathbb{D}^2)$ ', Integral Equ. Operator Theory 77 (2013), 279–290.

KEI JI IZUCHI, Department of Mathematics, Niigata University, Niigata 950-2181, Japan e-mail: izuchi@m.sc.niigata-u.ac.jp

KOU HEI IZUCHI, Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan e-mail: izuchi@yamaguchi-u.ac.jp

YUKO IZUCHI, Aoyama-shinmachi 18-6-301, Nishi-ku, Niigata 950-2006, Japan e-mail: yfd10198@nifty.com