# SPLITTING INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK 

KEI JI IZUCHI ${ }^{\boxtimes}$, KOU HEI IZUCHI and YUKO IZUCHI

(Received 28 May 2015; accepted 25 October 2015; first published online 12 May 2016)

Communicated by Chris Meaney


#### Abstract

Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert-Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert-Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert-Schmidt.


2010 Mathematics subject classification: primary 47A15; secondary 32A35, 47B35.
Keywords and phrases: Hardy space over the bidisk, splitting invariant subspace, Hilbert-Schmidt invariant subspace, Rudin type invariant subspace.

## 1. Introduction

Let $H^{2}=H^{2}\left(\mathbb{D}^{2}\right)$ be the Hardy space over the bidisk $\mathbb{D}^{2}$ with variables $z$ and $w$. Then $H^{2}=H^{2}(z) \otimes H^{2}(w)$, where $H^{2}(z)$ is the $z$-variable Hardy space. A nonzero closed subspace $M$ of $H^{2}$ is said to be invariant if $z M \subset M$ and $w M \subset M$. For an invariant subspace $L$ of $H^{2}(z)$, by the Beurling theorem, $L=\varphi(z) H^{2}(z)$ for some inner function $\varphi(z)$. The structure of invariant subspaces of $H^{2}=H^{2}\left(\mathbb{D}^{2}\right)$ is extremely complicated (see [3,14]). For a function $\phi$ in $H^{\infty}\left(\mathbb{D}^{2}\right)$, we denote by $T_{\phi}$ the multiplication operator on $H^{2}$ by $\phi$. For an invariant subspace $M$ of $H^{2}$, we write $R_{z}^{M}=\left.T_{z}\right|_{M}$ and $R_{w}^{M}=\left.T_{w}\right|_{M}$. We will simply write $R_{z}, R_{w}$ when no confusion occurs. Then $\left(R_{z}, R_{w}\right)$ is a pair of commuting isometries on $M$. In the study of invariant subspaces of $H^{2}$, the operators $R_{z}, R_{w}$ play important roles in the study of operator theory and function theory. Since

$$
M=\bigoplus_{n=0}^{\infty} w^{n}(M \ominus w M)
$$

the space $M \ominus w M$ contains much information about the properties of $M$.

$$
\left[R_{w}^{*}, R_{w}\right]:=R_{w}^{*} R_{w}-R_{w} R_{w}^{*}=I_{M}-P_{w M}=P_{M \ominus w M},
$$

The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (no. 24540164).
(C) 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00
where $P_{E}$ is the orthogonal projection from $H^{2}$ onto the closed subspace $E$ of $H^{2}$, $\left[R_{w}^{*}, R_{z}\right]=0$ on $w M$ and $\left[R_{w}^{*}, R_{z}\right]=R_{w}^{*} R_{z}$ on $M \ominus w M$. So $\left[R_{z}^{*}, R_{z}\right]\left[R_{w}^{*}, R_{w}\right]$ and [ $R_{w}^{*}, R_{z}$ ] are key operators in the study of invariant subspaces of $H^{2}$ (see $[4,5,7-$ 9, 11, 12, 15, 16, 18-23]).

In [19], Yang defined two numerical invariants for $M$,

$$
\Sigma_{0}(M)=\left\|\left[R_{z}^{*}, R_{z}\right]\left[R_{w}^{*}, R_{w}\right]\right\|_{\mathrm{HS}}^{2}, \quad \Sigma_{1}(M)=\left\|\left[R_{w}^{*}, R_{z}\right]\right\|_{\mathrm{HS}}^{2}
$$

where $\|\cdot\|_{\text {HS }}$ is the Hilbert-Schmidt norm, and showed that

$$
\left\|\left[R_{z}^{*}, R_{z}\right]\left[R_{w}^{*}, R_{w}\right]\right\|_{\mathrm{HS}}^{2}=\left\|\left[R_{w}^{*}, R_{w}\right]\left[R_{z}^{*}, R_{z}\right]\right\|_{\mathrm{HS}}^{2}
$$

and

$$
\left\|\left[R_{w}^{*}, R_{z}\right]\right\|_{\mathrm{HS}}^{2}=\left\|\left[R_{z}^{*}, R_{w}\right]\right\|_{\mathrm{HS}}^{2} .
$$

In [19, Proposition 3.3], he showed also that if $M$ is unitarily equivalent to $M_{1}$, then $\Sigma_{0}(M)=\Sigma_{0}\left(M_{1}\right)$ and $\Sigma_{1}(M)=\Sigma_{1}\left(M_{1}\right)$. In [22], Yang introduced the concept of Hilbert-Schmidtness for $M$. It is equivalent to the fact that $P_{M}-R_{z} R_{z}^{*}-R_{w} R_{w}^{*}-$ $R_{z} T_{w} R_{z}^{*} R_{w}^{*}$ is Hilbert-Schmidt (see [5, Proposition 1.1]). By [5, Corollary 3.3], $M$ is Hilbert-Schmidt if and only if $\Sigma_{0}(M)+\Sigma_{1}(M)<\infty$. For a given $M$, it is generally difficult to compute the exact values of $\Sigma_{0}(M)$ and $\Sigma_{1}(M)$.

Hilbert-Schmidt invariant subspaces have many nice properties (see [5, 15, 16, 1923]). Let $F_{z}^{M}$ be the compression operator of $T_{z}$ on $M \ominus w M$. In [19], Yang called $F_{z}^{M}$ the fringe operator and studied properties of $F_{z}^{M}$. If $M$ is Hilbert-Schmidt, then, by [21], $F_{z}^{M}$ is Fredholm. Hence, by [19, Corollary 4.3], $z M+w M$ is closed and $\operatorname{dim}(M \ominus(z M+w M))<\infty$.

Let $N=H^{2} \ominus M$. Let $S_{z}^{N}$ and $S_{w}^{N}$ be the compression operators of $T_{z}$ and $T_{w}$ on $N$, that is, $S_{z}^{N} f=P_{N} T_{z} f$ for $f \in N$. We have $\left(S_{z}^{N}\right)^{*}=\left.T_{z}^{*}\right|_{N}$ and $\left(S_{w}^{N}\right)^{*}=\left.T_{w}^{*}\right|_{N}$. We will simply write $S_{z}, S_{w}$ when no confusion occurs. We denote by $\sigma_{c}\left(S_{z}\right)$ and $\sigma_{c}\left(S_{w}\right)$ the continuous spectra of $S_{z}$ and $S_{w}$, that is, $\lambda \in \sigma_{c}\left(S_{z}\right)$ if and only if either $\operatorname{dim}\left(S_{z}-\right.$ $\left.\lambda I_{N}\right)=\infty$ or $S_{z}-\lambda I_{N}$ does not have closed range. Set $\sigma_{c}(M)=\sigma_{c}\left(S_{z}\right) \cap \sigma_{c}\left(S_{w}\right)$. In [19, Theorem 2.3], Yang showed that if $\sigma_{c}(M) \neq \overline{\mathbb{D}}$, then $\Sigma_{0}(M)+\Sigma_{1}(M)<\infty$, so $M$ is Hilbert-Schmidt. If $\varphi(z) H^{2} \subset M$ for some inner function $\varphi(z)$, then, by the model theory of Sz.-Nagy and Foiass [13, 17], $\sigma_{c}(M) \neq \overline{\mathbb{D}}$, so there are a lot of HilbertSchmidt invariant subspaces. If $M$ is a unitarily equivalent to an invariant subspace $M_{1}$ such that $\sigma_{c}\left(M_{1}\right) \neq \overline{\mathbb{D}}$, then $M$ is Hilbert-Schmidt. In this paper, we shall study a Hilbert-Schmidt invariant subspace $M$ satisfying that $\sigma_{c}\left(M_{1}\right)=\overline{\mathbb{D}}$ for every $M_{1}$ that is unitarily equivalent to $M$.

In Section 2, we shall define splitting invariant subspaces of $H^{2}$ and prove that they are Hilbert-Schmidt. In Section 3, we shall study a Rudin-type invariant subspace $\mathcal{M}$ which was first studied in [14, page 72]. We shall show that $\mathcal{M}$ is splitting, and that $\sigma_{c}\left(M_{1}\right)=\overline{\mathbb{D}}$ for every $M_{1}$ that is unitarily equivalent to $\mathcal{M}$.

Let $\mathcal{M}_{0}=z \mathcal{M}+w \mathcal{M}$. Then $\mathcal{M}_{0}$ is an invariant subspace. We shall show that, under some additional assumptions, $\mathcal{M}_{0}$ is Hilbert-Schmidt, $\mathcal{M}_{0}$ is not splitting and $\sigma_{c}\left(M_{2}\right)=\overline{\mathbb{D}}$ for every $M_{2}$ that is unitarily equivalent to $\mathcal{M}_{0}$.

## 2. Splitting invariant subspaces

Let $\varphi(z)$ be a nonconstant inner function. An invariant subspace $M$ of $H^{2}$ is said to be splitting for $\varphi(z)$ if

$$
\text { (\#1) } \quad M=\left(M \cap \varphi(z) H^{2}\right) \oplus\left(M \cap\left(H^{2} \ominus \varphi(z) H^{2}\right)\right)
$$

and

$$
\text { (\#2) } \quad M \cap\left(H^{2} \ominus \varphi(z) H^{2}\right) \neq\{0\} \text {. }
$$

Similarly, we may define a splitting invariant subspace for a nonconstant inner function $\psi(w)$. We say simply that $M$ is splitting if $M$ is splitting either for $\varphi(z)$ or for $\psi(w)$. In this section, we shall study splitting invariant subspaces $M$ for $\varphi(z)$. We set

$$
\begin{equation*}
A=A(\varphi)=M \cap\left(H^{2} \ominus \varphi(z) H^{2}\right) . \tag{2.1}
\end{equation*}
$$

We write

$$
K_{\varphi}(z)=H^{2}(z) \ominus \varphi(z) H^{2}(z) \quad \text { and } \quad K_{\psi}(w)=H^{2}(w) \ominus \psi(w) H^{2}(w) .
$$

Lemma 2.1. Let $M$ be a splitting invariant subspace for $\varphi(z)$. Then $w A \subset A$ and there is an inner function $\psi(w)$ (may be constant) such that $M \cap \psi(w) H^{2}=A \oplus \varphi(z) \psi(w) H^{2}$, $A \subset \psi(w) K_{\varphi}(z) \otimes H^{2}(w), K_{\varphi}(z) \otimes K_{\psi}(w) \perp M$ and $T_{z}^{*} \varphi(z) \psi(w) \perp A$. Moreover, if $\eta(w)$ is an inner function satisfying $A \subset \eta(w) H^{2}$, then $\psi(w) H^{2} \subset \eta(w) H^{2}$.

Proof. By (\#2) and (2.1), $A \neq\{0\}, w A \subset A$ and $z A \not \subset A$. For $f \in A$, we write

$$
z f=f_{1} \oplus f_{2} \in \varphi(z) H^{2} \oplus\left(H^{2} \ominus \varphi(z) H^{2}\right)
$$

Since $f \in H^{2} \ominus \varphi(z) H^{2}, f_{1} \in \varphi(z) H^{2}(w)$,

$$
z w^{n} f=w^{n} f_{1} \oplus w^{n} f_{2} \in \varphi(z) H^{2}(w) \oplus\left(H^{2} \ominus \varphi(z) H^{2}\right)
$$

for every $n \geq 0$ and $\left\{f_{1}: f \in A\right\} \neq\{0\}$. Then, by the Beurling theorem, there is an inner function $\psi(w)$ such that

$$
\bigvee_{n \geq 0} w^{n}\left\{f_{1}: f \in A\right\}=\varphi(z) \psi(w) H^{2}(w)
$$

where $\bigvee_{n \geq 0} E_{n}$ is the closed linear span of $E_{0}, E_{1}, \ldots$ This shows that $T_{z}^{*} \varphi(z) \psi(w) \not \perp A$. By $(\# 1), f_{1} \in M \cap \varphi(z) H^{2}$. Hence $\varphi(z) \psi(w) H^{2}(w) \subset M$, so $\varphi(z) \psi(w) H^{2} \subset M$. One easily sees that $A \subset \psi(w) H^{2}$, and $\psi(w) H^{2} \subset \eta(w) H^{2}$ for every inner function $\eta(w)$ satisfying $A \subset \eta(w) H^{2}$. By (\#1) and (2.1), $M \cap \psi(w) H^{2}=A \oplus \varphi(z) \psi(w) H^{2}, A \subset$ $\psi(w) K_{\varphi}(z) \otimes H^{2}(w)$ and $K_{\varphi}(z) \otimes K_{\psi}(w) \perp M$.

An inner function $\psi(w)$ given in Lemma 2.1 is unique except for constant multiplication and depends on $\varphi(z)$. So $\psi(w)$ is said to be the associated inner function of $\varphi(z)$ for $M$.

Let $M$ be a splitting invariant subspace for $\varphi(z)$ and $\psi(w)$ be the associated inner function of $\varphi(z)$. By Lemma 2.1,

$$
\begin{equation*}
L_{1}:=A \oplus \varphi(z) \psi(w) H^{2}=M \cap \psi(w) H^{2} . \tag{2.2}
\end{equation*}
$$

Since $\varphi(z) \psi(w) H^{2} \subset M \cap \varphi(z) H^{2}$, let

$$
B=B(\varphi)=\left(M \cap \varphi(z) H^{2}\right) \ominus \varphi(z) \psi(w) H^{2}
$$

Then $z B \subset B$ and $B \subset \varphi(z) H^{2}(z) \otimes K_{\psi}(w)$. By Lemma 2.1, again, $A \subset \psi(w) K_{\varphi}(z) \otimes$ $H^{2}(w)$, so $A \perp B$. By (\#1) and (2.1),

$$
\begin{equation*}
M=A \oplus B \oplus \varphi(z) \psi(w) H^{2} \tag{2.3}
\end{equation*}
$$

We set

$$
\begin{equation*}
L_{2}:=B \oplus \varphi(z) \psi(w) H^{2}=M \cap \varphi(z) H^{2} \tag{2.4}
\end{equation*}
$$

Then $L_{1}$ and $L_{2}$ are invariant subspaces and $L_{1} \cap L_{2}=\varphi(z) \psi(w) H^{2}$. Since $\psi(w)$ is the associated inner function of $\varphi(z)$,

$$
\bigvee\{f(0, w): f \in A\}=\psi(w) H^{2}(w)
$$

When $B \neq\{0\}, \psi(w)$ is nonconstant and $M$ is splitting for $\psi(w)$. Let $\varphi_{1}(z)$ be the associated inner function of $\psi(w)$ for $M$. Then $\varphi_{1}(z) H^{2}(z) \subset \varphi(z) H^{2}(z)$. We shall show the following theorem.

Theorem 2.2. If $M$ is a splitting invariant subspace of $H^{2}$, then $M$ is Hilbert-Schmidt.
To show Theorem 2.2, we use several known facts, as mentioned in the introduction. We will list them as lemmas.

## Lemma 2.3.

(i) $\quad \Sigma_{0}(M)=\left\|P_{M \ominus z M} P_{M \ominus w M}\right\|_{H S}^{2}$.
(ii) If $\left\{\psi_{n}\right\}_{n \geq 1}$ is an orthonormal basis of $M \ominus w M$, then $\Sigma_{1}(M)=\sum_{n=1}^{\infty}\left\|R_{w}^{*} R_{z} \psi_{n}\right\|^{2}$.

Lemma 2.4. Let $M$ be an invariant subspace of $H^{2}$. Then $M$ is Hilbert-Schmidt if and only if $\Sigma_{0}(M)+\Sigma_{1}(M)<\infty$.

Lemma 2.5. Let $M$ be an invariant subspace of $H^{2}$. If $\sigma_{c}(M) \neq \overline{\mathbb{D}}$, then $\Sigma_{0}(M)+$ $\Sigma_{1}(M)<\infty$.

Let $M_{1}$ and $M_{2}$ be invariant subspaces of $H^{2}$. A unitary operator $T: M_{1} \rightarrow M_{2}$ is called a unitary module map if $T_{z} T=T T_{z}$ and $T_{w} T=T T_{w}$ on $M_{1}$. We say that $M_{1}$ is unitarily equivalent to $M_{2}$ if there is a unitary module map $T: M_{1} \rightarrow M_{2}$.

Lemma 2.6. Let $M_{1}$ and $M_{2}$ be invariant subspaces of $H^{2}$. If $M_{1}$ is unitarily equivalent to $M_{2}$, then $\Sigma_{0}\left(M_{1}\right)=\Sigma_{0}\left(M_{2}\right)$ and $\Sigma_{1}\left(M_{1}\right)=\Sigma_{1}\left(M_{2}\right)$.

Proof of Theorem 2.2. We may assume that $M$ is splitting for $\varphi(z)$. Let $\psi(w)$ be the associated inner function of $\varphi(z)$. By (2.2), $L_{1} \subset \psi(w) H^{2}$. Then $T_{\psi(w)}^{*} L_{1}$ is an invariant subspace and $T_{\psi(w)}^{*}: L_{1} \rightarrow T_{\psi(w)}^{*} L_{1}$ is a unitary module map. By Lemma 2.6, $\Sigma_{0}\left(L_{1}\right)=$ $\Sigma_{0}\left(T_{\psi(w)}^{*} L_{1}\right)$ and $\Sigma_{1}\left(L_{1}\right)=\Sigma_{1}\left(T_{\psi(w)}^{*} L_{1}\right)$. By (2.2), again, $T_{\psi(w)}^{*} L_{1}=T_{\psi(w)}^{*} A \oplus \varphi(z) H^{2}$.

Let $N_{1}=H^{2} \ominus T_{\psi(w)}^{*} L_{1}$. Then $N_{1} \subset H^{2} \ominus \varphi(z) H^{2}$. Hence $\varphi\left(S_{z}^{N_{1}}\right)=0$, so, by the model theory of Sz.-Nagy and Foiaş [13, 17]

$$
\sigma_{c}\left(S_{z}^{N_{1}}\right) \subset \sigma\left(S_{z}^{N_{1}}\right) \subset\{z \in \mathbb{D}: \varphi(z)=0\} \cup \partial \mathbb{D} \neq \overline{\mathbb{D}}
$$

Hence $\sigma_{c}\left(T_{\psi(w)}^{*} L_{1}\right) \neq \overline{\mathbb{D}}$. By Lemma 2.5, $\Sigma_{0}\left(T_{\psi(w)}^{*} L_{1}\right)+\Sigma_{1}\left(T_{\psi(w)}^{*} L_{1}\right)<\infty$, so

$$
\begin{equation*}
\Sigma_{0}\left(L_{1}\right)+\Sigma_{1}\left(L_{1}\right)<\infty . \tag{2.5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\Sigma_{0}\left(L_{2}\right)+\Sigma_{1}\left(L_{2}\right)<\infty . \tag{2.6}
\end{equation*}
$$

To show that $M$ is Hilbert-Schmidt, we shall compute the values $\Sigma_{0}(M)$ and $\Sigma_{1}(M)$, respectively. First, we shall show that $\Sigma_{0}(M)<\infty$. By (2.3) and (2.4), $M=A \oplus L_{2}$. Since $w A \subset A$ and $w L_{2} \subset L_{2}$,

$$
M \ominus w M=(A \ominus w A) \oplus\left(L_{2} \ominus w L_{2}\right)
$$

Let $\left\{g_{n}\right\}_{n \geq 1}$ and $\left\{f_{n}\right\}_{n \geq 1}$ be orthonormal bases of $A \ominus w A$ and $L_{2} \ominus w L_{2}$, respectively. By Lemma 2.3(i),

$$
\begin{equation*}
\Sigma_{0}(M)=\sum_{n=1}^{\infty}\left(\left\|P_{M \ominus z M} g_{n}\right\|^{2}+\left\|P_{M \ominus z M} f_{n}\right\|^{2}\right) \tag{2.7}
\end{equation*}
$$

Since $M=B \oplus L_{1}$ and $z B \subset B$,

$$
M \ominus z M=(B \ominus z B) \oplus\left(L_{1} \ominus z L_{1}\right)
$$

By (2.3), $A \perp B$, so $g_{n} \perp B \ominus z B$. Since $L_{1}=A \oplus \varphi(z) \psi(w) H^{2}$ and

$$
\begin{aligned}
& L_{1} \ominus w L_{1}=(A \ominus w A) \oplus \varphi(z) \psi(w) H^{2}(z), \\
& \sum_{n=1}^{\infty}\left\|P_{M \ominus z M} g_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} g_{n}\right\|^{2} \\
& =\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} P_{L_{1} \ominus w L_{1}} g_{n}\right\|^{2} \\
& \leq\left\|P_{L_{1} \ominus z L_{1}} P_{L_{1} \ominus w L_{1}}\right\|_{\mathrm{HS}}^{2} \\
& =\Sigma_{0}\left(L_{1}\right) \text { by Lemma 2.3. }
\end{aligned}
$$

By (2.7),

$$
\begin{equation*}
\Sigma_{0}(M) \leq \Sigma_{0}\left(L_{1}\right)+\sum_{n=1}^{\infty}\left\|P_{M \ominus z M} f_{n}\right\|^{2} \tag{2.8}
\end{equation*}
$$

Also

$$
\sum_{n=1}^{\infty}\left\|P_{M \ominus z M} f_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left(\left\|P_{B \ominus z B} f_{n}\right\|^{2}+\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2}\right)
$$

Since

$$
\begin{gathered}
L_{2} \ominus z L_{2}=(B \ominus z B) \oplus \varphi(z) \psi(w) H^{2}(w), \\
\sum_{n=1}^{\infty}\left\|P_{M \ominus z M} f_{n}\right\|^{2} \leq \sum_{n=1}^{\infty}\left\|P_{L_{2} \ominus z L_{2}} f_{n}\right\|^{2}+\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} \\
\\
=\sum_{n=1}^{\infty}\left\|P_{L_{2} \ominus z L_{2}} P_{L_{2} \ominus w L_{2}} f_{n}\right\|^{2}+\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} \\
\\
=\left\|P_{L_{2} \ominus z L_{2}} P_{L_{2} \ominus w L_{2}}\right\|_{\mathrm{HS}}^{2}+\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} \\
\\
=\Sigma_{0}\left(L_{2}\right)+\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} .
\end{gathered}
$$

Hence, by (2.8),

$$
\begin{equation*}
\Sigma_{0}(M) \leq \Sigma_{0}\left(L_{1}\right)+\Sigma_{0}\left(L_{2}\right)+\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} \tag{2.9}
\end{equation*}
$$

Let $\left\{h_{k}\right\}_{k \geq 1}$ be an orthonormal basis of $L_{1} \ominus z L_{1}$. Then, for each $n \geq 1$,

$$
\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle P_{L_{1} \ominus z L_{1}} f_{n}, h_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left|\left\langle f_{n}, h_{k}\right\rangle\right|^{2}
$$

Since $L_{1} \ominus z L_{1} \perp z \varphi(z) \psi(w) H^{2}$, we may write

$$
h_{k}=h_{k, 1} \oplus \varphi(z) \psi(w) \eta_{k}(w) \in A \oplus \varphi(z) \psi(w) H^{2}(w)
$$

Since $f_{n} \in L_{2}$ and $L_{2} \perp A$,

$$
\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle f_{n}, h_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left|\left\langle f_{n}, \varphi(z) \psi(w) \eta_{k}(w)\right\rangle\right|^{2} .
$$

Since $f_{n} \in L_{2} \ominus w L_{2}, f_{n} \perp w \varphi(z) \psi(w) H^{2}$. Hence we may write

$$
f_{n}=f_{n, 1} \oplus \varphi(z) \psi(w) \sigma_{n}(z) \in B \oplus \varphi(z) \psi(w) H^{2}(z)
$$

Since $B \perp \varphi(z) \psi(w) H^{2}$,

$$
\begin{aligned}
\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} & =\sum_{k=1}^{\infty}\left|\left\langle\varphi(z) \psi(w) \sigma_{n}(z), \varphi(z) \psi(w) \eta_{k}(w)\right\rangle\right|^{2} \\
& =\left|\sigma_{n}(0)\right|^{2} \sum_{k=1}^{\infty}\left|\eta_{k}(0)\right|^{2}
\end{aligned}
$$

Here

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\eta_{k}(0)\right|^{2} & =\sum_{k=1}^{\infty}\left|\left\langle h_{k}, \varphi(z) \psi(w)\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left\|P_{\mathbb{C} \cdot \varphi \psi} h_{k}\right\|^{2} \\
& \leq \sum_{k=1}^{\infty}\left\|P_{L_{1} \ominus w L_{1}} h_{k}\right\|^{2}=\sum_{k=1}^{\infty}\left\|P_{L_{1} \ominus w L_{1}} P_{L_{1} \ominus z L_{1}} h_{k}\right\|^{2} \\
& =\left\|P_{L_{1} \ominus w L_{1}} P_{L_{1} \ominus z L_{1}}\right\|_{\mathrm{HS}}^{2}=\Sigma_{0}\left(L_{1}\right) \quad \text { by Lemma 2.3. }
\end{aligned}
$$

Similarly, $\sum_{n=1}^{\infty}\left|\sigma_{n}(0)\right|^{2} \leq \Sigma_{0}\left(L_{2}\right)$. Hence

$$
\sum_{n=1}^{\infty}\left\|P_{L_{1} \ominus z L_{1}} f_{n}\right\|^{2} \leq \Sigma_{0}\left(L_{1}\right) \sum_{n=1}^{\infty}\left|\sigma_{n}(0)\right|^{2} \leq \Sigma_{0}\left(L_{1}\right) \Sigma_{0}\left(L_{2}\right)
$$

By (2.5), (2.6) and (2.9),

$$
\Sigma_{0}(M) \leq \Sigma_{0}\left(L_{1}\right)+\Sigma_{0}\left(L_{2}\right)+\Sigma_{0}\left(L_{1}\right) \Sigma_{0}\left(L_{2}\right)<\infty .
$$

Next, we shall prove that $\Sigma_{1}(M)<\infty$. Since $\left\{g_{n}, f_{n}: n \geq 1\right\}$ is an orthonormal basis of $M \ominus w M$, by Lemma 2.3(ii),

$$
\Sigma_{1}(M)=\sum_{n=1}^{\infty}\left(\left\|R_{w}^{*} R_{z} g_{n}\right\|^{2}+\left\|R_{w}^{*} R_{z} f_{n}\right\|^{2}\right)
$$

Since $M \ominus w M=(A \ominus w A) \oplus\left(L_{2} \ominus w L_{2}\right)$ and $w A \perp L_{2}$,

$$
R_{w}^{*} R_{z}=R_{w}^{M *} R_{z}^{M}=R_{w}^{L_{2} *} R_{z}^{L_{2}} \quad \text { on } L_{2}
$$

Since $\left\{f_{n}\right\}_{n \geq 1}$ is an orthonormal basis of $L_{2} \ominus w L_{2}$, by Lemma 2.3, again,

$$
\sum_{n=1}^{\infty}\left\|R_{w}^{*} R_{z} f_{n}\right\|^{2}=\Sigma_{1}\left(L_{2}\right)
$$

Hence

$$
\begin{equation*}
\Sigma_{1}(M)=\Sigma_{1}\left(L_{2}\right)+\sum_{n=1}^{\infty}\left\|R_{w}^{*} R_{z} g_{n}\right\|^{2} \tag{2.10}
\end{equation*}
$$

Since $\left\{g_{n}\right\}_{n \geq 1}$ is an orthonormal basis of $A \ominus w A$ and $A \ominus w A \subset L_{1} \ominus w L_{1}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|R_{w}^{L_{1} *} R_{z}^{L_{1}} g_{n}\right\|^{2} \leq \Sigma_{1}\left(L_{1}\right) \tag{2.11}
\end{equation*}
$$

By Lemma 2.1, $P_{A} T_{z}^{*} \varphi(z) \psi(w) \neq 0$. Since $z w A \perp \varphi(z) \psi(w), P_{A} T_{z}^{*} \varphi(z) \psi(w) \in A \ominus w A$, so we may assume that

$$
g_{1}=\frac{P_{A} T_{z}^{*} \varphi(z) \psi(w)}{\left\|P_{A} T_{z}^{*} \varphi(z) \psi(w)\right\|}
$$

For each $n \geq 2$,

$$
0=\left\langle g_{n}, g_{1}\right\rangle=\frac{1}{\left\|P_{A} T_{z}^{*} \varphi(z) \psi(w)\right\|}\left\langle g_{n}, P_{A} T_{z}^{*} \varphi(z) \psi(w)\right\rangle,
$$

so $z g_{n} \perp \varphi(z) \psi(w)$. Hence

$$
z g_{n} \in A \oplus \varphi(z) \psi(w) w H^{2}(w) \subset A \oplus \varphi(z) \psi(w) H^{2}=L_{1}
$$

This shows that $R_{w}^{*} R_{z} g_{n}=R_{w}^{L_{1} *} R_{z}^{L_{1}} g_{n}$ for every $n \geq 2$. Therefore, by (2.11),

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\|R_{w}^{*} R_{z} g_{n}\right\|^{2} & =\left\|R_{w}^{*} R_{z} g_{1}\right\|^{2}+\sum_{n \geq 2}^{\infty}\left\|R_{w}^{L_{1} *} R_{z}^{L_{1}} g_{n}\right\|^{2} \\
& \leq\left\|R_{w}^{*} R_{z} g_{1}\right\|^{2}+\Sigma_{1}\left(L_{1}\right)
\end{aligned}
$$

Thus, by (2.5), (2.6) and (2.10), $\Sigma_{1}(M)<\infty$. By Lemma 2.4, $M$ is Hilbert-Schmidt.
As mentioned in the introduction, by Yang's works we have the following corollary.
Corollary 2.7. Let $M$ be a splitting invariant subspace of $H^{2}$. Then $z M+w M$ is closed, $1 \leq \operatorname{dim}(M \ominus(z M+w M))<\infty$ and $F_{z}^{M}$ on $M \ominus w M$ is Fredholm.
Example 2.8. Let $\varphi(z), \psi(w)$ be nonconstant inner functions and $M=\varphi(z) H^{2}+$ $\psi(w) H^{2}$. Then $M$ is a splitting invariant subspace for $\varphi(z)$.
Example 2.9. Let $\mu, v$ be bounded positive singular measures on $\partial \mathbb{D}$. Let

$$
\psi_{\mu}(z)=\exp \left(-\int_{\partial \mathbb{D}} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \mu\left(e^{i \theta}\right)\right), \quad z \in \mathbb{D} .
$$

Then $\psi_{\mu}(z)$ is an inner function (see [6]). Let

$$
M=\bigvee_{0<t<\infty} \psi_{\mu}(z)^{t} \psi_{\nu}(w)^{1 / t} H^{2}
$$

Then it is clear that $M$ is a splitting invariant subspace for $\psi_{\mu}(z)$.
Proposition 2.10. Let $\eta$ be an inner function on $\mathbb{D}^{2}$. If $\eta H^{2}$ is splitting, then $\eta=$ $\varphi_{1}(z) \psi_{1}(w)$ for some inner functions $\varphi_{1}(z)$ and $\psi_{1}(w)$.
Proof. We may assume that $\eta H^{2}$ is splitting for a nonconstant inner function $\varphi(z)$. Let $\psi(w)$ be the associated inner function of $\varphi(z)$ for $\eta H^{2}$. Then, by Lemma 2.1, $\varphi(z) \psi(w) H^{2} \subset \eta H^{2}$ and $K_{\varphi}(z) \otimes K_{\psi}(w) \perp \eta H^{2}$. There is $\sigma \in H^{2}$ satisfying $\eta \sigma=$ $\varphi(z) \psi(w)$. We note that $\sigma$ is an inner function on $\mathbb{D}^{2}$. We have $T_{z}^{*} \varphi(z) T_{w}^{*} \psi(w) \perp \eta H^{2}$, so $\varphi(z) \psi(w) \perp z w \eta H^{2}$. Hence $\sigma \perp z w H^{2}$.

Suppose that $\sigma$ is not a one variable function. Then we may write $\sigma=f(z) \oplus g(w)$, where $f(z) \in H^{2}(z), g(w) \in H^{2}(w)$ and $g(0)=0$. Also $g(w) \neq 0$ and $f(z)$ is not constant. For every $n \geq 1,\left\langle f(z), z^{n} f(z)\right\rangle=\left\langle\sigma, z^{n} \sigma\right\rangle=0$, so $f(z)=c \varphi_{1}(z)$ for some nonconstant inner function $\varphi_{1}(z)$ and nonzero constant $c$. Since

$$
1=\|\sigma\|^{2}=\|f(z)\|^{2}+\|g(w)\|^{2}=|c|^{2}+\|g(w)\|^{2}
$$

and $\|g(w)\|^{2} \neq 0,0<|c|<1$. Since $\sigma$ is inner, $\sigma(z, \lambda)$ is inner for almost every $\lambda \in \partial \mathbb{D}$. We have $\sigma(z, \lambda)=c \varphi_{1}(z)+g(\lambda)$. Since $g(w) \neq 0$, this leads to a contradiction. Then $\sigma$ is a one variable inner function.

Suppose that $\sigma=\sigma(z)$. Since $\eta \sigma=\varphi(z) \psi(w), \varphi(z) / \sigma \in H^{2}(z)$. Put $\varphi_{1}(z)=\varphi(z) / \sigma$ and $\psi_{1}(w)=\psi(w)$. Then $\eta=\varphi_{1}(z) \psi_{1}(w)$. Similarly, we get the assertion for the case $\sigma=\sigma(w)$.

## 3. Rudin-type invariant subspaces

Let $\{\varphi(z)\}_{n=-\infty}^{\infty}$ and $\{\psi(w)\}_{n=-\infty}^{\infty}$ be sequences of nonconstant one variable inner functions satisfying the following conditions:
$(\alpha 1) \zeta_{n}(z):=\varphi_{n}(z) / \varphi_{n+1}(z)$ is a nonconstant inner function for every $-\infty<n<\infty$;
$(\alpha 2) \varphi_{n}(z) \rightarrow 1$ as $n \rightarrow \infty$ for every $z \in \mathbb{D}$;
$(\alpha 3) \varphi_{n}(z) \rightarrow 0$ as $n \rightarrow-\infty$ for every $z \in \mathbb{D}$;
$(\alpha 4) \xi_{n}(w):=\psi_{n+1}(w) / \psi_{n}(w)$ is a nonconstant inner function for every $-\infty<n<\infty$;
$(\alpha 5) \psi_{n}(w) \rightarrow 1$ as $n \rightarrow-\infty$ for every $w \in \mathbb{D}$; and
$(\alpha 6) \psi_{n}(w) \rightarrow 0$ as $n \rightarrow \infty$ for every $w \in \mathbb{D}$.
Moreover, we assume that

$$
(\alpha 7) \varphi_{n}(0) \geq 0, \quad \psi_{n}(0) \geq 0, \quad \zeta_{n}(0) \geq 0 \text { and } \xi_{n}(0) \geq 0 \quad \text { for every }-\infty<n<\infty .
$$

Let

$$
\begin{equation*}
\mathcal{M}=\bigvee_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) H^{2} \tag{3.1}
\end{equation*}
$$

Then $\mathcal{M}$ is an invariant subspace. This type of invariant subspace was first studied by Rudin [14, page 72] (see also [8-10, 15, 16]), so $\mathcal{M}$ is called a Rudin-type invariant subspace. By $(\alpha 2)$ and $(\alpha 3), \mathcal{M} \not \subset \varphi(z) H^{2}$ and $\varphi(z) H^{2} \not \subset \mathcal{M}$ for every nonconstant inner function $\varphi(z)$. By ( $\alpha 5$ ) and $(\alpha 6), \mathcal{M} \not \subset \psi(w) H^{2}$ and $\psi(w) H^{2} \not \subset \mathcal{M}$ for every nonconstant inner function $\psi(w)$.

By $(\alpha 1),(\alpha 2),(\alpha 4),(\alpha 5)$ and $(\alpha 7)$, we may assume that

$$
\varphi_{n}(z)=\prod_{k=n}^{\infty} \zeta_{k}(z), \quad \psi_{n}(w)=\prod_{k=-\infty}^{n-1} \xi_{k}(w)
$$

and

$$
\begin{aligned}
\mathcal{M} & =\bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) H^{2}(z) \otimes K_{\xi_{n}}(w) \\
& =\bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) K_{\zeta_{n}}(z) \otimes H^{2}(w) .
\end{aligned}
$$

Now it is clear that $\mathcal{M}$ is splitting for $\varphi_{1}(z)$ and $\psi_{1}(w)$ is the associated inner function of $\varphi_{1}(z)$, so, by Theorem 2.2 and Corollary 2.7, we have the following corollary.
Corollary 3.1. $\mathcal{M}$ is Hilbert-Schmidt, $z \mathcal{M}+w \mathcal{M}$ is closed, $\operatorname{dim}(\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M}))$ $<\infty$ and $F_{z}^{\mathcal{M}}$ on $\mathcal{M} \ominus w \mathcal{M}$ is Fredholm.

Let $\mathcal{N}=H^{2} \ominus \mathcal{M}$. Then

$$
\begin{aligned}
\mathcal{N} & =\bigoplus_{n=-\infty}^{\infty} \psi_{n}(w) K_{\varphi_{n+1}}(z) \otimes K_{\xi_{n}}(w) \\
& =\bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) K_{\zeta_{n}}(z) \otimes K_{\psi_{n}}(w) .
\end{aligned}
$$

We shall prove the following theorem.
Theorem 3.2. $\sigma_{c}(\mathcal{M})=\overline{\mathbb{D}}$.
To prove Theorem 3.2, we use the following lemma freely (see [2, 13, 17]). For a one variable inner function $\varphi(z)$, we define the operator $S_{z}^{K_{\varphi}}$ on $K_{\varphi}(z)$ by $S_{z}^{K_{\varphi}}=\left.P_{K_{\varphi}(z)} T_{z}\right|_{K_{\varphi}(z)}$. We write $S_{z}$ when no confusion occurs. We have $S_{z}^{*}=\left.T_{z}^{*}\right|_{K_{\varphi}(z)}$.
Lemma 3.3. Let $\varphi(z)$ be a nonconstant inner function. Then:
(i) $T_{z}^{*} \varphi(z) \in K_{\varphi}(z)$;
(ii) $S_{z}=T_{z}$ on $K_{\varphi}(z) \ominus \mathbb{C} \cdot T_{z}^{*} \varphi(z)$; and
(iii) $S_{z} T_{z}^{*} \varphi(z)=-\varphi(0)(1-\overline{\varphi(0)} \varphi(z))$.

For $\alpha \in \mathbb{D}$, let $k_{\alpha}(z)=1 /(1-\bar{\alpha} z)$. We have $k_{\alpha}(z) \in H^{2}(z)$ and $T_{z}^{*} k_{\alpha}(z)=\bar{\alpha} k_{\alpha}(z)$.
Lemma 3.4. Let $\varphi(z)$ be a nonconstant inner function. Then, for every $\alpha \in \mathbb{D}$, there exists $f(z) \in K_{\varphi}(z)$ with $\|f(z)\|=1$ satisfying $\left\|\left(S_{z}^{*}-\bar{\alpha} I\right) f(z)\right\| \leq 4|\varphi(\alpha)| / \sqrt{1-|\varphi(\alpha)|^{2}}$.
Proof. We note that $S_{z}^{*}=\left.T_{z}^{*}\right|_{K_{\varphi}(z)}$. Let

$$
\eta(z)=(1-\overline{\varphi(\alpha)} \varphi(z)) k_{\alpha}(z) \in K_{\varphi}(z) .
$$

Then $\eta(z)$ is the reproducing kernel of $K_{\varphi}(z)$ for the point $z=\alpha$. We have $\|\eta(z)\|^{2}=$ $\left(1-|\varphi(a)|^{2}\right) /\left(1-|\alpha|^{2}\right)$. For $h(z), g(z) \in H^{2}(z)$ satisfying $(h g)(z) \in H^{2}(z), T_{z}^{*} h(z)=$ $(h(z)-h(0)) / z$ and

$$
T_{z}^{*}(h g)(z)=T_{z}^{*}(h(z)) g(z)+h(0) T_{z}^{*} g(z)
$$

Hence

$$
\begin{aligned}
\left(S_{z}^{*}-\bar{\alpha} I\right) \eta(z)= & -\overline{\varphi(\alpha)} \frac{\varphi(z)-\varphi(0)}{z} k_{\alpha}(z)+\bar{\alpha}(1-\overline{\varphi(\alpha)} \varphi(0)) k_{\alpha}(z) \\
& -\bar{\alpha}(1-\overline{\varphi(\alpha)} \varphi(z)) k_{\alpha}(z) \\
= & \overline{\varphi(\alpha)} \frac{\varphi(z)-\varphi(0)}{z}(\bar{\alpha} z-1) k_{\alpha}(z)
\end{aligned}
$$

Therefore

$$
\frac{\left\|\left(S_{z}^{*}-\bar{\alpha} I\right) \eta(z)\right\|}{\|\eta(z)\|} \leq \frac{4 \sqrt{1-|\alpha|^{2}} \mid \varphi(\alpha)\left\|k_{\alpha}(z)\right\|}{\sqrt{1-|\varphi(\alpha)|^{2}}}=\frac{4|\varphi(\alpha)|}{\sqrt{1-|\varphi(\alpha)|^{2}}}
$$

Set $f=\eta(z) /\|\eta(z)\|$. Then we get the assertion.
For an invariant subspace $M$ of $H^{2}$, let $N=H^{2} \ominus M$. Then $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$, so $N$ is called a backward shift invariant subspace. We may define the compression operators $S_{z}^{N}, S_{w}^{N}$ of $T_{z}, T_{w}$ on $N$. We have $\left(S_{z}^{N}\right)^{*}=\left.T_{z}^{*}\right|_{N}$ and $\left(S_{w}^{N}\right)^{*}=\left.T_{w}^{*}\right|_{N}$.

Lemma 3.5. Let $N$ be a backward shift invariant subspace of $H^{2}$. If there are sequences of nonconstant inner functions $\left\{\varphi_{n}(z)\right\}_{n \geq 0}$ and $\left\{\psi_{n}(w)\right\}_{n \geq 0}$ such that $K_{\varphi_{n}}(z) \otimes K_{\psi_{n}}(w) \subset N$ for every $n \geq 0$ and $\varphi_{n}(\alpha) \rightarrow 0$ for every $\alpha \in \mathbb{D}$, then $\sigma\left(S_{z}^{N}\right)=\overline{\mathbb{D}}$.

Proof. Let $\alpha \in \mathbb{D}$. By Lemma 3.4, for each $n \geq 0$ there exists $f_{n}(z) \in K_{\varphi_{n}}(z)$ with $\left\|f_{n}(z)\right\|=1$ satisfying

$$
\left\|\left(\left(S_{z}^{K_{\varphi_{n}}}\right)^{*}-\bar{\alpha} I\right) f_{n}(z)\right\| \leq \frac{4\left|\varphi_{n}(\alpha)\right|}{\sqrt{1-\left|\varphi_{n}(\alpha)\right|^{2}}} .
$$

Let $g_{n}(w) \in K_{\psi_{n}}(w)$ with $\left\|g_{n}(w)\right\|=1$. Then $f_{n}(z) g_{n}(w) \in K_{\varphi_{n}}(z) \otimes K_{\psi_{n}}(w) \subset N$ and $\left\|f_{n}(z) g_{n}(w)\right\|=1$. By the assumption,

$$
\begin{aligned}
\left\|\left(\left(S_{z}^{N}\right)^{*}-\bar{\alpha} I\right) f_{n}(z) g_{n}(w)\right\| & =\left\|g_{n}(w)\right\|\left\|\left(\left(S_{z}^{K_{q_{n}}}\right)^{*}-\bar{\alpha} I\right) f_{n}(z)\right\| \\
& \leq \frac{4\left|\varphi_{n}(\alpha)\right|}{\sqrt{1-\left|\varphi_{n}(\alpha)\right|^{2}}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Hence $\left(S_{z}^{N}\right)^{*}-\bar{\alpha} I$ is not invertible, so $\bar{\alpha} \in \sigma\left(\left(S_{z}^{N}\right)^{*}\right)=\overline{\sigma\left(S_{z}^{N}\right)}$. Thus we get $\sigma\left(S_{z}^{N}\right)=\overline{\mathbb{D}}$.

Recall that $S_{z}^{\mathcal{N}}=\left.P_{\mathcal{N}} T_{z}\right|_{\mathcal{N}}$ and $S_{w}^{\mathcal{N}}=\left.P_{\mathcal{N}} T_{w}\right|_{\mathcal{N}}$. We have $K_{\varphi_{n}}(z) \otimes K_{\psi_{n}}(w) \subset \mathcal{N}$ for every $-\infty<n<\infty$. By $(\alpha 3)$ and ( $\alpha 6$ ) and by applying Lemma 3.5 we obtain the following corollary, which is proved by Yang [24, Theorem 4.3].

Corollary 3.6. $\sigma\left(S_{z}^{\mathcal{N}}\right)=\sigma\left(S_{w}^{\mathcal{N}}\right)=\overline{\mathbb{D}}$.
Proof of Theorem 3.2. Recall that $\sigma_{c}(\mathcal{M})=\sigma_{c}\left(S_{z}^{\mathcal{N}}\right) \cap \sigma_{c}\left(S_{w}^{\mathcal{N}}\right)$. Since we are working on $\mathcal{N}$, we write $S_{z}$ and $S_{w}$, for short. It is sufficient to prove that $\sigma_{c}\left(S_{z}\right)=\overline{\mathbb{D}}$. Let $Z\left(\varphi_{n}\right)=\left\{z \in \mathbb{D}: \varphi_{n}(z)=0\right\}$. By $(\alpha 1), Z\left(\varphi_{n}\right) \subset Z\left(\varphi_{k}\right)$ for $-\infty<k<n<\infty$ and $\bigcup_{n=-\infty}^{\infty} Z\left(\varphi_{n}\right)$ is at most a countable set. Let $\lambda \in \mathbb{D}$. We shall show that $\lambda \in \sigma_{c}\left(S_{z}\right)$. We study two cases separately.
Case 1. Suppose that $\lambda \in \bigcup_{n=-\infty}^{\infty} Z\left(\varphi_{n}\right)$. Then there is an integer $n_{0}$ such that $\varphi_{n}(\lambda)=0$ for every $-\infty<n \leq n_{0}$. We write

$$
b_{\lambda}(z)=\frac{z-\lambda}{1-\bar{\lambda} z}, \quad z \in \mathbb{D} .
$$

For each $n \leq n_{0}$, there is an inner function $\sigma_{n}(z)$ satisfying $\varphi_{n}(z)=b_{\lambda}(z) \sigma_{n}(z)$. Then $\sigma_{n}(z) /(1-\bar{\lambda} z) \in K_{\varphi_{n}}(z)$. Let

$$
f_{n}=\frac{\sigma_{n}(z)}{1-\bar{\lambda} z} \psi_{n-1}(w) T_{w}^{*} \xi_{n-1}(w)
$$

We have $f_{n} \in \mathcal{N}$ and

$$
(z-\lambda) f_{n}=\varphi_{n}(z) \psi_{n-1}(w) T_{w}^{*} \xi_{n-1}(w) \in \mathcal{M}
$$

Hence

$$
\left\{f_{n}:-\infty<n \leq n_{0}\right\} \subset \operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)
$$

Since $f_{n} \perp f_{k}$ for $k<n \leq n_{0}, \operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)=\infty$. Hence $\lambda \in \sigma_{c}\left(S_{z}\right)$.
Case 2. Suppose that $\lambda \notin \bigcup_{n=-\infty}^{\infty} Z\left(\varphi_{n}\right)$. Let $g \in \operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)^{*}$. Then $\left(S_{z}-\underline{\lambda} I_{\mathcal{N}}\right)^{*} g=0$, so $g \perp(z-\lambda) H^{2}$. Hence there is $h(w) \in H^{2}(w)$ such that $g=h(w) /(1-\bar{\lambda} z)$. Since $g \in \mathcal{N}, g \perp \varphi_{n+1}(z) \psi_{n}(w) K_{\xi_{n}}(w)$ for every $-\infty<n<\infty$. Since $\varphi_{n+1}(\lambda) \neq 0, h(w) \perp$ $\psi_{n}(w) K_{\xi_{n}}(w)$. By condition $(\alpha 6)$,

$$
\psi_{k}(w) H^{2}(w)=\bigoplus_{n=k}^{\infty} \psi_{n}(w) K_{\xi_{n}}(w)
$$

for every $-\infty<k<\infty$. Hence $h(w) \perp \psi_{k}(w) H^{2}(w)$. By condition $(\alpha 5)$,

$$
H^{2}(w)=\bigvee_{k=-\infty}^{\infty} \psi_{k}(w) H^{2}(w)
$$

so $h(w) \perp H^{2}(w)$. This shows that $h(w)=0$ and $g=0$. Thus we get $\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)^{*}$ $=\{0\}$.

Next, we shall show that $\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)=\{0\}$. Let $f \in \mathcal{N}$ and $\left(S_{z}-\lambda I_{\mathcal{N}}\right) f=0$. For each integer $j$, let

$$
\mathcal{M}_{j}=T_{\psi_{j}(w)}^{*} \mathcal{M} \quad \text { and } \quad \mathcal{N}_{j}=T_{\psi_{j}(w)}^{*} \mathcal{N} .
$$

Then $\mathcal{M}_{j}$ is an invariant subspace and $\mathcal{N}_{j}=H^{2} \ominus \mathcal{M}_{j}$.

$$
\mathcal{M}_{j}=\bigvee_{n=j}^{\infty} \varphi_{n+1}(z) \frac{\psi_{n}(w)}{\psi_{j}(w)} H^{2}
$$

Hence $\varphi_{j+1}\left(S_{z}^{\mathcal{N}_{j}}\right)=0$.
Set $\mathcal{N}_{j, 1}=\psi_{j}(w) \mathcal{N}_{j}$. Then $\mathcal{N}_{j, 1} \subset \mathcal{N}$. Let $\mathcal{N}_{j, 2}=\mathcal{N} \ominus \mathcal{N}_{j, 1}$. We have $S_{z} \mathcal{N}_{j, 1} \subset \mathcal{N}_{j, 1}$ and $S_{z} \mathcal{N}_{j, 2} \subset \mathcal{N}_{j, 2}$. Hence $S_{z} P_{\mathcal{N}_{j, 1}}=P_{\mathcal{N}_{j, 1}} S_{z}$. It is not difficult to show that $\left.S_{z}\right|_{\mathcal{N}_{j, 1}}$ is unitarily equivalent to $S_{z}^{\mathcal{N}_{j}}$, that is, $\left.T_{\psi_{j}(w)}^{*} S_{z}\right|_{\mathcal{N}_{j, 1}}=S_{z}^{\mathcal{N}_{j}} T_{\psi_{j}(w)}^{*} \mid \mathcal{N}_{j, 1}$. Hence

$$
\sigma\left(\left.S_{z}\right|_{\mathcal{N}_{j, 1}}\right)=\sigma\left(S_{z}^{\mathcal{N}_{j}}\right) \subset Z\left(\varphi_{j+1}\right) \cup \partial \mathbb{D} .
$$

Since $\varphi_{j+1}(\lambda) \neq 0, \lambda \notin \sigma\left(\left.S_{z}\right|_{\mathcal{N}_{j, 1}}\right)$. Since $\left(S_{z}-\lambda I_{\mathcal{N}}\right) f=0$,

$$
0=P_{\mathcal{N}_{j, 1}}\left(S_{z}-\lambda I_{\mathcal{N}}\right) f=\left(\left.S_{z}\right|_{\mathcal{N}_{j, 1}}-\lambda I_{\mathcal{N}_{j, 1}}\right) P_{\mathcal{N}_{j, 1}} f
$$

Hence $P_{\mathcal{N}_{j, 1}} f=0$, so $f \perp \mathcal{N}_{j, 1}$ for every $-\infty<j<\infty$. We have $\mathcal{N}_{j, 1} \subset \mathcal{N}_{k, 1}$ for $k<j$ and $\mathcal{N}=\bigvee_{j=-\infty}^{\infty} \mathcal{N}_{j, 1}$. Therefore $f \perp \mathcal{N}$. Since $f \in \mathcal{N}, f=0$. Thus $\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)=\{0\}$.

To show that $\lambda \in \sigma_{c}\left(S_{z}\right)$, suppose that $\lambda \notin \sigma_{c}\left(S_{z}\right)$. Then $S_{z}-\lambda I_{\mathcal{N}}$ has closed range. Since $\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)=\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)^{*}=\{0\}, \lambda \notin \sigma\left(S_{z}\right)$. This contradicts the fact given in Corollary 3.6. Hence $\lambda \in \sigma_{c}\left(S_{z}\right)$.

By Cases 1 and $2, \mathbb{D} \subset \sigma_{c}\left(S_{z}\right) \subset \overline{\mathbb{D}}$. To show that $\sigma_{c}\left(S_{z}\right)=\overline{\mathbb{D}}$, let $\lambda \in \partial \mathbb{D}$ satisfy $\lambda \notin \sigma_{c}\left(S_{z}\right)$. Then $S_{z}-\lambda I_{\mathcal{N}}$ has closed range. Let $g \in \mathcal{N}$ satisfy $\left(S_{z}-\lambda I_{\mathcal{N}}\right)^{*} g=0$. Then $g \perp(z-\lambda) H^{2}$, so $g \perp H^{2}$. Hence $g=0$ and $\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)^{*}=\{0\}$. Let $h \in \mathcal{N}$ satisfy $S_{z} h=\lambda h$. Then $\left\|S_{z} h\right\|=\|h\|$. Hence $z h \in \mathcal{N}$ and $(z-\lambda) h=0$. This shows that $h=0$ and $\operatorname{ker}\left(S_{z}-\lambda I_{\mathcal{N}}\right)=\{0\}$. Therefore $\lambda \notin \sigma\left(S_{z}\right)$. This also contradicts the fact given in Corollary 3.6. Thus we get $\sigma_{c}\left(S_{z}\right)=\overline{\mathbb{D}}$.

As mentioned in the introduction, if $M$ is a unitarily equivalent to an invariant subspace $M_{1}$ such that $\sigma_{c}\left(M_{1}\right) \neq \overline{\mathbb{D}}$, then $M$ is Hilbert-Schmidt. We shall show the following theorem.

Theorem 3.7. Let $M_{1}$ be an invariant subspace of $H^{2}$ which is unitarily equivalent to $\mathcal{M}$. Then $\sigma_{c}\left(M_{1}\right)=\overline{\mathbb{D}}$.

To prove Theorem 3.7, we first show the following lemma.
Lemma 3.8. Let $M$ be an invariant subspace of $H^{2}$ and $\eta$ be an inner function on $\mathbb{D}^{2}$. If $\sigma_{c}(M)=\overline{\mathbb{D}}$, then $\sigma_{c}(\eta M)=\overline{\mathbb{D}}$.

Proof. Let $N=H^{2} \ominus M, M_{1}=\eta M$ and $N_{1}=H^{2} \ominus M_{1}$. To show that $\sigma_{c}\left(M_{1}\right)=\overline{\mathbb{D}}$, we suppose the contrary. We may assume that there is $\lambda \in \mathbb{D}$ such that $\lambda \notin \sigma_{c}\left(S_{z}^{N_{1}}\right)$ (see the proof of Theorem 3.2). Then $S_{z}^{N_{1}}-\lambda I_{N_{1}}$ has closed range and dim $\operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)$ $<\infty$.

First, we shall show that $\operatorname{dim} \operatorname{ker}\left(S_{z}^{N}-\lambda I_{N}\right)<\infty$. Since $\eta$ is inner,

$$
\eta H^{2}=\eta(M \oplus N)=M_{1} \oplus \eta N \subset H^{2}
$$

Then $\eta N \subset N_{1}$ and $\left.T_{\eta}\right|_{N}: N \rightarrow \eta N$ is a unitary operator. Let $f \in N$ and write $z f=$ $f_{1} \oplus f_{2} \in M \oplus N$. Then $S_{z}^{N} f=f_{2}$ and $T_{\eta} S_{z}^{N} f=\eta f_{2}$. Since $z \eta f=\eta f_{1} \oplus \eta f_{2} \in M_{1} \oplus \eta N$, $S_{z}^{N_{1}} T_{\eta} f=\eta f_{2}=T_{\eta} S_{z}^{N} f$. Hence $S_{z}^{N_{1}} T_{\eta}=T_{\eta} S_{z}^{N}$ on $N$, so

$$
\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right) T_{\eta}=T_{\eta}\left(S_{z}^{N}-\lambda I_{N}\right) \quad \text { on } N
$$

Therefore

$$
\operatorname{dim} \operatorname{ker}\left(S_{z}^{N}-\lambda I_{N}\right) \leq \operatorname{dim} \operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)<\infty
$$

Next, we shall show that $S_{z}^{N}-\lambda I_{N}$ has closed range. Since $S_{z}^{N_{1}}-\lambda I_{N_{1}}$ has closed range, there exists $\delta>0$ such that $\delta\|g\| \leq\left\|\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right) g\right\|$ for every $g \in N_{1} \ominus \operatorname{ker}\left(S_{z}^{N_{1}}-\right.$ $\lambda I_{N_{1}}$ ). Since dim $\operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)<\infty$,

$$
\operatorname{dim} P_{\eta N} \operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)<\infty .
$$

Let $E$ be a closed subspace of $N$ such that

$$
P_{\eta N} \operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)=\eta E .
$$

Then $\operatorname{dim} E<\infty$ and $\eta N=\eta(N \ominus E) \oplus \eta E$. Let $f \in N \ominus E$ and $h \in \operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)$. Then $\eta f \perp M_{1}, P_{\eta N} h=\eta \sigma$ for some $\sigma \in E$ and

$$
\langle\eta f, h\rangle=\left\langle\eta f, P_{\eta N} h\right\rangle=\langle\eta f, \eta \sigma\rangle=\langle f, \sigma\rangle=0 .
$$

Hence

$$
\eta(N \ominus E) \subset H^{2} \ominus\left(M_{1}+\operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)\right)
$$

Therefore $\eta(N \ominus E) \subset N_{1} \ominus \operatorname{ker}\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right)$ and

$$
\delta\|f\|=\delta\|\eta f\| \leq\left\|\left(S_{z}^{N_{1}}-\lambda I_{N_{1}}\right) \eta f\right\|, \quad f \in N \ominus E .
$$

Thus we get

$$
\delta\|f\| \leq\left\|T_{\eta}\left(S_{z}^{N}-\lambda I_{N}\right) f\right\|=\left\|\left(S_{z}^{N}-\lambda I_{N}\right) f\right\|, \quad f \in N \ominus E .
$$

This shows that $\left(S_{z}^{N}-\lambda I_{N}\right)(N \ominus E)$ is closed. Since $\operatorname{dim} E<\infty,\left(S_{z}^{N}-\lambda I_{N}\right) N$ is closed. By the last paragraph, $\lambda \notin \sigma_{c}\left(S_{z}^{N}\right)$, so $\lambda \notin \sigma_{c}(M)$. This contradicts the assumption. Thus we get $\mathbb{D} \subset \sigma_{c}\left(M_{1}\right)$ and $\sigma_{c}\left(M_{1}\right)=\overline{\mathbb{D}}$.
Proof of Theorem 3.7. By [1], there is a unimodular function $u$ on $\partial \mathbb{D} \times \partial \mathbb{D}$ such that $M_{1}=u \mathcal{M}$. We write $H_{z}^{2}=H^{2}(z) \otimes L^{2}(w)$, where $L^{2}(w)$ is the $w$-variable Lebesgue space on $\partial \mathbb{D}$. Since $\varphi_{n+1}(z) \psi_{n}(w) \in \mathcal{M}$,

$$
u \varphi_{n+1}(z) \psi_{n}(w) \in M_{1} \subset H^{2} \subset H_{z}^{2}
$$

Hence $u \varphi_{n+1}(z) \in H_{z}^{2}$ for every $-\infty<n<\infty$. We have $\varphi_{n+1}(z)=\varphi_{n+1}(0)+z T_{z}^{*} \varphi_{n+1}(z)$.
Then $1=\left|\varphi_{n+1}(0)\right|^{2}+\left\|T_{z}^{*} \varphi_{n+1}(z)\right\|^{2}$. By $(\alpha 2),\left\|T_{z}^{*} \varphi_{n+1}(z)\right\| \rightarrow 0$ as $n \rightarrow \infty$.

$$
z T_{z}^{*} \varphi_{n+1}(z)=\varphi_{n+1}(z)-\varphi_{n+1}(0)=\varphi_{n+1}(z)-1+1-\varphi_{n+1}(0)
$$

so

$$
\left\|T_{z}^{*} \varphi_{n+1}(z)\right\|=\left\|z T_{z}^{*} \varphi_{n+1}(z)\right\| \geq\left\|\varphi_{n+1}(z)-1\right\|-\left|1-\varphi_{n+1}(0)\right| .
$$

By ( $\alpha 2$ ), again, $\left\|\varphi_{n+1}(z)-1\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence $u \in H_{z}^{2}$. Similarly, $u \in H_{w}^{2}$. Then $u \in H_{z}^{2} \cap H_{w}^{2}=H^{2}$. Therefore $u$ is an inner function. By Theorem 3.2, $\sigma_{c}(\mathcal{M})=\overline{\mathbb{D}}$. By Lemma 3.8, $\sigma_{c}\left(M_{1}\right)=\sigma_{c}(u \mathcal{M})=\overline{\mathbb{D}}$.

Let $M$ be an invariant subspace of $H^{2}$. Let

$$
\Omega=\Omega(M)=M \ominus(z M+w M)
$$

and

$$
M_{0}=\overline{z M+w M}=M \ominus \Omega
$$

Then $M_{0}$ is an invariant subspace, $z \Omega \subset M_{0}$ and $w \Omega \subset M_{0}$. We write $N=H^{2} \ominus M$ and $N_{0}=H^{2} \ominus M_{0}$. Then $N_{0}=N \oplus \Omega$. In the last part of this paper, we shall show the following theorem.

Theorem 3.9.
(i) $\mathcal{M}_{0}$ is Hilbert-Schmidt.
(ii) Let $M_{1}$ be an invariant subspace of $H^{2}$. If $M_{1}$ is unitarily equivalent to $\mathcal{M}_{0}$, then $\sigma_{c}\left(M_{1}\right)=\overline{\mathbb{D}}$.
(iii) $\mathcal{M}_{0}$ is splitting if and only if $\varphi_{n}(0) \psi_{n}(0)=0$ for some $-\infty<n<\infty$.

To prove this theorem, we need two lemmas.
Lemma 3.10. $\left(S_{z}^{N}-\lambda I_{N}\right) N=N \cap\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) N_{0}$ for every $\lambda \in \overline{\mathbb{D}} \backslash\{0\}$.
Proof. Let $h \in N \cap\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) N_{0}$. Then there is $f_{1} \oplus f_{2} \in N \oplus \Omega$ such that $h=$ $\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right)\left(f_{1} \oplus f_{2}\right)$.

$$
\begin{aligned}
h & =\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) f_{1}-\lambda f_{2} \\
& =\left(S_{z}^{N}-\lambda I_{N}\right) f_{1}+P_{\Omega} S_{z}^{N_{0}} f_{1}-\lambda f_{2} \\
& =\left(S_{z}^{N}-\lambda I_{N}\right) f_{1} \quad \text { because } h \in N \in\left(S_{z}^{N}-\lambda I_{N}\right) N .
\end{aligned}
$$

Hence $N \cap\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) N_{0} \subset\left(S_{z}^{N}-\lambda I_{N}\right) N$.
Let $g_{1} \in N$ and $\lambda \in \overline{\mathbb{D}} \backslash\{0\}$. Set $g_{2}=P_{\Omega} S_{z}^{N_{0}} g_{1} / \lambda$.

$$
\begin{aligned}
\left(S_{z}^{N}-\lambda I_{N}\right) g_{1} & =\left(S_{z}^{N}-\lambda I_{N}\right) g_{1}+P_{\Omega} S_{z}^{N_{0}} g_{1}-P_{\Omega} S_{z}^{N_{0}} g_{1} \\
& =\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) g_{1}-\lambda g_{2} \\
& =\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right)\left(g_{1} \oplus g_{2}\right) .
\end{aligned}
$$

Since $g_{1} \oplus g_{2} \in N_{0}$, we get $\left(S_{z}^{N}-\lambda I_{N}\right) N \subset N \cap\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) N_{0}$.
Lemma 3.11. If $\sigma_{c}(M)=\overline{\mathbb{D}}$ and $\operatorname{dim} \Omega<\infty$, then $\sigma_{c}\left(M_{0}\right)=\overline{\mathbb{D}}$.
Proof. Suppose that $\sigma_{c}\left(M_{0}\right) \neq \overline{\mathbb{D}}$. We may assume that $\sigma_{c}\left(S_{z}^{N_{0}}\right) \neq \overline{\mathbb{D}}$. Then there is $\lambda \in \mathbb{D}$ such that $\operatorname{dim} \operatorname{ker}\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right)<\infty$ and $S_{z}^{N_{0}}-\lambda I_{N_{0}}$ has closed range (see the proof of Theorem 3.2).

Since

$$
\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right) \operatorname{ker}\left(S_{z}^{N}-\lambda I_{N}\right) \subset \Omega
$$

and $\operatorname{dim} \Omega<\infty$, there are $f_{1}, \ldots, f_{n} \in \operatorname{ker}\left(S_{z}^{N}-\lambda I_{N}\right)$ such that

$$
\operatorname{ker}\left(S_{z}^{N}-\lambda I_{N}\right) \ominus\left(\mathbb{C} \cdot f_{1}+\cdots+\mathbb{C} \cdot f_{n}\right) \subset \operatorname{ker}\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right)
$$

Since dim $\operatorname{ker}\left(S_{z}^{N_{0}}-\lambda I_{N_{0}}\right)<\infty, \operatorname{dim} \operatorname{ker}\left(S_{z}^{N}-\lambda I_{N}\right)<\infty$.
Suppose that $\lambda \neq 0$. By Lemma 3.10, $S_{z}^{\tilde{N}}-\lambda I_{N}$ has closed range. Hence $\lambda \notin \sigma_{c}\left(S_{z}^{N}\right)$, so $\lambda \notin \sigma_{c}(M)$. This contradicts that $\sigma_{c}(M)=\overline{\mathbb{D}}$.

Next, suppose that $\lambda=0$. Then $S_{z}^{N_{0}} N_{0}$ is closed. Since $S_{z}^{N_{0}} N_{0}=S_{z}^{N_{0}} N, S_{z}^{N_{0}} N$ is closed. Since $\operatorname{dim} \Omega<\infty$, there are $g_{1}, \ldots, g_{m} \in S_{z}^{N_{0}} N$ such that

$$
S_{z}^{N_{0}} N \ominus\left(\mathbb{C} \cdot g_{1}+\cdots+\mathbb{C} \cdot g_{m}\right)=N \cap S_{z}^{N_{0}} N
$$

Hence

$$
S_{z}^{N} N=P_{N} S_{z}^{N_{0}} N=\left(N \cap S_{z}^{N_{0}} N\right)+P_{N}\left(\mathbb{C} \cdot g_{1}+\cdots+\mathbb{C} \cdot g_{m}\right)
$$

so $S_{z}^{N} N$ is closed. Therefore $0 \notin \sigma_{c}\left(S_{z}^{N}\right)$, so $0 \notin \sigma_{c}(M)$. This contradicts that $\sigma_{c}(M)=\overline{\mathbb{D}}$. Thus we get the assertion.

Now we shall study $\mathcal{M}$ given in (3.1) and $\mathcal{M}_{0}$. By Corollary 3.1, $\mathcal{M}$ is HilbertSchmidt, $z \mathcal{M}+w \mathcal{M}$ is closed and $\operatorname{dim}(\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M}))<\infty$. We note that $\mathcal{M}_{0}=$ $z \mathcal{M}+w \mathcal{M}, \Omega(\mathcal{M})=\mathcal{M} \ominus \mathcal{M}_{0}$ and $\mathcal{N}_{0}=\mathcal{N} \oplus \Omega(\mathcal{M})$.
Proof of Theorem 3.9. (i) We have $\mathcal{M}_{0} \subset \mathcal{M}$ and $\operatorname{dim}\left(\mathcal{M} \ominus \mathcal{M}_{0}\right)=\operatorname{dim} \Omega(\mathcal{M})<\infty$. Since $\mathcal{M}$ is Hilbert-Schmidt, it is not difficult to see that $\mathcal{M}_{0}$ is Hilbert-Schmidt.
(ii) By Theorem 3.2 and Lemma 3.11, $\sigma_{c}\left(\mathcal{M}_{0}\right)=\overline{\mathbb{D}}$. By [1], there is a unimodular function $u$ on $\partial \mathbb{D} \times \partial \mathbb{D}$ such that $M_{1}=u \mathcal{M}_{0}$. Since $\mathcal{M}_{0}=z \mathcal{M}+w \mathcal{M}, z u \mathcal{M} \subset u \mathcal{M}_{0}=$ $M_{1} \subset H^{2}$. By the proof of Theorem 3.7, $z u$ is inner. Similarly, $w u$ is inner. Then one easily sees that $u$ is inner. By Lemma 3.8, $\sigma_{c}\left(M_{1}\right)=\sigma_{c}\left(u \mathcal{M}_{0}\right)=\overline{\mathbb{D}}$.
(iii) Suppose that $\psi_{n}(0)=0$ for some $-\infty<n<\infty$. We shall show that $\mathcal{M}_{0}$ is splitting. By ( $\alpha 5$ ), there is an integer $n_{0}$ such that

$$
\begin{equation*}
\psi_{n_{0}+1}(0)=0 \quad \text { and } \quad \psi_{n_{0}}(0) \neq 0 \tag{3.2}
\end{equation*}
$$

Since $\mathcal{M}$ is splitting for $\varphi_{n_{0}+1}(z)$ and $\psi_{n_{0}+1}(w)$ is the associated inner function of $\varphi_{n_{0}+1}(z)$,

$$
\mathcal{M}=\left(\mathcal{M} \cap \varphi_{n_{0}+1}(z) H^{2}\right) \oplus\left(\mathcal{M} \cap\left(H^{2} \ominus \varphi_{n_{0}+1}(z) H^{2}\right)\right)
$$

and

$$
\begin{equation*}
\mathcal{M} \cap\left(H^{2} \ominus \varphi_{n_{0}+1}(z) H^{2}\right) \subset \psi_{n_{0}+1}(w) K_{\varphi_{n_{0}+1}}(z) \otimes H^{2}(w) . \tag{3.3}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\Omega(\mathcal{M}) \perp \varphi_{n_{0}+1}(z) \psi_{n_{0}+1}(w) H^{2} . \tag{3.4}
\end{equation*}
$$

Let $f \in \Omega(\mathcal{M})$. Since $f \perp w \mathcal{M}$, we may write

$$
f=\bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) f_{n}(z) \in \bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) K_{\zeta_{n}}(z)
$$

By (3.2),

$$
\bigoplus_{n=-\infty}^{n_{0}} \varphi_{n+1}(z) \psi_{n}(w) f_{n}(z) \perp \varphi_{n_{0}+1}(z) \psi_{n_{0}+1}(w) H^{2}
$$

Also

$$
\begin{aligned}
\bigoplus_{n=n_{0}+1}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) f_{n}(z) & \in \bigoplus_{n=n_{0}+1}^{\infty} \varphi_{n+1}(z) K_{\zeta_{n}}(z) \otimes H^{2}(w) \\
& =K_{\varphi_{n_{0}+1}}(z) \otimes H^{2}(w) .
\end{aligned}
$$

Hence

$$
\bigoplus_{n=n_{0}+1}^{\infty} \varphi_{n+1}(z) \psi_{n}(w) f_{n}(z) \perp \varphi_{n_{0}+1}(z) \psi_{n_{0}+1}(w) H^{2} .
$$

Thus we get (3.4).

For $f \in \Omega(\mathcal{M})$, we may write

$$
f=f_{1} \oplus f_{2} \in\left(\mathcal{M} \cap \varphi_{n_{0}+1}(z) H^{2}\right) \oplus\left(\mathcal{M} \cap\left(H^{2} \ominus \varphi_{n_{0}+1}(z) H^{2}\right)\right) .
$$

$\operatorname{By}(3.4), f_{1} \in \varphi_{n_{0}+1}(z) H^{2}(z) \otimes K_{\psi_{n_{0}+1}}(w)$ and, by (3.3),

$$
f_{2} \in \psi_{n_{0}+1}(w) K_{\varphi_{n_{0}+1}}(z) \otimes H^{2}(w)
$$

Then it is not difficult to show that $f_{1}, f_{2} \in \Omega(\mathcal{M})$. Hence

$$
\Omega(\mathcal{M})=\left(\Omega(\mathcal{M}) \cap \varphi_{n_{0}+1}(z) H^{2}\right) \oplus\left(\Omega(\mathcal{M}) \cap\left(H^{2} \ominus \varphi_{n_{0}+1}(z) H^{2}\right)\right) .
$$

Thus we get

$$
\begin{aligned}
\mathcal{M}_{0} & =\mathcal{M} \ominus \Omega(\mathcal{M}) \\
& =\left(\mathcal{M}_{0} \cap \varphi_{n_{0}+1}(z) H^{2}\right) \oplus\left(\mathcal{M}_{0} \cap\left(H^{2} \ominus \varphi_{n_{0}+1}(z) H^{2}\right)\right) .
\end{aligned}
$$

This shows that $\mathcal{M}_{0}$ is splitting.
Similarly, if $\varphi_{n}(0)=0$ for some $-\infty<n<\infty$, then we may prove that $\mathcal{M}_{0}$ is splitting.

To show the converse assertion, suppose that $\varphi_{n}(0) \neq 0$ and $\psi_{n}(0) \neq 0$ for every $-\infty<n<\infty$. By [19, pages 532-533], $\Omega(\mathcal{M})=\mathbb{C} \cdot P_{\mathcal{M}} 1$. By $(\alpha 7)$, one can easily check that

$$
\begin{align*}
P_{\mathcal{M}} 1 & =\bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(0) \psi_{n}(0) \varphi_{n+1}(z) \psi_{n}(w)\left(1-\zeta_{n}(0) \zeta_{n}(z)\right) \\
& =\bigoplus_{n=-\infty}^{\infty} \varphi_{n+1}(0) \psi_{n}(0) \varphi_{n+1}(z) \psi_{n}(w)\left(1-\xi_{n}(0) \xi_{n}(w)\right) . \tag{3.5}
\end{align*}
$$

To prove that $\mathcal{M}_{0}$ is not splitting, we assume that $\mathcal{M}_{0}$ is splitting. We may assume that $\mathcal{M}_{0}$ is splitting for $\varphi(z)$. Let $\psi(w)$ be the associated inner function of $\varphi(z)$ for $\mathcal{M}_{0}$. We have $K_{\varphi_{n}}(z) \otimes K_{\psi_{n}}(w) \perp \mathcal{M}$, so $K_{\varphi_{n}}(z) \otimes K_{\psi_{n}}(w) \perp \varphi(z) \psi(w) H^{2}$ for every $-\infty<n<\infty$. Hence either $T_{z}^{*} \varphi_{n}(z) \perp \varphi(z) H^{2}(z)$ or $T_{w}^{*} \psi_{n}(w) \perp \psi(w) H^{2}(w)$. This shows that either $\varphi(z) / \varphi_{n}(z) \in H^{2}(z)$ or $\psi(w) / \psi_{n}(w) \in H^{2}(w)$. By $(\alpha 6), \psi(w) / \psi_{n}(w) \notin H^{2}(w)$ for a large $n$, so $\varphi(z) / \varphi_{n}(z) \in H^{2}(z)$ for a large $n$. By $(\alpha 3), \varphi(z) / \varphi_{n}(z) \notin H^{2}(z)$ for a sufficiently small $n$. Then there is an integer $n_{0}$ such that $\varphi(z) / \varphi_{n_{0}+1}(z) \in H^{2}(z)$ and $\varphi(z) / \varphi_{n_{0}}(z) \notin H^{2}(z)$. We have $\psi(w) / \psi_{n_{0}}(w) \in H^{2}(w)$. Hence

$$
\varphi(z) \psi(w) H^{2} \subset \varphi_{n_{0}+1}(z) \psi_{n_{0}}(w) H^{2} .
$$

Since $\psi(w)$ is the associated inner function of $\varphi(z)$ for $\mathcal{M}_{0}, K_{\varphi}(z) \otimes K_{\psi}(w) \perp \mathcal{M}_{0}$, so $K_{\varphi}(z) \otimes K_{\psi}(w) \subset \mathcal{N}_{0}$. Let

$$
\sigma(z)=\varphi(z) / \varphi_{n_{0}+1}(z) \quad \text { and } \quad \eta(w)=\psi(w) / \psi_{n_{0}}(w)
$$

Then $\varphi_{n_{0}+1}(z) K_{\sigma}(z) \subset K_{\varphi}(z), \psi_{n_{0}}(w) K_{\eta}(w) \subset K_{\psi}(w)$ and

$$
\begin{aligned}
& \varphi_{n_{0}+1}(z) \psi_{n_{0}}(w) K_{\sigma}(z) \otimes K_{\eta}(w) \\
& \subset\left(K_{\varphi}(z) \otimes K_{\psi}(w)\right) \cap \varphi_{n_{0}+1}(z) \psi_{n_{0}}(w) H^{2} \\
& \subset \mathcal{N}_{0} \cap \varphi_{n_{0}+1}(z) \psi_{n_{0}}(w) H^{2} \\
& \subset \mathcal{N}_{0} \cap \mathcal{M}=\Omega(\mathcal{M})=\mathbb{C} \cdot P_{\mathcal{M}} 1 .
\end{aligned}
$$

If $K_{\sigma}(z) \otimes K_{\eta}(w) \neq\{0\}$, then

$$
\varphi_{n_{0}+1}(z) \psi_{n_{0}}(w) K_{\sigma}(z) \otimes K_{\eta}(w)=\mathbb{C} \cdot P_{\mathcal{M}} 1
$$

and this contradicts (3.5). Thus $K_{\sigma}(z) \otimes K_{\eta}(w)=\{0\}$. Hence we may assume that either $\varphi(z)=\varphi_{n_{0}+1}(z)$ or $\psi(w)=\psi_{n_{0}}(w)$. Suppose that $\varphi(z)=\varphi_{n_{0}+1}(z)$. Since $\mathcal{M}_{0}$ is splitting for $\varphi_{n_{0}+1}(z)$,

$$
\begin{equation*}
\mathcal{M}_{0}=\left(\mathcal{M}_{0} \cap \varphi_{n_{0}+1}(z) H^{2}\right) \oplus\left(\mathcal{M}_{0} \cap\left(H^{2} \ominus \varphi_{n_{0}+1}(z) H^{2}\right)\right) . \tag{3.6}
\end{equation*}
$$

Let

$$
\begin{aligned}
f=\varphi_{n_{0}+2}(z) & \psi_{n_{0}+1}(w)\left(1-\zeta_{n_{0}+1}(0) \zeta_{n_{0}+1}(z)\right) \\
& \oplus c \varphi_{n_{0}+1}(z) \psi_{n_{0}}(w)\left(1-\zeta_{n_{0}}(0) \zeta_{n_{0}}(z)\right)
\end{aligned}
$$

for some $c \in \mathbb{C}$. Then $f \in \mathcal{M}$. We may take $c \in \mathbb{C}$ such that $\left\langle f, P_{\mathcal{M}} 1\right\rangle=0$. Since $\mathcal{M}=\mathcal{M}_{0} \oplus \mathbb{C} \cdot P_{\mathcal{M}} 1, f \in \mathcal{M}_{0}$. Ву (3.6),

$$
\begin{aligned}
& f_{1}:=\varphi_{n_{0}+2}(z) \psi_{n_{0}+1}(w)\left(1-\zeta_{n_{0}+1}(0) \zeta_{n_{0}+1}(z)\right) \in \mathcal{M}_{0} \\
& \left\langle f_{1}, P_{\mathcal{M}} 1\right\rangle=\varphi_{n_{0}+2}(0) \psi_{n_{0}+1}(0)\left(1-\zeta_{n_{0}+1}(0)^{2}\right) \neq 0 .
\end{aligned}
$$

This shows $f_{1} \notin \mathcal{M}_{0}$ and this is a contradiction.
Suppose that $\psi(w)=\psi_{n_{0}}(w)$. Since

$$
\left(\mathcal{M}_{0} \cap \varphi_{n_{0}+1}(z) H^{2}\right) \ominus \varphi_{n_{0}+1}(z) \psi_{n_{0}}(w) H^{2} \neq\{0\}
$$

$\mathcal{M}_{0}$ is splitting for $\psi_{n_{0}}(w)$ (see above Theorem 2.2). In the same way as the last paragraph, we have a contradiction. As a result, $\mathcal{M}_{0}$ is not splitting.

Corollary 3.12. The splittingness is not stable under the finite dimensional perturbations.

## Acknowledgement

The authors would like to thank the referee for various comments on the original manuscript.

## References

[1] O. Agrawal, D. Clark and R. Douglas, 'Invariant subspaces in the polydisk', Pacific J. Math. 121 (1986), 1-11.
[2] H. Bercovici, 'Operator theory and arithmetic in $H^{\infty}$, in: Mathematical Surveys and Monographs, Vol. 26 (American Mathematical Society, Providence, RI, 1988).
[3] X. Chen and K. Guo, Analytic Hilbert Modules (Chapman \& Hall/CRC, Boca Raton, FL, 2003).
[4] R. Douglas and R. Yang, 'Operator theory in the Hardy space over the bidisk I', Integral Equ. Operator Theory 38 (2000), 207-221.
[5] K. Guo and R. Yang, 'The core function of submodules over the bidisk', Indiana Univ. Math. J. 53 (2004), 205-222.
[6] K. Hoffman, Banach Spaces of Analytic Functions (Prentice Hall, Englewood Cliffs, NJ, 1962).
[7] K. J. Izuchi and K. H. Izuchi, 'Rank-one commutators on invariant subspaces of the Hardy space on the bidisk', J. Operator Theory 60 (2008), 239-251.
[8] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, 'Blaschke products and the rank of backward shift invariant subspaces over the bidisk', J. Funct. Anal. 261 (2011), 1457-1468.
[9] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, 'Ranks of invariant subspaces of the Hardy space over the bidisk', J. reine angew. Math. 659 (2011), 67-100.
[10] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, 'Ranks of backward shift invariant subspaces of the Hardy space over the bidisk', Math. Z. 274 (2013), 885-903.
[11] K. J. Izuchi, T. Nakazi and M. Seto, 'Backward shift invariant subspaces in the bidisc II', J. Operator Theory 51 (2004), 361-375.
[12] V. Mandreckar, 'The validity of Beurling theorems in polydiscs', Proc. Amer. Math. Soc. 103 (1988), 145-148.
[13] N. Nikol'skiř, Treatise on the Shift Operator (Springer, New York, 1986).
[14] W. Rudin, Function Theory in Polydiscs (Benjamin, New York, 1969).
[15] M. Seto, 'Infinite sequences of inner functions and submodules in $H^{2}\left(D^{2}\right)^{\prime}$, J. Operator Theory $\mathbf{6 1}$ (2009), 75-86.
[16] M. Seto and R. Yang, 'Inner sequence based invariant subspaces in $H^{2}\left(D^{2}\right)^{\prime}$, Proc. Amer. Math. Soc. 135 (2007), 2519-2526.
[17] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space (North Holland, Amsterdam, 1970).
[18] R. Yang, 'The Berger-Shaw theorem in the Hardy module over the bidisk', J. Operator Theory 42 (1999), 379-404.
[19] R. Yang, 'Operator theory in the Hardy space over the bidisk (III)', J. Funct. Anal. 186 (2001), 521-545.
[20] R. Yang, 'Beurling's phenomenon in two variables', Integral Equ. Operator Theory 48 (2004), 411-423.
[21] R. Yang, 'The core operator and congruent submodules', J. Funct. Anal. 228 (2005), 469-489.
[22] R. Yang, 'Hilbert-Schmidt submodules and issues of unitary equivalence', J. Operator Theory $\mathbf{5 3}$ (2005), 169-184.
[23] R. Yang, 'On two variable Jordan block II', Integral Equ. Operator Theory 56 (2006), 431-449.
[24] Y. Yang, 'Two inner sequences based invariant subspaces in $H^{2}\left(\mathbb{D}^{2}\right)$ ', Integral Equ. Operator Theory 77 (2013), 279-290.

## KEI JI IZUCHI, Department of Mathematics, Niigata University, <br> Niigata 950-2181, Japan <br> e-mail: izuchi@m.sc.niigata-u.ac.jp

## KOU HEI IZUCHI, Department of Mathematics, Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan e-mail: izuchi@yamaguchi-u.ac.jp

YUKO IZUCHI, Aoyama-shinmachi 18-6-301, Nishi-ku,
Niigata 950-2006, Japan
e-mail: yfd10198@nifty.com

