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ON PERMUTABILITY AND SUBMULTIPLICATIVITY 
OF SPECTRAL RADIUS 

W. E. LONGSTAFF AND H. RADJAVI 

ABSTRACT. Let r{ T) denote the spectral radius of the operator T acting on a complex 
Hilbert space H. Let S be a multiplicative semigroup of operators on H. We say that 
r is permutable on S if r{ABC) = r(BAC), for every A,B,C G S. We say that r is 
submultiplicative on S \ir\AE) < r(A)r(B), for every A, B G S. It is known that, if r is 
permutable on S, then it is submultiplicative. We show that the converse holds in each 
of the following cases: (i) S consists of compact operators (ii) S consists of normal 
operators (iii) S is generated by orthogonal projections. 

1. Introductions and preliminaries. Let r(T) denote the spectral radius of the op­
erator T acting on a complex Hilbert space H. Let S be a multiplicative semigroup of op­
erators on //. We say that r is multiplicative on S if r(AB) = r(A)r(B), for every A, B G S. 
We say that r is submultiplicative on S \fr{AB) < r(A)r(B), for every A, B G S. In [4], the 
effects of certain spectral conditions, including the submultiplicativity of r, on reducibil-
ity were the central consideration. Here we consider the question of whether or not r must 
be permutable on S if it is known to be submultiplicative. By permutability of r on S is 
meant the condition: r(ABC) = r(BAC) for every A,B,C E S. (This condition is equiva­
lent to the requirement that the spectral radius of any word of finite length, in letters from 
S, be independent of the order of the letters. This can be verified by induction and using 
the fact that r(AB) = r(BA) for all A and B.) For any semigroup of operators, Theorem 9 
of [4] shows that the permutability of r implies its submultiplicativity. Whether or not 
the reverse implication must always hold has still not been settled. However, we show 
that it does hold in each of the following cases: (i) S consists of compact operators (ii) S 
consists of normal operators (iii) S is generated by orthogonal projections. 

In what follows the underlying field of scalars is C, all operators are linear and bounded 
and all subspaces are closed. We shall frequently identify operators with their matrices 
(relative to a tacit fixed basis or orthogonal decomposition of the underlying space) when 
no confusion is likely to arise. For any Hilbert space //, the inner product on H will be 
denoted ( | •), and $(//) (respectively, %{H)) will denote the algebra of all operators (re­
spectively, compact operators) on//. Continuity of r on %iH) (see [1]) will be frequently 
used to replace a semigroup S Ç ^C(//), on which r is submultiplicative, with its norm 
closure 5, with no loss of generality. For any operator T E $(//), a{T) denotes its spec­
trum and 0-^(7^ is approximate point spectrum. Also %,(?) denotes the range of T and 
tr T denotes the trace of T if T is of trace class. 
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The following lemmas, whose proofs are contained in [6], will be used more than 
once. A subset J of a semigroup S is called an ideal of S if JS and SJ belong to J/, for 
every J E 3 and S G 5. A semigroup S Ç ®(i7) is reducible if it has a non-trivial 
invariant subspace; otherwise it is irreducible. 

LEMMA 1. If S is a semigroup of compact operators on a Hilbert space H and there 
is a non-zero continuous linear functional on %{H) which is constant on S, then S is 
reducible. 

LEMMA 2. Every non-zero ideal of an irreducible semigroup of operators on a 
Hilbert space is irreducible. 

LEMMA 3. Let K be a compact operator on a Hilbert space H with r(K) = 1. Let m 
be the (finite) rank of the Riesz projection P ofK corresponding to the non-empty set 

{z£a(K): \z\ = 1}, 

and let C be the norm closure of 

{cKn:ceC,n<EZ+}. 

Then 
(i) IfK is not similar to a contraction, then C contains a non-zero nilpotent operator 

of rank less than m. 
(ii) IfK is similar to a contraction, then P G C and the restrictions ofK to %iP) and 

%f\ — P) are similar, respectively, to a unitary operator and to a strict contrac­
tion. 

We will also need the following lemma taken from [5]. 

LEMMA 4. A semigroup of quasinilpotent trace class operators on a Hilbert space 
of dimension greater than one is reducible. 

2. Semigroups of compact operators. We begin by considering semigroups, con­
sisting of compact operators, on which r is submultiplicative. Our main result in this 
context (Theorem 2.6) is that r is permutable on such semigroups. For irreducible semi­
groups of this type an even stronger result holds. 

THEOREM 2.1. Let S be an irreducible semigroup of compact operators on a Hilbert 
space H Ifr is submultiplicative on S, then r is multiplicative, so permutable, on S. 

PROOF. Assume that r is submultiplicative on S. We can assume that dim H > 2 
and S — S (by the continuity of r on %{H)). We can also assume that S is closed 
under scalar multiplication, that is, S = C5. It is enough to show that, ifA,B G S and 
HA) = r(B) = 1, then r(AB) = 1. 

First, suppose that A2 = A andi?2 = B. Then r(AB) ^ 0. For, suppose that r(AB) — 0. 
Since S contains no non-zero finite-rank nilpotent elements by Lemmas 2 and 4, AB — 0. 
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The semigroup BSA then consists of finite rank nilpotent operators so BSA = (0). Let 
x,y G H satisfy Ax ^ 0, B*y ^ 0. The linear functional/: %{H) —> C defined by 
f(K) = (KAx\B*y) is continuous and non-zero and/|^ = 0. By Lemma 1, this contradicts 
the irreducibility of 5. Hence we must have r(AB) ^ 0. Then 

r(AB) = r(A2B2) = r(BA • AB) < r(BA)r(AB) = r(AB)2, 

so r{AB) > 1. Since r(AB) < r(A)r(B) = 1, r(AB) = 1. 
In general, if r(A) = r(B) — 1, since 5 contains no non-zero finite-rank nilpotent 

elements, there exists by Lemma 3 a sequence (fly) of scalars and an increasing sequence 
(nj) of positive integers such that (ajAnJ) converges to a non-zero idempotentP G S. Since 
r(cijAnJ) = |Ay| —> r(P) = 1, we may suppose that fly —» A with |A| = 1. T h e n ^ —> P/a. 
Similarly, BmJ —> Q/b for some increasing sequence (my) of positive integers where Q is 
a non-zero idempotent element of S and |6| = 1. Then 

r(An'-BV) = r(AB • Bm^xAn^x) < r(AB)r(AnJ-l)r(Bm^~l) = r(AB). 

Taking limits gives r(PQ) < r(AB). By the first part of the proof r(PQ) = 1. Hence 
r{AB)> 1 so r(AB)= 1. • 

Before proving the main result of this section, we need some results concerning the 
transmission of certain properties of spectral radius from non-zero ideals to the overlying 
semigroup. 

PROPOSITION 2.2. Let A beannxn matrix such that, for some L > 0, | tr(i4*)| < L, 
for every k > 1. Then r(A) < 1. 

PROOF. We use the fact that, for every finite set p,\, //2, • • •, MAT of complex numbers 
of modulus one, there exists an increasing sequence (mk) of positive integers such that 
p,™k —> 1 as k —> oo, for every / = 1,2,... ,7V. 

Let Ai, À2,..., Aw be the eigenvalues of A, counted according to multiplicity, and sup­
pose thatp = r(A) > 1.Let|À11 = |A |̂ = • • • = |Ay| = pand|A/| < pfori = y+ l , . . . , « . 
Then, for every k > 1, 

l*^*)l= £A* 
i=\ 

<L, 

so 

£(*)'! <£ + |Ê(*)1<£+£(M)'. 
It follows that £J=1 (^f —>0 as A: —> oo. However, for/ = 1,2,. ..J wehave|A,-/p| = 1 
so there exists an increasing sequence (m^) of positive integers such that (A//p)w* —> 1. 
So E"J'=1(A/ /p)w* —»y. This contradiction shows that r(^) < 1. • 

COROLLARY 2.2.1. Let n > 2, let S be an irreducible semigroup ofn x n matrices 
and let J be a non-zero ideal of S. Ifr{J) < I, for every J G J, then r(S) < I, for every 

SeS. 

PROOF. Suppose that r(J) < 1, for every J G J. By Lemma 2, J is irreducible; so 
then is its linear span. The latter is an algebra, so by Burnside's Theorem, J contains a 
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basis {Jt : 1 < / < n2} of #(C"). In particular, there exist scalars a,, / = 1,2,... ,«2 

such that YaLx <XiJt = 1. Let A G 5. Then ,4 = E^ i M 4 so HA = Y!JLX aMAJi). But, 
for every /, | tx(AJi)\ < nr(AJt) < n so | \xA\ < n(J^n

i=x |a/|). Thus, for every 5 G 5 and 
every k > 1 we have | tr(S*)| < «(E"=i |«/|). By the preceding proposition, r(S) < 1, for 
every £ G 5. • 

COROLLARY 2.2.2. Lef n >2, let S be an irreducible semigroup ofn x n matrices 
and let J be a non-zero ideal of S. Ifr(J) = 1, for every J G J, £/*e« r(S) = 1, /or every 
S G 5. 

PROOF. Suppose that r(J) = 1, for every J G J/. Let S G 5 and suppose that r(S) ^ 1. 
By the preceding corollary, r(S) < 1. By first performing a similarity transformation on 
5, if necessary, we can assume that ||5|| < 1. (By replacing the off-diagonal l's in the 
Jordan canonical form of S by sufficiently small positive e we obtain a matrix, similar to 
S, but with norm strictly less than one.) Let J G _7.Then ||S"|| < 1 /\\J\\, for n sufficiently 
large. Then ||SV|| < 1 so r(S"J) < 1. This is a contradiction because ST J G _?. • 

It is clear that the requirement of irreducibility cannot be dropped in the statements 

of the corollaries above. Consider, for example, the semigroup j n : a G C > 

and its ideal < . This example also shows that the requirement of irreducibility ( i :)}• 
cannot be dropped in the statement of Theorem 2.1. 

PROPOSITION 2.3. Let S a semigroup of operators acting on a (possibly infinite-
dimensional) Hilbert space and let J be an ideal of S- Ifr is multiplicative on J then 
r(JS) < r(J)r(S), for every J G J and every S G S. 

PROOF. We may suppose that S = CS and J = CJ7. Let S G S and J e J. 
If r{J) = 1, then r(JSJ) = r(JS)r(J) = r(JS). By induction, rÇJ&J) = r{JS)\ for 

every k > 1. Thus r{JS)k = r(JSk)r(J) = r(JSk) < \\JSk\\ < \\J\\ \\S% so r(JS) < 

\\J\\l,k\\&\\X,k> for every k > 1. Hence r(JS) < r(S). 

If r(J) ^ 0, then, by what has just been proved, r((j/r(J))s) < r(S), so r(JS) < 

r(J)r(S). 

If r(J) = 0, then r(JS)2 = r(JS)r(SJ) = r{JS2J) = r(J)r(S2J) = 0, so r(JS) = 0 and 
again r(JS) < r(J)r(S). m 

THEOREM 2.4. Let S be an irreducible semigroup ofnxn matrices and let J be a 
non-zero ideal ofS. Ifr is submultiplicative on 3, then it is submultiplicative on 5. 

PROOF. Let r be submultiplicative on J/. We can suppose that n > 2 and that S = CJ>, 
j = CJ/. By Lemma 2, J is irreducible. By the same lemma and Lemma 4, J contains 
no non-zero nilpotent elements. By Theorem 2.1, r is multiplicative on J so, by Proposi­
tion 2.3, r{JS) < r(J)r(S), for every J G J and every S G 5. By Burnside's Theorem, the 
linear span of J is ®(Cn) so there exist scalars at and elements Jt G J, with r(Jf) — 1, 
i = 1,2,... V such that Y%L\ aiJi = *• 

https://doi.org/10.4153/CJM-1995-053-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-053-x


PERMUTABILITY AND SUBMULTIPLIC ATIVITY 1011 

Let S,TeS with r(S) = r(T) = 1. Let J <E 3 with r{J) = 1. Then 

r((STy) = r(J)r((ST)j) = r(j(ST)j) = r(JS)r(JT). 

By induction, for every k > 1, r({STfj) = r{JSfr(JT)k (note that r((ST)k+ij) = 

r(J)r((ST)mj) = r(j(ST)k+lj) = r(j(ST))r((STfj) = ^ ( ( ^ ^ ^ ( ( ^ r ) ^ ) ) . Since 

we have, for every k > 1, 

I tr(S7f| < £ M I trCST^Jil < « £ k K ( ^ ) 

«2 n2 

= nJ2 WiWiSffiJiTf < « £ \aiWiMst*JiMTf 

= *EI<*« | . 
By Proposition 2.2, r{ST) < 1. 

Now 5, like _7, contains no non-zero nilpotent elements. For if A G S and r{A) = 0 
then, with {J( : 1 < i < n2} as above, r(J/^) < r(Ji)r(A) = 0 so J/^ = 0, for every z. 
Thus,4 = E £ 1 c ^ = 0. 

Finally, let B,CeS. lfr(B) = 0 or r (Q = 0 certainly r{BC) < r(B)r(Q. Otherwise 

r((fi/r(5))(C/r(C))) < 1 so r (£Q < r(B)r(C). m 

The semigroup { H ^ 1 : ^ G «(C^ 1 ) of « x « matrices, where n > 3, shows that 

the requirement of irreducibility cannot be dropped from the statement of the preced­
ing theorem. Less trivially, the following example shows that the requirement of finite-
dimensionality cannot be dropped. (However, see Theorem 2.5.) 

EXAMPLE. There exists an irreducible semigroup S of operators on infinite-dimen­
sional Hilbert space such that r is multiplicative on a non-zero ideal J oî S yet is not 
submultiplicative on 5. 

Let dim// = 2 and let H = ff°°\ Let So = {^(oo) : A G #(//)} Ç <B(?{) be the set 
of all inflations of operators in $(//). For every n > 1 define the subset % of *B{!H) by: 

h= {{-B B B T ' B £ ***>} 

*-{(i ^r^^'»}-
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Put 3 = U£=i %- T hen, for every J G J/, J2 = 0 so r(J) = 0. Also, 5 = 3 U 5o is a 
semigroup and _7 is an ideal of 5. Although r = 0 on J/, r is not submultiplicative on 5. 

For, let ̂ 4 and B be the elements of # (#) defined by , 4 = 1 fl = I J. Then 

A{oo\ B^ G 5 with r(A^) = r(B^) = r(A) = r(B) = 0. However, r(^(oo)£(oo)) = 
rÇ4£) = 1. 

The semigroup 5 described above is a slight modification of an example given in [3], 
which contains a proof of its irreducibility. (In fact the linear span of S is dense in (B(?{) 
in the strong operator topology.) 

The following result extends Theorem 2.4 to semigroups of compact operators. 

THEOREM 2.5. Let S be an irreducible semigroup of compact operators on an 
infinite-dimensional Hilbert space H and let 3 be a non-zero ideal of S. Ifr is submulti­
plicative on 3, then it is submultiplicative on S. 

PROOF. Let r be submultiplicative on J/. We can suppose that 5 = C5 = S and that 
r is not identically zero on S. Then r(A) = 1, for some A G 5. By Lemma 3 ,5 contains 
a non-zero finite rank operator, F say. By Lemma 2 ,3 is irreducible so JF ^ 0, for some 
J € 3- Thus 3 contains a non-zero finite rank operator. Let 

m = minjrank./ : J G 3\ {0} and J has finite rank}. 

Then m > 1 and the set 3o of elements of 3 of rank m or 0 is a non-zero ideal of S. By 
Lemma 2, 3o is irreducible. Since r is submultiplicative on Jfo, the set of nilpotent ele­
ments of 3o forms an ideal of 3o> This ideal must be zero by Lemmas 2 and 4. Thus 3o con­
tains no non-zero nilpotent elements. It follows that S contains no non-zero quasinilpo-
tent elements. For, suppose that the element B G 5 is quasinilpotent and non-zero. By 
Theorem 2.1 and Proposition 2.3, r(JoB) < r(Jo)r(B), for every Jo G _7b, so r(JoB) = 0 
and J0B = 0. Then BJ0B = 0, for every JQ G J/0. If x,y G H satisfy Bx ^ 0, B*y =£ 0, 
then the linear functional/: ^C(//) —• C defined by f(K) = (KBx\B*y) is continuous and 
non-zero and/|j/0 = 0. By Lemma 1, 3o is reducible and this is a contradiction. Thus S 
contains no non-zero quasinilpotent elements, and to prove that r is submultiplicative on 
S it is therefore enough to show that, if S, T G S satisfy r(S) = r(T) = 1, then r(ST) < 1. 

We can assume that r(ST) ^ 0. Let P be the non-zero finite rank Riesz projection of 
ST corresponding to the non-empty set {z G o-(ST) : \z\ — r(ST)}. By Lemma 3, since 5 
contains no non-zero nilpotent elements, P G S. Of course P(ST) — (ST)P. 

Now PSP\^p) is a semigroup on 1{{P) having P3oP\^(p) as an ideal. Also, PSP\^p} 

is irreducible. For, suppose it were reducible. Then, there exist non-zero functional vec­
tors w,v G %,(P) such that (PXPu\v) — 0, for every X G 5. The linear functional 
g: ^C(//) —-> C defined by g(X) = (i£Pw|P*v) is continuous and non-zero andg|^ = 0. By 
Lemma 1 this contradicts the irreducibility of 5. Thus PSP\^P) is irreducible. A similar 
argument gives that P3QP\^(P) is non-zero, since 3o is irreducible. Since P3oP Q 3 and 
r is submultiplicative on 3, r is submultiplicative on P3ç)P\^Py Hence, by Theorem 2.4, 
r is submultiplicative on PSP\^p) and so is submultiplicative on PSP. 
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By Lemma 2, PJQP\$JP) is irreducible, so by Burnside's Theorem there exist scalars 
or/ and operators Jt G %, with r(PJtP) = 1, i = 1,2,... N2 (where N = dim %JF)) such 
that 

iV2 

P = '£aiPJiP. 
i=\ 

Then, for every k> 1, we have 

#2 

P(S7f/> = (STfP = J ] <Xi(STfPJiP 

so 
, N 2 TV2 

|tr(P(Sr)P) I = I trP(S7yP| < £ N I HST)kPJiP\ < Nj^ \ai\rUST)kPJiP). 

Now r(A70) < r(JQK^o), for every X G 5 and Jo £ Jfo so 

r((ST)kPJiP) = r(ST(STf-xPJiP) < r(S)r(T(ST)k~lPJtP) 

= r{T{ST)k~xPJiP) < r(T)r((ST)k-lPJtP) 

= r((ST)k~lPJiP) • • • < K/^P) = 1, 

and hence r((ST)kPJiP) < 1, for every it > 1. Thus 

, JV2 

|tr(P(S7)P) | < # £ k | , 
/=i 

for every k > 1 and so, by Proposition 2.2, r(P(ST)P) = r{ST) < 1. • 
We can now prove the main result of this section. Recall that a chain 9\£ of subspaces 

of a Hilbert space is called complete if fir N7 G 1A£ and Vr ^i € Â£> f° r every family 
{Wy}r of elements of fA£. Also, if fÂ  is a complete chain and N G 3\£, the element JV_ of 
9\[ is defined by N- = \/{M e fAC ' M C N} (where, by convention V 0 = (0) so that 

(0)_ = (0)). A complete chain 5\£ is called continuous if Af_ = AT, for every N e 9£. 

THEOREM 2.6. Let S be a semigroup of compact operators acting on a Hilbert space 
H. Ifr is submultiplicative on S, then r is permutable on S. 

PROOF. Let r be submultiplicative on S. We can suppose that r is not identically 
zero on 5. The set of all invariant chains of 5 is non-empty (it contains {(0),//}) and 
has a maximal element, !A£ say, by Zorn's Lemma. By maximality, (0), H G fA£ and 5^ is 
complete. Since every compact operator leaving a continuous complete chain, containing 
(0) and H, invariant is quasinilpotent [7], 9\£ is not continuous. Thus the set of mutually 
orthogonal projections 

V = {PNGPN_ : N G 9CPN ï />*_} 
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is non-empty. By compactness, for every S G S there is a member P of (P such that 
r(S) — r(PSP). Note that, for each P G P, PSP\^P) is irreducible. (It can be zero only 
if P has rank 1.) 

Consider the mapping (/?: S —> (B(Ho) defined by 

<P(S) = 0 SP, 

where //0 = ®pe(P *K{P) a n d where Sp = PSP|^ (P ) . Since for every iV G fA£ and S G 5 
we have 

(/V - PN.)S(PN - PN_) = (P* - /V)SPtf, 

it is easily verified that ip is multiplicative. By the construction of fP, 99 preserves spectral 
radii, so we can assume with no loss of generality that 5 = ip(S). 

It is convenient to reduce the size of fP. Let us call a subset SioïP admissible if it is 
non-empty and 

r(®Sp)=r(®Sp) 

for all S G 5. Choose a maximal chain C of admissible subsets (ordered by set inclusion) 
and let % be the intersection of all members of C To see that iPo is admissible let S be 
any member of S with r(S) ^ 0. By compactness, the set {P G P : r(£p) = r(S)} is 
finite. Since every member of C has a non-empty intersection with this set, so does %. 
Thus % is a minimal admissible subset of (P. The admissibility of % allows us now to 
assume that <P = % with no loss of generality. We also assume 5 = S — C5 as usual. 

The new minimality property of *P implies that for every P G fP there exists an element 
SeS such that r(SP) = r(S) = 1 and 

sup r(^g) < 1. 
QÏP 
Qe(P 

By Lemma 3, there is a sequence {rij} of positive integers and a sequence of complex 
numbers {CJ} with {\CJ\} converging such that 

K =lim cjS% 

is non-zero and finite rank. Then it is easily verified that F — lim c/S
w> £ S,Fp = K, and 

FQ = 0 for all g G 2> other than P. 

Let P e P, let F and P> be the operators just described and let J be the ideal of 5 
generated by F. Then Jp = {Jp : J G J/} is a non-zero ideal of the corresponding irre­
ducible block Sp of 5. The submultiplicativity of r on J/ and thus on J/p implies that it 
is submultiplicative on Sp by Theorems 2.4 and 2.5 and multiplicative on Sp by Theo­
rem 2.1. 
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To complete the proof, let A, B, C be any members of S. Then 

r{ABC) = maxr[(ABQP] = maxr[APBPCp] 
p£<p perp 

= max[r(AP)r(BP)r(CP)] 
Pe<P 

= maxr^p^pCp] = maxr[(BAC)P] 
Pe<P Pe<P 

= r(&4Q. • 

3. Semigroups satisfying r(A) = \\A\\. If5isasemigroupofoperatorsonaHilbert 
space and r(A) = \\A\\, for every A G 5, then r is, of course, submultiplicative on S. The 
class of such semigroups contains those semigroups which consist of normal operators. 
It also contains those *-semigroups on which r is submultiplicative. Indeed, let S be a 
*-semigroup, that is, S = S*, and suppose that r is submultiplicative on 5. For every 
A G S we have 

\\A\\2 = r(A*A) < r(A*)r(A) = r(A)2 < \\A\\\ 

so r(A) = ||̂ ( ||. Although it is not known whether or not r, equivalently || • ||, is permutable 
on every member of this class of semigroups, we show below that it is permutable on 
all normal semigroups (Theorem 3.2) and on certain *-semigroups in this class, namely, 
those generated by (orthogonal) projections (Theorem 3.4). 

We begin by considering irreducible semigroups of normal operators. 

THEOREM 3.1. If S is an irreducible semigroup of normal operators, then every 
element of S is a scalar multiple of a unitary operator. Consequently \\-\\is multiplicative, 
so permutable, on S. 

PROOF. We use the fact that, if a normal operator^ with \\A\\ < 1 has no unitary 
direct summand, then An —> 0 in the strong operator topology. 

Let S be a semigroup of normal operators on a Hilbert space //with a member^ that 
is not a scalar multiple of a unitary operator. We show that, for some non-trivial subspace 
M of//, both M and M1 are invariant under S, contrary to the irreducibility hypothesis. 

We can assume that S = CS and that min{|A| : A G a(A)} < 1 < r(A). Let E be the 
spectral measure of A andputZ/i = E({z G C : \z\ > l})and//2 = E({z G C : \z\ < 1}). 

Then// = H\ ®Z/2 and//2 ^ (0), //. With respect to this decomposition^ = 

with A2 a normal operator on H2 satisfying ||^2|| < L Also, A2 has no unitary direct 

summand. Let B G 5. Then B —\7 T] and, for every n > 1, since AnB is normal, 

we have (comparing entries in the (2,2) position) 

An
2(ZT + TT)A? - rA*2

nAn
2T = TA^An

xY. 

Now A%->0 mdA*2
n —> 0 strongly, so rA\nAn

{Y —> 0 strongly. Thus, for every x G //2, 
\\A" Yx\\ —+ 0. Now AYl is a contraction, so 

WYxWKWA^rWAlYxW^WAlYxW 

and hence Yx = 0. Thus Y =0 and H2 is invariant under 5. A similar argument, consid­
ering BAn, shows that Z = 0. Thus H\ is also invariant under 5. • 

U A2 
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THEOREM 3.1. Operator norm is permutable on every semigroup of normal opera­
tors. 

PROOF. Let S be a semigroup of normal operators on a Hilbert space H. We may 
suppose that S = C5. The proof of the preceding theorem shows that, if S E S and P 
is the spectral projection of S corresponding to the set {z E C : \z\ < t}, for any t > 0, 
then both %iP) and ^ ( 1 — P) are invariant under S. (In the preceding proof, to make 
P non-trivial, t was chosen such that both {z E C : \z\ < t) and its complement gave 
non-zero spectral projections.) 

To prove that \\ABC\\ = \\BAC\\, for every A,B,C E 5, it suffices to show that 
IM#C|| < II^CH, f° r every A,B,C E S. Assume, with no loss of generality, that 
\\A\\ < 1, ||fi|| < 1 and ||C|| < 1. Let e > 0 be arbitrary. Choose n > \ and let 

^ = ( z E C : 7 ~ < | z | < ^ ) , j=l,29...,n. 
i n n) 

By the remark in the paragraph above, the spectral projections of A corresponding to each 
Qj give rise to an (orthogonal) direct-sum decomposition H, relative to which every ele­
ment of 5 directly decomposes. A similar comment holds for the corresponding spectral 
projections of B and of C. Since this set of 3n projections is pairwise commutative, H 
decomposes as H — ®^L1 Ht, where some Ht may be zero, such that each Ht is invariant 
under S and where, for each /, the spectra of the restrictions of A, B, C, to Ht are con­
tained in "thin annuli". More precisely, there exist real numbers a,-, bt, ct,i = 1,2,..., n3, 
belonging to [0,1 ] such that 

A = <&Ai9 B = ®Bh and C - © Q , 

a(Ai) Ç lz E C : at < \z\ < at + - } , 

a(Bi)C | zGC:6 / < \z\ <£, + - } , 

o{Ci) Ç lz E C : a < \z\ < a + - j , 

for / = 1,2,..., n3. By normality, this implies that, for each /, 

atbid < \\AiBiQW < fat + ^ ) (bt + - ) (c( + ̂ ) . 

Note that these inequalities hold for any permutation of Ai9 Bt, and C,-; in particular they 
hold for BiAtQ. Thus 

1 \ / , l\f 1' 
\\ABC\\ = max \\AiBiQW < max (a* + -) [bt + - ) U + -\ 

(x 3 3 \ < max dibiCi + ( —r + —z + - 1 
/ \n5 nl n) 

7 
<max||5/i4/C/|| + -

< ||&4C|| + 7e. 
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Since e > 0 was arbitrary, \\ABC\\ < \\BAC\\. m 
Next, we consider semigroups generated by positive contractions, and more particu­

larly, those generated by (orthogonal) projections. In the proof that follows we use the 
simple fact that if (ym) and (zm) are sequences of vectors in a Hilbert space satisfying 
I bail I < 1, \\zm\\ < 1, for every m > 1, and (ym\zm) —> 1, then \\ym - zm\\ —> 0 and 
| [y w | | -> l , | | z w | | -> l . 

THEOREM 3.3. Let C\, C2, •. •, Cn be positive contractions on a Hilbert space H. The 
following are equivalent, 

(i) r(ClC2-Cn)=l 
(ii) there exists a sequence (xm) of unit vectors such that (1 — Cj)xm —> 0, for every 

j= 1,2,...,«, 
(Hi) riC^C^i) • • • CTTC/I)) = ^>for every permutation IT of 1,2,..., n. 

PROOF, (i) =̂> (ii): Suppose that (i) holds. Choose a E a(C\ C2- Cn) with \a\ = 1. 
Since a is in the boundary of the spectrum, it belongs to aap(C\ C2 • • • Cn). Hence there 
exists a sequence (xm) of unit vectors such that C\C2 • • • Cnxm — oam —> 0. We use 
induction on n to show that a = 1 and that (xm) satisfies the requirement in (ii). We have 

(C2 • • • Cnxm\aC\xm) = a(C\C2 • • • Cnxm\xm) —> âa = 1. 

It follows that ||CiJcm|| —̂  1 and C2 • • • C„xw — aC\xm —> 0. This implies, firstly, that 
(Cfxw,xw) —• 1 and so C\xm - xm —> 0, giving 

(1 - d K = (1 + C i F ^ l - C\)xm -> 0; 

secondly, that 

C2 • • • C„xw - axw = C2 • • • C„xw - aCixw - a(l - C\)xm —> 0, 

and we are done by induction. 
(ii) => (iii): Suppose that (ii) holds. LetZ)y = C^^y = 1, . . . , n. Then Djxm — xm —» 0 

for ally. Using induction again, assume D2 • • • A*xw — xw —̂  0. Then 

£>iZ)2 ' * ' A**™ - xm = D\(D2 • - Dnxm - xm) + £>ixm - xw —> 0. 

Thus 1 G cr(Z)i • • • Dn) and, since ||Z>i • • • Dn\\ < 1, (iii) follows. 
That (iii) implies (ii) is obvious. • 

REMARKS. 1. The preceding theorem shows that if C is a finite family of positive 
contractions (more particularly, projections) and some product of all the elements of C 
(in any order) has spectral radius equal to one, then r = 1 on the semigroup generated 
b y C 

2. If C\, C2,..., Cn are positive contractions and F\, F2,..., Fn are projections satis­
fying ^(C7) Ç %JFj), j = l ,2,.. . ,w, then r(CiC2 • • • C„) = 1 implies that 
r(F\F2"Fn) — 1. For, with (xw) as in the statement of the preceding theorem, 
(1 - Cj)xm —» 0 gives (1 - Fj){\ - Cj)xm = (1 - F7)rw —• 0, for everyy = 1,2,..., n. 
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3. Notice that, if C\, C2 and C3 are self-adjoint operators, and TT is a permutation of 1, 
2, 3, then C1C2C3 and C^C^C^ç) have the same spectral radius. This follows from 
the facts that r(AB) = r{BA) and r(A) = r(A*), for all operators A and B. 

4. If Ci, C2,. . . , Cn are positive contractions, it is clear that r(C\C2 • • • C„) = 1 if 
fljLi ker(l — Cj) 7̂  (0). The converse, though not true in general (Corollary 3.3.2), is 
true on finite-dimensional spaces. 

COROLLARY 3.3.1. Let C\, C2,..., Cn be positive contractions on a finite-dimen­
sional Hilbert space H Then r{CxC2 • • • Cn) = 1 if and only iff]]=\ kei(l - Cj) ^ (0). 

PROOF. Let r{C\ C2 • • Cn) = 1. By the preceding theorem, there exists a sequence 
(xm) of unit vectors such that (1 — Cj)xm —»• 0, for every j = 1,2,..., n. Since the unit 
ball of H is compact, we may suppose that xm —• x, for some JC G //. Then for every 7, 
(1 - Cy>w -> (1 - Cy)x, so Cyx = x. Since ||x|| = 1, fljU ker(l - Cy) ̂  (0). 

The reverse implication is clear. • 
Let E\,E2,...,Enbe projections on a finite-dimensional space. The preceding corol­

lary shows that r(ExE2 • • En) = 1 if and only if pjU ^ (^ 7 ) ^ (°)- T h e following 
corollary shows that this is false in infinite dimensions. In it we use the fact that if M and 
TV are non-zero subspaces of a Hilbert space satisfying MHN = (0), then M + N is not 
closed if and only if sup{|(x\y)\ : ||JC|| = \\y\\ = \,x<EM,yeN} = 1. 

COROLLARY 3.3.2. Let P and Q be projections on a Hilbert space with ranges M and 
N respectively Then r{PQ) = 1 if and only if either (a) MHN ^ (0) or (b) MHN = (0) 
and M + N is not closed. 

PROOF. Let r(PQ) = 1 and suppose that MR N = (0). By Theorem 3.3 there exists 
a sequence (xm) of unit vectors such that (1 — P)xM —> 0 and (1 — Q)xm —» 0. Then 
(Pxm\Qxm) -> 1 and so sup{|(x|>0| : ||*|| = \\y\\ = l,x G M,y eN}=\. ThusM +Wis 
not closed. 

For the converse, by an earlier remark, it is enough to consider the case where MC\N = 
(0) and M+N is not closed. Then there exist sequences (ym), (zm) of unit vectors belonging 
to M and N respectively such that (ym\zm) —•> 1. Then ym — zm —* 0 so Pym — Qzm = 
ym - Pzm —> 0. Thus 

PQzm —zm — Pzm -zm = (Pzm - ym) + (ym - zm) —• 0 

and so 1 G cr(P0. Thus r(P<g) > 1 and since r(PQ) < \\PQ\\ < 1, r(PQ) = 1. • 
Next, we show that the submultiplicativity of spectral radius on a semigroup generated 

by projections is equivalent to its permutability. We have not as yet ascertained whether or 
not this equivalence holds when the generating elements are assumed to be only positive 
contractions. 

THEOREM 3.4. Let *P be a (possibly infinite) family of projections on a Hilbert space 
H, and let S be the semigroup generated by rP. The following are equivalent, 

(i) r is submultiplicative on S, 
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(ii) r(A) = 0 or I, for every A G S, 

(iii) r(A) = lt for every A G 5 \ {0}, 
(iv) r is permutable on S. 

PROOF, (i) ^ (ii): Suppose that (i) holds. Let A G S. Then A = EXE2 "En, where 
n > 1 and {Et : 1 <i<n} are (not necessarily distinct) elements of (B. If n = 1, clearly 
r{A) = 0 or 1. Suppose that « > 1. Notice that, with W the operator defined by 

W = (EXE2 • • • En)(EnE{E2 • • • En^)(En^EnExE2 • • • £„_2) • • • (E2E3E4 • • • EnEx\ 

we have ^ = (E\E2 • • • En)
n~xE\, so 

r W = r(£i(£i£2 • • - ^ r " 1 ) = r{{ExE2 • • • En)
n~x) = r ( £ ^ 2 • • -JS^y—1. 

On the other hand 

r(W) 

< r(ExE2 • • • En)r{EnExE2 • • • En-X)r(En-XEnExE2 • • • En-2) • • • r(E2E3E4 • • • £„£*!) 

Hence r{A)n~x < r(Af. Thus, if r(A) ^ 0, then r(A) > 1. But r(^) < 1, so r(,4) = 0 or 
l,and(ii) holds. 

(ii) =» (iv): Suppose that (ii) holds. Let A,B, C G S. lfr(ABQ = 1, then r(BAQ = 1, 
by Theorem 3.3. On the other hand, if r(ABQ = 0 then r(BAC) = 0 (since r(BAQ ^ 1, 
by Theorem 3.3). Thus r(ABQ = r(&4Q and (iv) holds. 

(iv) => (i). This follows from Theorem 9 of [4]. 
Clearly (iii) =4> (ii). We complete the proof by showing that (ii) => (iii). Suppose that 

(ii) holds. Since (ii) => (i) and 5 is a *-semigroup, r(A) = \\A\\, for every A G 5. Thus 
(iii) holds. • 

The following corollaries concern semigroups generated by two or three projections. 
In them, necessary and sufficient conditions are given on the generating set in order that 
r be submultiplicative on the generated semigroup. The first of these, in conjunction with 
Corollary 3.3.2, easily leads to a more geometric characterization. 

COROLLARY 3.4.1. Spectral radius is submultiplicative on the semigroup S gener­
ated by two projections E and F if and only ifEF = 0 or r(EF) = 1. 

PROOF. The necessity of the condition follows immediately from Theorem 3.4. On 
the other hand, if EF = 0, then 5 = {0,E,F} and r is clearly submultiplicative on S. 
Finally, if r(EF) = 1, then r = 1 on S by our first remark following Theorem 3.3. • 

COROLLARY 3.4.2. Spectral radius is submultiplicative on the semigroup S gener­
ated by three projections E\, E2 and E3 if and only if 

(i) EF = 0 or r{EF) — 1, for every choice ofE, F G {E\ ,E2,E3}, and 
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(ii) r{E\E2E^) = 1 or E^E^E^) = 0, for every permutation ir of\, 2, 3. 

PROOF. The necessity of the conditions follows immediately from Theorem 3.4 and 
the fact that E^E^E^) has the same spectral radius as E\E2E^ for every permutation 
7T of 1, 2, 3 (see our third remark following Theorem 3.3). 

Conversely, assume that (i) and (ii) hold. By our first remark following Theorem 3.3, 
if r(E\E2ET,) = 1, then r = 1 on 5. Otherwise, by (ii), the product of E\, E2 and £3 in 
any order is zero. In this case, let W G S. Since (i) holds, it follows from Corollary 3.4.1 
and Theorem 3.4 that if W is a word in only one or two of {E\,E2,£3} then W = 0 or 
r(W) = 1. Suppose that W contains each of E\ E2, £3 as a factor. Then W contains a 
factor of the form E^E^DE^), for some permutation ir of 1,2,3. (Otherwise W would 
have one of the forms (PQ)\ {PQfP with P and Q distinct elements of {EUE2,E3}). 
Thus W — 0. By Theorem 3.4, r is submultiplicative on 5. • 

Next, we consider briefly the reducibility of semigroups, on which r is submultiplica-
tive, which are generated by positive contractions (more particularly, by projections). 

PROPOSITION 3.5. Let H be a finite-dimensional Hilbert space of dimension n > 2. 
Let S be the semigroup generated by a family C of positive contractions on H. If r is 
submultiplicative on S, then S is reducible. 

PROOF. Let r be submultiplicative on S. We can suppose that ||C|| = 1, for every 
C G C. Assume that S is irreducible. By Theorem 2.1, r is multiplicative on 5, so r = 1 
on 5. By Burnside's Theorem, S contains a basis S\,S2, ...,Sn2 of #(//). For every /, 
Sj is a product of elements of C9 and since r(S\S2 • • • Sni) — 1, by Corollary 3.3.1 it 
follows that S\,S2,... ,Sn2 have a common non-zero fixed point. Let 1 G / / b e a non­
zero vector satisfying SjX — x, for / = 1,2,... ,«2. Since every element of #(//) is a 
linear combination of Si, S2,..., Sn2, x is an eigenvector of every element of #(//). This 
is a contradiction. • 

REMARK. Let S be as in the statement of the preceding proposition, and suppose that 
r is submultiplicative on S. Since 5 is a *-semigroup, M 1 is invariant under S whenever 
the subspaceMis. 

The preceding proposition shows that, if 2 < dim// < 00, then 5 has at least one pair 
of non-trivial orthogonally complemented invariant subspaces. In fact, there may be only 
one such pair. For example, the semigroup of operators on H\ 0 H2 generated by the set 
of positive contractions {1 ® C : C G ^(Hi) a positive contraction}, where dim//i = 1 
and dim H2 > 1, has only one orthogonally complemented pair of non-trivial invariant 
subspaces. 

On the other hand, if H is infinite-dimensional, 5 can be irreducible. For example, 
consider the semigroup generated by the family of projections T = {1 — Q : Q G QJ 
where Q, is a family of finite-rank projections on//with no common non-trivial invariant 
subspace. Since H is infinite-dimensional, the intersection of the ranges of the elements 
of every finite subset of P̂ is non-zero, so r = 1 on S. However, S is irreducible. Here 
the generating set of projections has infinite cardinality. In the following example the 
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generating set has cardinality 3. This cardinality is minimal as every pair of projections 
on an infinite-dimensional Hilbert space has a non-trivial common invariant subspace [2]. 

EXAMPLE. Let H = f(Z+) and let A = diag(a\,a2,ai,...) where the sequence 
e = {ai) G Z2 and at ^ ay- whenever / ^ j , and at > 0, for every i > 1. On H 0 H put 
K = H® (0), L = G(A% M = G{A) + ((0) 0 (e))9 where G(A) denotes the graph of A. 
Let P, Q and R denote the projections with ranges K, L and M, respectively. 

NowZ CMsoQR = RQ=Q. ThusPQR = PQ so r(PQR) = r(PQ). But r(PQ) = 1 
by Corollary 3.3.2, so by our first remark following Theorem3.3,r = 1 on the semigroup 
S generated by P, Q and R. Now P, Q and R have no common non-trivial invariant 
subspace. For, every projection commuting with each of P, Q, R has the form E 0 F 
where E and F are projections on H satisfying FA = AE and Fe = 0 or e. Now EA — AF 
gives FA2 = AEA = A2F, so F is diagonal. IfFe — 0, then F = 0 and £ = 0. \iFe — e, 
then F — 1 and £ = 1. Thus S is irreducible. 

PROPOSITION 3.6. Let S be a semigroup generated by projections on which r is sub-
multiplicative. If S \ {0} is not a semigroup then S is reducible. 

PROOF. Suppose that S \ {0} is not a semigroup. Then, there exist elements S, T G 
S \ {0} such that ST = 0. Let J/ be the ideal S generated by S. Let J G J. Since J contains 
S as a factor and, by Theorem 3.4, r is permutable on 5, r(JT) = 0. By Theorem 3.4, 
j r = 0. Thus ^ ( r ) , and so ^ ( 7 ) , is invariant under J. Since ^ ( 7 ) is non-trivial, J is 
reducible. By Lemma 2, 5 is also reducible. • 

PROPOSITION 3.7. Let S be a semigroup of compact operators on a Hilbert space H 
such thatr(K) — \\K\\for every K G 5. Then there exists a non-zero, finite-dimensional 
subspace M of H, with both M and ML invariant under S, such that S\M consists of 
multiples of unitary operators. 

PROOF. We can assume that S = CJ> = S ^ {0}. By Lemma 3, S contains non­
zero idempotent operators of finite rank. Note that all such idempotents are orthogonal 
projections since r{K) = \\K\\, for every K G S. Let P be a projection in S of minimal 
positive rank. Let S be any element of S. Relative to the decomposition H = ^(P) 0 
^ ( 1 -P) we have 

p=[o o j ' ^ = U T)' 
Observe thatX = PSP\^P^ is a multiple of a unitary operator; otherwise, by Lemma 3 
(applied to PSP/ \\PSP\\), we would obtain a projection in S with positive rank strictly 
less than the rank of P. 

We show that Z = 0, as follows. By hypothesis, r(SP) = \\SP\\ and r(PSP) = \\PSP\\. 
But SP and PSP have the same spectral radius. This implies that 

\[Xz o)'(z S)| = ™ 
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or ||Jf*X+Z*Z|| = ||A*Z||. Since X is a multiple of a unitary operator, X*X — p, for some 
p > 0. Then \\p + Z*Z|| = p implies that Z*Z = 0, so Z = 0. 

Similarly, considering PS instead of SP, we find that Y = 0. • 
Above, we have exhibited three classes of operator semigroups (those consisting of 

normal, respectively compact, operators together with those generated by projections) 
each having the property that the submultiplicativity of r on any member implies its 
permutability. Other classes with this property can be obtained by taking tensor products. 
In the following we use the facts that r\A®B) = r(A)r(B) and (A®B)(C®D) = AC&BD, 
whenever^, C £ <B(H{) and B,D <E <B(H2) for Hilbert spaces Hx andH2. 

PROPOSITION 3.8. Let C and (D be classes of semigroups of operators, on Hilbert 
spaces H andK, respectively, each with the property that the submultiplicativity ofr on 
any one of its members implies its permutability. Then the class of semigroups of the form 
S ® T, with S £ C, ^T £ *D also has this property. 

PROOF. Let S G C, 'T G (D and suppose that r is submultiplicative on S 0 *T. We 
can suppose that r is not identically zero on S 0 T, so r(A) ^ 0 and r(B) ^ 0 for some 
elements A G S, B e T. Let X, Y e S. Then r((X® B)(Y (8) B)) < r(X® B)r(Y 0 B) 
gives r(XY) < r(X)r(Y). Hence r is permutable on S- Similarly, r is permutable on T. It 
follows, almost immediately, that r is permutable on S ® {T. • 
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