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ON PERMUTABILITY AND SUBMULTIPLICATIVITY
OF SPECTRAL RADIUS

W. E. LONGSTAFF AND H. RADJAVI

ABSTRACT.  Let /(T) denote the spectral radius of the operator T acting on a complex
Hilbert space H. Let § be a multiplicative semigroup of operators on H. We say that
r is permutable on S if HABC) = n(BAC), for every 4,B,C € S. We say that r is
submultiplicative on S if (AB) < HA)r(B), for every 4, B € S. It is known that, if 7 is
permutable on S, then it is submultiplicative. We show that the converse holds in each
of the following cases: (i) .S consists of compact operators (i) § consists of normal
operators (iii) S is generated by orthogonal projections.

1. Introductions and preliminaries. Let #(7) denote the spectral radius of the op-
erator T acting on a complex Hilbert space H. Let S be a multiplicative semigroup of op-
erators on H. We say that r is multiplicative on S if {(AB) = r(A)r(B), forevery 4,B € S.
We say that r is submultiplicative on S if r(AB) < r(A)r(B), forevery 4, B € S.In [4], the
effects of certain spectral conditions, including the submultiplicativity of r, on reducibil-
ity were the central consideration. Here we consider the question of whether or not » must
be permutable on S if it is known to be submultiplicative. By permutability of r on S is
meant the condition: #(4BC) = r(BAC) for every 4, B, C € S. (This condition is equiva-
lent to the requirement that the spectral radius of any word of finite length, in letters from
S, be independent of the order of the letters. This can be verified by induction and using
the fact that r(4B) = r(BA) for all 4 and B.) For any semigroup of operators, Theorem 9
of [4] shows that the permutability of » implies its submultiplicativity. Whether or not
the reverse implication must always hold has still not been settled. However, we show
that it does hold in each of the following cases: (i) § consists of compact operators (ii) §
consists of normal operators (iii) S is generated by orthogonal projections.

In what follows the underlying field of scalars is C, all operators are linear and bounded
and all subspaces are closed. We shall frequently identify operators with their matrices
(relative to a tacit fixed basis or orthogonal decomposition of the underlying space) when
no confusion is likely to arise. For any Hilbert space H, the inner product on H will be
denoted (-|), and ‘B(H) (respectively, K(H)) will denote the algebra of all operators (re-
spectively, compact operators) on H. Continuity of » on K (H) (see [1]) will be frequently
used to replace a semigroup S C X (H), on which r is submultiplicative, with its norm
closure S, with no loss of generality. For any operator T € B(H), o(T) denotes its spec-
trum and o,,(7) is approximate point spectrum. Also K (T) denotes the range of T and
tr T denotes the trace of T if T is of trace class.

Received by the editors February 23, 1994; revised June 9, 1994.
AMS subject classification: 47A15, 47D03, 47A10, 20M20, 15A30.
(© Canadian Mathematical Society 1995.

1007

https://doi.org/10.4153/CJM-1995-053-x Published online by Cambridge University Press


file:///ir/AE
https://doi.org/10.4153/CJM-1995-053-x

1008 W. E. LONGSTAFF AND H. RADJAVI

The following lemmas, whose proofs are contained in [6], will be used more than
once. A subset 7 of a semigroup S is called an ideal of S if JS and SJ belong to 7, for
everyJ € Jand S € S. A semigroup S C ‘B(H) is reducible if it has a non-trivial
invariant subspace; otherwise it is irreducible.

LEMMA 1. IfS is a semigroup of compact operators on a Hilbert space H and there
is a non-zero continuous linear functional on K (H) which is constant on S, then S is
reducible.

LEMMA 2. Every non-zero ideal of an irreducible semigroup of operators on a
Hilbert space is irreducible.

LEMMA 3. Let K be a compact operator on a Hilbert space H with r(K) = 1. Let m
be the (finite) rank of the Riesz projection P of K corresponding to the non-empty set

{z€aK): |z = 1},
and let C be the norm closure of
{cK":ceC,nel'}.

Then
(i) IfK is not similar to a contraction, then C contains a non-zero nilpotent operator
of rank less than m.
(ii) If K is similar to a contraction, then P € C and the restrictions of K to R (P) and
R (1 — P) are similar, respectively, to a unitary operator and to a strict contrac-
tion.

We will also need the following lemma taken from [5].

LEMMA 4. A semigroup of quasinilpotent trace class operators on a Hilbert space
of dimension greater than one is reducible.

2. Semigroups of compact operators. We begin by considering semigroups, con-
sisting of compact operators, on which 7 is submultiplicative. Our main result in this
context (Theorem 2.6) is that r is permutable on such semigroups. For irreducible semi-
groups of this type an even stronger result holds.

THEOREM 2.1.  Let S be an irreducible semigroup of compact operators on a Hilbert
space H. If v is submultiplicative on S, then r is multiplicative, so permutable, on S.

PROOF. Assume that r is submultiplicative on .§. We can assume that dimH > 2
and § = S (by the continuity of » on X(H)). We can also assume that § is closed
under scalar multiplication, that is, § = CS. It is enough to show that, if 4,B € § and
rA) = r(B) =1, then r(4B) = 1.

First, suppose that 4> = 4 and B> = B. Then #(4B) # 0. For, suppose that r(4B) = 0.
Since S contains no non-zero finite-rank nilpotent elements by Lemmas 2 and 4, 4B = 0.
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The semigroup BSA then consists of finite rank nilpotent operators so BSA = (0). Let
x,y € H satisfy Ax # 0, B*y # 0. The linear functional /: X(H) — C defined by
S(K) = (KA4x|B*y) is continuous and non-zero and | g = 0. By Lemma 1, this contradicts
the irreducibility of S. Hence we must have r(4B) # 0. Then

r(AB) = r(4*B*) = r(BA - AB) < H(BA)r(AB) = r(AB)*,

so r(AB) > 1. Since r(AB) < r(Ayr(B) = 1, H(4B) = 1.

In general, if r(4) = r(B) = 1, since S contains no non-zero finite-rank nilpotent
elements, there exists by Lemma 3 a sequence (g;) of scalars and an increasing sequence
(n;) of positive integers such that (a;4" ) converges to a non-zero idempotent P € §. Since
r(ajA") = |a;| — r(P) = 1, we may suppose that ; — a with |a| = 1. Then4"% — P/a.
Similarly, B" — Q/b for some increasing sequence (m;) of positive integers where Q is
a non-zero idempotent element of § and |6| = 1. Then

HAYB™) = r(AB - B~ ' 4"~ < HAB)r(A" " Yr(B™ ") = r(4B).

Taking limits gives #(PQ) < r(4B). By the first part of the proof n(PQ) = 1. Hence
r(AB) > 1sor(4B) = 1. =

Before proving the main result of this section, we need some results concerning the
transmission of certain properties of spectral radius from non-zero ideals to the overlying
semigroup.

PROPOSITION 2.2.  Let A be an n X n matrix such that, for some L > 0, | tr(4*)| < L,
foreveryk > 1. Thenr(4) < 1.

PROOF. We use the fact that, for every finite set p1, o, . . ., uy of complex numbers
of modulus one, there exists an increasing sequence (m;) of positive integers such that
p* — 1ask— oo, foreveryi=1,2,...,N.

Let A1, Az, .., A, be the eigenvalues of 4, counted according to multiplicity, and sup-
posethat p = r(4) > 1.Let |\ || = |\2| = --- = |N| = pand |\i| < pfori =j+1,...,n
Then, for every k > 1,

|y = [N < L.

EC <5156 =5 25

i=j+1
It follows that Z{Z,(%})" — 0Oas k — oo. However, fori = 1,2,...,j wehave |\; /p| = 1
so there exists an increasing sequence (m;) of positive integers such that (\;/p)™ — 1.
So 3_,(Ai/p)™ — j. This contradiction shows that r(4) < 1. .

SO

i=j+l1

COROLLARY 2.2.1. Letn > 2, let S be an irreducible semigroup of n X n matrices
and let J be a non-zero ideal of S. If r(J) < 1, for everyJ € J, then r(S) < 1, for every
Ses.

PROOF. Suppose that r(J) < 1, for every J € J. By Lemma 2, 7 is irreducible; so
then is its linear span. The latter is an algebra, so by Burnside’s Theorem, 7 contains a
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basis {J; : 1 < i < n?} of B(C"). In particular, there exist scalars a;, i = 1,2,...,n
such that Y7 opJ; = 1. Let A € S. Then 4 = Y7, adJiso tr 4 = Y, o tr(4J;). But,
for every i, | tr(4J;)| < nr(4J;) < nso|trd| < n(Z;’il |i]). Thus, for every S € S and
every k > 1 we have | tr(S¥)| < n(Z);’i1 |a;]). By the preceding proposition, r(S) < 1, for
every S € S. .

COROLLARY 2.2.2. Letn > 2, let S be an irreducible semigroup of n X n matrices
and let J be a non-zero ideal of §. If r(J) = 1, for every J € J, then r(S) = 1, for every
Ses.

PROOF. Suppose that+(J) = 1, foreveryJ € J.LetS € S and supposethat 7(S) # 1.
By the preceding corollary, #(S) < 1. By first performing a similarity transformation on
S, if necessary, we can assume that ||S|| < 1. (By replacing the off-diagonal 1’s in the
Jordan canonical form of S by sufficiently small positive € we obtain a matrix, similar to
S, but with norm strictly less than one.) LetJ € J. Then ||S"|| < 1/||J|, for n sufficiently
large. Then ||S"J|| < 1 so #(S"J) < 1. This is a contradiction because S*J € J. =

It is clear that the requirement of irreducibility cannot be dropped in the statements

of the corollaries above. Consider, for example, the semigroup { ((l) a 10 ) rac C}
n—1

and its ideal { ( (1) g) } . This example also shows that the requirement of irreducibility
cannot be dropped in the statement of Theorem 2.1.

PROPOSITION 2.3. Let S a semigroup of operators acting on a (possibly infinite-
dimensional) Hilbert space and let J be an ideal of S. If r is multiplicative on J then
r(JS) < r(NHr(S), for every J € J and every S € S.

PROOF. We may suppose that § = CSand J=CJ.LetS € SandJ € 7.

If r(J) = 1, then r(JSJ) = r(JS)r(J) = r(JS). By induction, r(JS*J) = r(JS), for
every k > 1. Thus r(US) = r(JSr()) = rUs*) < |lUSH| < VI IISH, so rUS) <
II711"/*||S¥||' /%, for every k > 1. Hence r(JS) < r(S).

If r(J) # 0, then, by what has just been proved, r((.] / r(J))S) < K(S), so r(JS) <

rHJr(S).
If r(J) = 0, then r(JS)? = rJS)r(SJT) = r(JS2)) = r(J)r(S%J) = 0, so #(JS) = 0 and
again r(JS) < r(J)r(S). n

THEOREM 2.4. Let S be an irreducible semigroup of n X n matrices and let J be a
non-zero ideal of S. If r is submultiplicative on J, then it is submultiplicative on S.

PROOE. Letrbe submultiplicative on J. We can suppose thatn > 2 and that § = C§,
J = CJ. By Lemma 2, 7 is irreducible. By the same lemma and Lemma 4, J contains
no non-zero nilpotent elements. By Theorem 2.1,  is multiplicative on 7 so, by Proposi-
tion 2.3, r(JS) < H(J)r(S), for every J € J and every S € S. By Burnside’s Theorem, the
linear span of 7 is B(C") so there exist scalars ; and elements J; € 7, with r(J;) = 1,
i=1,2,...,n% such that Zf‘il ad; = 1.
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Let S, T € S with (S) = n(T) = 1. LetJ € J with v(J) = 1. Then
((STW) = r()yr((STW) = r(J(STW) = rJS)rJT).
By induction, for every k > 1, r((ST)J) = r(US)r(JT)* (note that r((ST)*'J) =
Hr((STYT) = r(J(STH) = r(JSD)r((STIS) = r((STW)r((ST)'J)). Since
ST = 3 ai(sT;
i=1

we have, for every k > 1,
n2 nz
| te(STY | <3 |ei| | (S| < nzl |oi|r((ST)J;)
i=1 j=
n2 nz
=nY | [rUIS U < n 3 ol (I S Y (T
i=1 i=1

n2
=n)y_ |al.
=1

By Proposition 2.2, r(ST) < 1.

Now S, like 7, contains no non-zero nilpotent elements. For if 4 € § and r(4) = 0
then, with {J; : 1 < i < n?} as above, r(J;4) < rJ;)r(A4) = 0s0 J;d = 0, for every i.
Thus A = 37, auJid = 0.

Finally, let B, C € S. If n(B) = 0 or #(C) = 0 certainly #(BC) < r(B)r(C). Otherwise

r((B /r(B))(C/r(C))) < 1 50 HBC) < r(BWC). .
The semigroup ( (1) g : 4 € B(C" ")} of n x n matrices, where n > 3, shows that

the requirement of irreducibility cannot be dropped from the statement of the preced-
ing theorem. Less trivially, the following example shows that the requirement of finite-
dimensionality cannot be dropped. (However, see Theorem 2.5.)

EXAMPLE. There exists an irreducible semigroup .S of operators on infinite-dimen-
sional Hilbert space such that r is multiplicative on a non-zero ideal J of § yet is not
submultiplicative on S.

LetdimH = 2 and let H = H®™. Let S = {4 : 4 € B(H)} C B(H) be the set
of all inflations of operators in B(H). For every n > 1 define the subset J, of B(H ) by:

5= {(fA _AA)(OO) tA € $(H)}

n={(Z 5) memne)

(% 4) )
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Put J = U2, .. Then, for every J € J,J? = 0sor(J) = 0. Also, S = JU S is a
semigroup and 7 is an ideal of S. Although r = 0 on 7, r is not submultiplicative on .

For, let 4 and B be the elements of ‘B(H) defined by 4 = ( 8 (1)), B = ( (1) g) Then

A B ¢ § with H(A®) = H(B)) = rd) = r(B) = 0. However, r(4A®B)) =
rdB) = 1.

The semigroup .S described above is a slight modification of an example given in [3],
which contains a proof of its irreducibility. (In fact the linear span of S is dense in B(H)
in the strong operator topology.)

The following result extends Theorem 2.4 to semigroups of compact operators.

THEOREM 2.5. Let S be an irreducible semigroup of compact operators on an
infinite-dimensional Hilbert space H and let J be a non-zero ideal of S. If r is submulti-
plicative on J, then it is submultiplicative on S.

PROOF. Let 7 be submultiplicative on . We can suppose that § = CS = § and that
r is not identically zero on S. Then r(4) = 1, for some 4 € S. By Lemma 3, S contains
a non-zero finite rank operator, F'say. By Lemma 2, 7 is irreducible so JF # 0, for some
J € J. Thus J contains a non-zero finite rank operator. Let

m = min{rankJ : J € 7\ {0} and J has finite rank }.

Then m > 1 and the set %, of elements of J of rank m or 0 is a non-zero ideal of S. By
Lemma 2, % is irreducible. Since r is submultiplicative on %, the set of nilpotent ele-
ments of J, forms an ideal of J. This ideal must be zero by Lemmas 2 and 4. Thus %, con-
tains no non-zero nilpotent elements. It follows that § contains no non-zero quasinilpo-
tent elements. For, suppose that the element B € S is quasinilpotent and non-zero. By
Theorem 2.1 and Proposition 2.3, n(JoB) < r(Jo)r(B), for every Jy € %, so r(JoB) = 0
and JoB = 0. Then BJyB = 0, for every Jo € J. If x,y € H satisfy Bx # 0, B*y # 0,
then the linear functional /: K (H) — C defined by f(K) = (KBx|B*y) is continuous and
non-zero and f]4, = 0. By Lemma 1, % is reducible and this is a contradiction. Thus §
contains no non-zero quasinilpotent elements, and to prove that r is submultiplicative on
S it is therefore enough to show that, if S, T’ € S satisfy r(S) = #(T) = 1, then r(ST) < 1.

We can assume that #(ST) # 0. Let P be the non-zero finite rank Riesz projection of
ST corresponding to the non-empty set {z € o(ST) : |z| = #(ST)}. By Lemma 3, since S
contains no non-zero nilpotent elements, P € S. Of course P(ST) = (ST)P.

Now PSP|g p) is a semigroup on R (P) having PJoP)| g (p as an ideal. Also, PSP|g p,
is irreducible. For, suppose it were reducible. Then, there exist non-zero functional vec-
tors u,v € R (P) such that (PXPu|v) = 0, for every X € S. The linear functional
g: K(H) — C defined by g(K) = (KPu|P*v) is continuous and non-zero and g| ¢ = 0. By
Lemma 1 this contradicts the irreducibility of S. Thus PSP| (p, is irreducible. A similar
argument gives that P %P| ® (p) 18 non-zero, since J is irreducible. Since PJpP C J and
r is submultiplicative on 7, r is submultiplicative on P % P| R (p)- Hence, by Theorem 2.4,
r is submultiplicative on PSP|¢ p) and so is submultiplicative on PSP.
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By Lemma 2, PJoP|g p) is irreducible, so by Burnside’s Theorem there exist scalars
«a; and operators J; € %, with r(PJ;P) = 1,i = 1,2,...N? (where N = dim R (P)) such
that

N2
P= Za,—PJ,-P.

i=1

Then, for every k > 1, we have

P(STY'P = (ST}P = QIL a(ST)PJ;P

i=1

SO
[tr(P(ST)P)"| = |tr P(STY'P| < %} | | tr(STYPJ,P| < NNZ || r((ST)*PJP).
i=1 i=1

Now r(XJo) < r(X)r(Jy), for every X € Sand Jy € J so

r((STYVPIP) = r(ST(ST) "' PJiP) < H(S)r(T(ST)*"' PJiP)
= r(T(ST)*'PJ:P) < H(T)r((ST)*~'PJiP)
=r(SD}'PIP) - < HPIP) =1,

and hence r((S T)"PJ,-P) <1, for every k > 1. Thus
k N
|r(P(ST)P)’| < N; ],

for every £ > 1 and so, by Proposition 2.2, r(P(S T)P) =rST) < 1. =

We can now prove the main result of this section. Recall that a chain A of subspaces
of a Hilbert space is called complete if \r Ny € N and VN, € AL, for every family
{N;}r of elements of A[. Also, if A is a complete chainand N € A, the element N_ of
N is definedby N. = V{M € N : M < N} (where, by convention \/ ) = (0) so that

(0)— = (0)). A complete chain A is called continuous if N__ = N, for every N € N[.

THEOREM 2.6. Let S be a semigroup of compact operators acting on a Hilbert space
H. If r is submultiplicative on S, then r is permutable on S.

PROOF. Let r be submultiplicative on §. We can suppose that r is not identically
zero on S. The set of all invariant chains of § is non-empty (it contains {(0), H}) and
has a maximal element, A\ say, by Zorn’s Lemma. By maximality, (0), # € A and A is
complete. Since every compact operator leaving a continuous complete chain, containing
(0) and H, invariant is quasinilpotent [7], Al is not continuous. Thus the set of mutually
orthogonal projections

P = {PN@PN_ :Ne NaPN#PN,}
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is non-empty. By compactness, for every S € S there is a member P of P such that
r(S) = r(PSP). Note that, for each P € P, PSP|g p, is irreducible. (It can be zero only
if P has rank 1.)

Consider the mapping ¢: .5 — B(Hy) defined by

@(S) = P Sp,

Pe?P

where Hy = @pcp R (P) and where Sp = PSP p). Since for every N € Aland S € §
we have

(Pnv — Pn.)S(Py — Py_) = (Pn — Pn_)SPy,

it is easily verified that ¢ is multiplicative. By the construction of P, ¢ preserves spectral
radii, so we can assume with no loss of generality that S = ¢(5).

It is convenient to reduce the size of P. Let us call a subset A4 of P admissible if it is
non-empty and

(@) =(9)
PP pPeA

forall § € S. Choose a maximal chain C of admissible subsets (ordered by set inclusion)
and let P, be the intersection of all members of C. To see that P, is admissible let S be
any member of § with 7(S) # 0. By compactness, the set {P € P : r(Sp) = r(S)} is
finite. Since every member of C has a non-empty intersection with this set, so does F,.
Thus %, is a minimal admissible subset of P. The admissibility of %, allows us now to
assume that P = B, with no loss of generality. We also assume § = § = CS as usual.

The new minimality property of P implies that for every P € ‘P there exists an element
S € S such that #(Sp) = r(S) = 1 and

sup r(Sp) < 1.
O#P
Qe?P

By Lemma 3, there is a sequence {n;} of positive integers and a sequence of complex
numbers {c;} with {|¢;|} converging such that

K = lim¢;Sy

is non-zero and finite rank. Then it is easily verified that F' = lim¢;S% € §, Fp = K, and
Fo = 0 for all Q € P other than P.

Let P € P, let F and Fp be the operators just described and let 7 be the ideal of §
generated by F. Then Jp = {Jp : J € J} is a non-zero ideal of the corresponding irre-
ducible block Sp of S. The submultiplicativity of » on J and thus on Jp implies that it
is submultiplicative on Sp by Theorems 2.4 and 2.5 and multiplicative on Sp by Theo-
rem 2.1.
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To complete the proof, let 4, B, C be any members of S. Then
r(4BC) = r;lea%( r{(ABC)p] = pgr}( r[ApBpCp]
= max[r(4p)r(Bp)r(Cp)]
Pe?P
= max r{BpApCp] = max r[(BAC)p]
Pe?P Pe®P
= H(BAC). .

3. Semigroups satisfying r(4) = ||4]|. If S is a semigroup of operators on a Hilbert
space and r(4) = ||4||, for every A € S, then r is, of course, submultiplicative on S. The
class of such semigroups contains those semigroups which consist of normal operators.
It also contains those *-semigroups on which 7 is submultiplicative. Indeed, let .S be a
x-semigroup, that is, § = $*, and suppose that r is submultiplicative on S. For every
A € S we have

l4]|* = H4*4) < rAdIr(4) = 4y’ < |l 4]%,
sor(A) = ||4||. Although it is not known whether or not 7, equivalently || ||, is permutable
on every member of this class of semigroups, we show below that it is permutable on
all normal semigroups (Theorem 3.2) and on certain *-semigroups in this class, namely,
those generated by (orthogonal) projections (Theorem 3.4).
We begin by considering irreducible semigroups of normal operators.

THEOREM 3.1. If S is an irreducible semigroup of normal operators, then every
element of S is a scalar multiple of a unitary operator. Consequently ||-|| is multiplicative,
so permutable, on S.

PROOF. We use the fact that, if a normal operator 4 with ||4|] < 1 has no unitary
direct summand, then 4” — 0 in the strong operator topology.

Let § be a semigroup of normal operators on a Hilbert space H with a member 4 that
is not a scalar multiple of a unitary operator. We show that, for some non-trivial subspace
M of H, both M and M* are invariant under S, contrary to the irreducibility hypothesis.

We can assume that § = CS and that min{|\| : A € 0(4)} < 1 < r(4). Let E be the
spectral measure of 4 andput Hy = E({z € C: |z| > 1})and H, = E({z € C : |z| < 1}).

Then H = H;® H, and H, # (0), H. With respect to this decomposition 4 = (/z)l 1;)
2

with 4, a normal operator on H, satisfying ||42|| < 1. Also, 4, has no unitary direct

summand. Let B € S. Then B = and, for every n > 1, since A"B is normal,

ZT
we have (comparing entries in the (2,2) position)
YZZF + TTNHAY — T A" AT = YAV ALY
Now 45 — 0 and 43" — 0 strongly, so Y*4}"4}Y — 0 strongly. Thus, for every x € H,,
|43 ¥x|| — 0. Now 47! is a contraction, so
1]l < ll47 " 17|47 Yxl| < [l Y]

and hence Yx = 0. Thus ¥ = 0 and H, is invariant under §. A similar argument, consid-
ering BA", shows that Z = 0. Thus H) is also invariant under S. ]
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THEOREM 3.1.  Operator norm is permutable on every semigroup of normal opera-
tors.

PROOF. Let S be a semigroup of normal operators on a Hilbert space H. We may
suppose that § = CS. The proof of the preceding theorem shows that, if § € S and P
is the spectral projection of S corresponding to the set {z € C : |z| < ¢}, forany ¢ > 0,
then both X (P) and R (1 — P) are invariant under S. (In the preceding proof, to make
P non-trivial, ¢ was chosen such that both {z € C : |z| < ¢} and its complement gave
non-zero spectral projections.)

To prove that ||[ABC|| = ||BAC||, for every 4,B,C € S, it suffices to show that
IABC|| < ||BAC)|, for every 4,B,C € S. Assume, with no loss of generality, that
4] < 1, ||B|| < 1 and ||C|| < 1. Let & > 0 be arbitrary. Choose n > 1 and let

o ={zec Aoy <L j=12.0m
n n

By the remark in the paragraph above, the spectral projections of 4 corresponding to each
Q; give rise to an (orthogonal) direct-sum decomposition H, relative to which every ele-
ment of S directly decomposes. A similar comment holds for the corresponding spectral
projections of B and of C. Since this set of 3n projections is pairwise commutative,
decomposes as H = @}il H;, where some H; may be zero, such that each H; is invariant
under § and where, for each i, the spectra of the restrictions of 4, B, C, to H; are con-
tained in “thin annuli”. More precisely, there exist real numbers a;, b;, ¢;, i = 1,2,..., n
belonging to [0, 1] such that

>

n n

VIJ
A= @A,’, B = @B,‘, and C= @C,‘,

i=1 i=1 i=1

1
a(4;) C {ZGG:aiSM <ai+;}’
I
a(B;) C {zGC:b,-§|z|<b[+;}’
1
oG Clzetia<ld<a+-],
n
fori = 1,2,...,n*. By normality, this implies that, for each i,

1 1 1
abic; < ”A,B,C,” < ((l,’ + ;) (b, + ;) (Ci + ;)
Note that these inequalities hold for any permutation of 4;, B;, and C;; in particular they
hold for B;A;C;. Thus
1 1 1
- B.C.ll < o 4 4
|4ABC]| max |4:B:Ci|| < m:ax(a, n) (b, n) (c, + n)

1 3 3
< maxa;bic; + (—5 =+ —)
i n o nt on

7
< max “B,A,C,” + ;
i

< ||BAC]| + Te.
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Since £ > 0 was arbitrary, ||[ABC|| < ||BAC||. ]

Next, we consider semigroups generated by positive contractions, and more particu-
larly, those generated by (orthogonal) projections. In the proof that follows we use the
simple fact that if (v,,) and (z,,) are sequences of vectors in a Hilbert space satisfying
mll < 1, ||lzal| < 1, for every m > 1, and (y|zm) — 1, then ||y, — z4|| — 0 and
Iymll = 1, l|zml| — 1.

THEOREM3.3. LetCy,Cy, ..., C, be positive contractions on a Hilbert space H. The

Jfollowing are equivalent.
(i) n(C\Cy---Cy) =1,
(ii) there exists a sequence (x,,) of unit vectors such that (1 — Cj)x,, — 0, for every
j=12,...,n,

(iii) H(Cr(1)Cr2) - - - Cr(n)) = 1, for every permutation @ of 1,2, ..., n.

PROOF. (i) = (ii): Suppose that (i) holds. Choose o € a(C,C; - - - C,) with | = 1.
Since « is in the boundary of the spectrum, it belongs to 0,,(C,C; - - - ). Hence there

exists a sequence (x,) of unit vectors such that C;C; - - - Cyx,y — ax,, — 0. We use
induction on n to show that « = 1 and that (x,,) satisfies the requirement in (ii). We have

(Cy -+ Cuxm|aCixp) = &(C1Cy - - - CuXm|Xm) — G = 1.

It follows that ||Cix,|| — 1 and C; - -+ Cyxy — @Cix,, — 0. This implies, firstly, that
(C3%myXm) — 1 and s0 C2x,, — X, — 0, giving

(1= Cixtm = (1+C) 7' (1 = Chxw — 0;
secondly, that
Cy o Cixy — axyy = Cy -+ Copxpy — aCrxpy — (1 — Cy)x,y — 0,

and we are done by induction.
(ii) = (iii): Suppose that (ii) holds. Let D; = C,(;y,j = 1,...,n. Then Djx,, — X, — 0
for all j. Using induction again, assume D; - - - D,x,, — x,, — 0. Then

DDy - Dyxpy — X = D{(D2 - DyXpy — Xm) + D1 Xpy — Xy — 0.

Thus 1 € o(D; - - - Dy) and, since || D; - - - D,|| < 1, (iii) follows.
That (iii) implies (ii) is obvious. n

REMARKS. 1. The preceding theorem shows that if C is a finite family of positive
contractions (more particularly, projections) and some product of all the elements of C
(in any order) has spectral radius equal to one, then » = 1 on the semigroup generated
by C.

2. If Cy,Cy,...,C, are positive contractions and Fi, F, . .., F, are projections satis-
fying R(C;)) C R(F),j = 12,...,n, then r(C;C;---C,) = 1 implies that
HF\F,---F,) = 1. For, with (x,,) as in the statement of the preceding theorem,
(1 — C)xm — 0 gives (1 — Fj)(1 — Cj)xp = (1 — Fj)x,, — 0, foreveryj = 1,2,...,n.
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3. Notice that, if C, C; and C; are self-adjoint operators, and  is a permutation of 1,
2, 3, then C,C,C3 and Cr(1)Cr(2)Cr3) have the same spectral radius. This follows from
the facts that r(4B) = r(BA) and r(4) = r(4*), for all operators 4 and B.

4. If C,C,,...,C, are positive contractions, it is clear that /(C;Cy---C,) = 1 if
(=1 ker(1 — C;) # (0). The converse, though not true in general (Corollary 3.3.2), is
true on finite-dimensional spaces.

COROLLARY 3.3.1. Let Cy,C,,...,C, be positive contractions on a finite-dimen-
sional Hilbert space H. Then r(C\C, - - - C,) = 1 if and only if (Y, ker(1 — C;) # (0).

PROOF. Letr(C,C; - C,) = 1. By the preceding theorem, there exists a sequence
(xm) of unit vectors such that (1 — Cj)x,, — 0, for everyj = 1,2,...,n. Since the unit
ball of H is compact, we may suppose that x,, — x, for some x € H. Then for every j,
(1 = G)xm — (1 = Cp)x, so Cjx = x. Since ||x|| = 1, ", ker(1 — C;) # (0).

The reverse implication is clear. [

Let £}, E,, ..., E, be projections on a finite-dimensional space. The preceding corol-
lary shows that r(E|E;---E,) = 1 if and only if (J_; R(E;) # (0). The following
corollary shows that this is false in infinite dimensions. In it we use the fact that if M and
N are non-zero subspaces of a Hilbert space satisfying M N N = (0), then M + N is not
closed if and only if sup{|(x|y)| : ||| = |y|| = 1,x e M,y e N} = 1.

COROLLARY 3.3.2. Let P and Q be projections on a Hilbert space with ranges M and
N respectively. Then r(PQ) = 1 if and only if either (a) MNN # (0) or (b)) MNN = (0)
and M + N is not closed.

PROOF. Let r(PQ) = 1 and suppose that M M N = (0). By Theorem 3.3 there exists
a sequence (x,,) of unit vectors such that (1 — P)xyy — 0 and (1 — Q)x,, — 0. Then
(Pxm|Qxm) — 1 and so sup{|(x|y)| : ||x|| = |l¥|| = 1, x e M,y e N} = 1. Thus M + N is
not closed.

For the converse, by an earlier remark, it is enough to consider the case where MNN =
(0) and M+N is not closed. Then there exist sequences (), (z») of unit vectors belonging
to M and N respectively such that (y|z,) — 1. Then y, — zy — 0 50 Py — Qzim =
Ym — Pz — 0. Thus

POz, —zy = Pzyy — 2y = (P2 — Ym) * Om — 2m) — 0

and so 1 € o(PQ). Thus r(PQ) > 1 and since r(PQ) < ||PQ|| < 1,7 (PQ) = 1. =

Next, we show that the submultiplicativity of spectral radius on a semigroup generated
by projections is equivalent to its permutability. We have not as yet ascertained whether or
not this equivalence holds when the generating elements are assumed to be only positive
contractions.

THEOREM 3.4. Let P be a (possibly infinite) family of projections on a Hilbert space
H, and let § be the semigroup generated by P. The following are equivalent.
(i) ris submultiplicative on §,
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(i) A)=0o0r1, foreveryA € S,
(iii) H(A) =1, foreveryd € S\ {0},
(iv) ris permutable on S.

PROOF. (i) = (ii): Suppose that (i) holds. Let 4 € S. Then 4 = E\E; - - - E,, where
n>1land {E; : 1 <i < n} are (not necessarily distinct) elements of P. If n = 1, clearly
r(A) = 0 or 1. Suppose that n > 1. Notice that, with ¥ the operator defined by

W= (EEy- E))EE\Ey -+ Ey \WEn\ExEV\Ey -+ Ey_3) -+ - (E2E3Ey - - - ELE)Y),
we have W = (E\E; --- E,))" E|, so

HW) = r(El(E|E2 . E,,)"_') — F((EIEZ . -'E,,)"_l) =HEE,-- 'En)"_l.

On the other hand
r(W)
S F(E| E2 e E,,)F(EnElEz e En_l)r(E,,_lE,,ElEz e E,,_z) e r(E2E3E4 R E,,El)
= r(E1E2 e En)".

Hence r(4)"~" < r(A)". Thus, if #(4) # 0, then 7(4) > 1. But r(4) < 1, 50 r(4) = 0 or
1, and (ii) holds.

(ii) = (iv): Suppose that (ii) holds. Let 4, B, C € S. If (ABC) = 1, then n(BAC) = 1,
by Theorem 3.3. On the other hand, if (4BC) = 0 then n(BAC) = 0 (since r(BAC) # 1,
by Theorem 3.3). Thus #(4BC) = r(BAC) and (iv) holds.

(iv) = (i). This follows from Theorem 9 of [4].

Clearly (iii) = (ii). We complete the proof by showing that (ii) = (iii). Suppose that
(i) holds. Since (ii) = (i) and S is a x-semigroup, r(4) = ||4||, for every 4 € S. Thus
(iii) holds. n

The following corollaries concern semigroups generated by two or three projections.
In them, necessary and sufficient conditions are given on the generating set in order that
r be submultiplicative on the generated semigroup. The first of these, in conjunction with
Corollary 3.3.2, easily leads to a more geometric characterization.

COROLLARY 3.4.1. Spectral radius is submultiplicative on the semigroup S gener-
ated by two projections E and F if and only if EF = 0 or r(EF) = 1.

PROOF. The necessity of the condition follows immediately from Theorem 3.4. On
the other hand, if EF = 0, then § = {0, E, F} and r is clearly submultiplicative on S.
Finally, if (EF) = 1, then » = 1 on § by our first remark following Theorem 3.3. L]

COROLLARY 3.4.2. Spectral radius is submultiplicative on the semigroup S gener-
ated by three projections E|, E, and E3 if and only if

(i) EF =0 or r(EF) = 1, for every choice of E,F € {E\,E,,E3}, and
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(ii) H(E\E2E3) = 1 or Exq)Er@Era) = 0, for every permutation 7 of 1, 2, 3.

PROOF. The necessity of the conditions follows immediately from Theorem 3.4 and
the fact that E(1)Er@2)Er) has the same spectral radius as £} E> E3 for every permutation
mof 1, 2, 3 (see our third remark following Theorem 3.3).

Conversely, assume that (i) and (ii) hold. By our first remark following Theorem 3.3,
if (E\EyE3) = 1, then r = 1 on §. Otherwise, by (ii), the product of E|, E; and Ej3 in
any order is zero. In this case, let W € S. Since (i) holds, it follows from Corollary 3.4.1
and Theorem 3.4 that if /¥ is a word in only one or two of {E}, E», E3} then W = 0 or
r(W) = 1. Suppose that W contains each of E; E, F3 as a factor. Then W contains a
factor of the form Ey(1)Ex(2)Ex(3), for some permutation 7 of 1, 2, 3. (Otherwise W would
have one of the forms (PQ)", (PQ)"P with P and Q distinct elements of {E|, E, E3}).
Thus W = 0. By Theorem 3.4, r is submultiplicative on . ]

Next, we consider briefly the reducibility of semigroups, on which 7 is submultiplica-
tive, which are generated by positive contractions (more particularly, by projections).

PROPOSITION 3.5.  Let H be a finite-dimensional Hilbert space of dimension n > 2.
Let S be the semigroup generated by a family C of positive contractions on H. If r is
submultiplicative on S, then S is reducible.

PROOF. Let r be submultiplicative on .S. We can suppose that ||C|| = 1, for every
C € C. Assume that S is irreducible. By Theorem 2.1, r is multiplicative on §,sor = 1
on S. By Burnside’s Theorem, .S contains a basis S1,5,,...,S, of B(H). For every i,
S; is a product of elements of C, and since r(S,S;---S,2) = 1, by Corollary 3.3.1 it
follows that S}, S5, ...,S,, have a common non-zero fixed point. Let x € H be a non-
zero vector satisfying Six = x, fori = 1,2,...,n%. Since every element of B(H) is a
linear combination of S;,55, ..., S,2, X is an eigenvector of every element of B(H). This
is a contradiction. L

REMARK. Let.S be as in the statement of the preceding proposition, and suppose that
r is submultiplicative on S. Since S is a *-semigroup, M is invariant under S whenever
the subspace M is.

The preceding proposition shows that, if 2 < dim H < oo, then S has at least one pair
of non-trivial orthogonally complemented invariant subspaces. In fact, there may be only
one such pair. For example, the semigroup of operators on H; & H, generated by the set
of positive contractions {1 ¢ C : C € ‘B(H,) a positive contraction}, where dim H| = 1
and dim H, > 1, has only one orthogonally complemented pair of non-trivial invariant
subspaces.

On the other hand, if A is infinite-dimensional, .S can be irreducible. For example,
consider the semigroup generated by the family of projections P = {1 - Q: Q € Q}
where Q is a family of finite-rank projections on H with no common non-trivial invariant
subspace. Since H is infinite-dimensional, the intersection of the ranges of the elements
of every finite subset of P is non-zero, so r = 1 on S. However, S is irreducible. Here
the generating set of projections has infinite cardinality. In the following example the
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generating set has cardinality 3. This cardinality is minimal as every pair of projections
on an infinite-dimensional Hilbert space has a non-trivial common invariant subspace [2].

EXAMPLE. Let H = P(Z*) and let A = diag(a,,as,as,...) where the sequence
e = (a;) € P and a; # a; wheneveri # j, and a; > 0, for everyi > 1. On H ® H put
K=H®0),L=GA),M=GA)+ ((O) ® (e}), where G(4) denotes the graph of 4.
Let P, Q and R denote the projections with ranges K, L and M, respectively.

Now L C Mso QR = RQ = Q. Thus POR = PQ so r(POR) = r(PQ). But r(PQ) = 1
by Corollary 3.3.2, so by our first remark following Theorem 3.3, 7 = 1 on the semigroup
S generated by P, Q and R. Now P, Q and R have no common non-trivial invariant
subspace. For, every projection commuting with each of P, O, R has the form £ & F
where E and F are projections on H satisfying F4A = AE and Fe = 0 ore. Now E4 = AF
gives FA? = AEA = A*F, so F is diagonal. If Fe = 0,then F=0and E = 0. If Fe = e,
then F = | and E = 1. Thus § is irreducible.

PROPOSITION 3.6.  Let S be a semigroup generated by projections on which r is sub-
multiplicative. If S \ {0} is not a semigroup then S is reducible.

PROOF. Suppose that S\ {0} is not a semigroup. Then, there exist elements S, 7 €
S\ {0} such that ST = 0. Let J be the ideal S generated by S. LetJ € J. Since J contains
S as a factor and, by Theorem 3.4, r is permutable on §, #(JT) = 0. By Theorem 3.4,
JT = 0. Thus R(T), and so K (7), is invariant under 7. Since K (T) is non-trivial, 7 is
reducible. By Lemma 2, S is also reducible. n

PROPOSITION 3.7.  Let S be a semigroup of compact operators on a Hilbert space H
such that HK) = ||K|| for every K € S. Then there exists a non-zero, finite-dimensional
subspace M of H, with both M and M invariant under S, such that S|y consists of
multiples of unitary operators.

PROOF. We can assume that § = CS = § # {0}. By Lemma 3, S contains non-
zero idempotent operators of finite rank. Note that all such idempotents are orthogonal
projections since r(K) = ||K]|, for every K € . Let P be a projection in § of minimal
positive rank. Let S be any element of .S. Relative to the decomposition H = R (P) ®

R (1 — P) we have
(3 8) s-(5 )

Observe that X = PSP|g (p is a multiple of a unitary operator; otherwise, by Lemma 3
(applied to PSP /||PSP||), we would obtain a projection in § with positive rank strictly
less than the rank of P.

We show that Z = 0, as follows. By hypothesis, 7(SP) = ||SP|| and r(PSP) = ||PSP||.
But SP and PSP have the same spectral radius. This implies that

(7 8) (% 0)]=men
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or || X*X+Z*Z|| = ||X*X]|. Since X is a multiple of a unitary operator, X*X = p, for some
p > 0. Then ||p + Z*Z|| = p implies that Z*Z = 0,s0 Z = 0.

Similarly, considering PS instead of SP, we find that Y = 0. n

Above, we have exhibited three classes of operator semigroups (those consisting of
normal, respectively compact, operators together with those generated by projections)
each having the property that the submultiplicativity of » on any member implies its
permutability. Other classes with this property can be obtained by taking tensor products.
In the following we use the facts that (A ®B) = r(A)r(B) and (ARB)(C®D) = ACR®BD,
whenever 4, C € ‘B(H,) and B, D € ‘B(H,) for Hilbert spaces H; and H,.

PROPOSITION 3.8. Let C and ‘D be classes of semigroups of operators, on Hilbert
spaces H and K, respectively, each with the property that the submultiplicativity of r on
any one of its members implies its permutability. Then the class of semigroups of the form
S® T, with S € C, T € D also has this property.

PROOF. LetS € C,T € D and suppose that r is submultiplicative on § ® 7. We
can suppose that r is not identically zero on S ® T, so r(4) # 0 and #(B) # 0 for some
elements 4 € 5, B € T.LetX,Y € S. Then r((X® BYY ® B)) < nX ® B)r(Y ® B)
gives r(XY) < r(X)r(Y). Hence r is permutable on . Similarly, r is permutable on 7. Tt
follows, almost immediately, that r is permutable on S ® 7. n
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