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A SCHENSTED ALGORITHM WHICH MODELS
TENSOR REPRESENTATIONS OF THE
ORTHOGONAL GROUP

ROBERT A. PROCTOR

1. Introduction. This paper is concerned with a combinatorial construc-
tion which mysteriously “mimics” or “models” the decomposition of certain
reducible representations of orthogonal groups. Although no knowledge of rep-
resentation theory is needed to understand the body of this paper, a little famil-
iarity is necessary to understand the representation theoretic motivation given in
the introduction. Details of the proofs will most easily be understood by people
who have had some exposure to Schensted’s algorithm or jeu de tacquin.

Schensted invented his algorithm in 1961 [9] in order to find the longest in-
creasing subsequence of a sequence of k numbers, say from {1,2,...,N}. If
a such a sequence is input into Schensted’s algorithm, the output is a pair
of tableaux (P,(Q). Here P is a “semistandard Young” tableau with entries
from {1,2,...,N}, while Q is a “standard Young” tableau with entries from
{1,2,...,k}, and both P and Q have the same shape, say A. (Consult the first
paragraph of Section 2 for definitions.) In fact there is exactly one input which
will produce any such output pair, as long as A has no more than N rows. Hence
one can prove the following polynomial identity with the bijective correspon-
dence given by the algorithm:

k
xr+xp+--+xy) = Z Hsalery .o xn).

Here the sum is over all shapes A with no more than N rows, f) is the number
of standard Young tableaux of shape A, and s) is the Schur function of shape A
in N variables (i.e., the multivariate generating function for semistandard Young
tableaux of shape A).

This identity also arises as a character identity when studying representations
of GLy. Let V be the vector space CV, and consider the action of GLy on
®*V . The axis basis for ®*V is indexed by sequences of length k from the set
{1,2,...,N}. Decompose this tensor representation into irreducible representa-
tions indexed by shapes A with no more than N rows, and then construct a basis
indexed by semistandard Young tableaux for each irreducible component. It is
known that here there are f, copies of the irreducible GLy representation whose
character is s)(x). Hence a representation proof of the polynomial identity above
can be given. Since Schensted’s algorithm produces the same collection of pairs
of tableaux, we say that it models tensor representations of GLy. Now let the
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orthogonal group Oy act on ®V. An analogous identity can be written down
(Corollary 4) which describes the decomposition of the orthogonal tensor power
character into a sum of irreducible characters. The algorithm which we present
here models this decomposition.

In [2] Berele and Regev announced both a generalization of the above famil-
iar GLy tensor construction of Schur and an analog of Schensted’s algorithm
which modelled that generalization. Later, Berele found (following a query from
this author inspired by [2]) a beautiful analog of Schensted’s algorithm which
modelled tensor representations of Sp,, [1]. His key idea involved the annihi-
lation of inverse pairs of letters and sliding out the resulting empty square via
jeu de tacquin. Since then, Stembridge has used [10] the same idea to give a
nice algorithm which models rational (in addition to polynomial) tensor repre-
sentations of GLy. However, until now it has not been possible to extend these
methods to tensor representations of both odd and even dimensional orthogonal
groups. The recent discovery [6] of the “correct” semistandard tableaux for ten-
sor representations of the orthogonal group is the development that has made
it possible to give an algorithm which seems to be truly analogous to Berele’s,
but for the orthogonal cases. These semistandard tableaux are improvements of
tableaux found by King [3] and by Koike and Terada [4]. For the odd orthogonal
groups SO;,+1 Sundaram has found her own semistandard tableaux and modified
Berele’s algorithm to obtain a different Schensted-like algorithm [11].

We will present our results at three levels. The simple coarse level gives
an orthogonal analog to the “integer” specialization of the above identity, viz.
the coarser identity obtained by setting all x; = 1. The more complicated fine
level gives an orthogonal analog to the original identity above. It is possible to
mix these two levels; this will be referred to as the general case. In Section 2,
which can be regarded as a more detailed introduction, we give both Berele’s
symplectic and our coarse orthogonal analogs to the above identity. In Section 3
we present our coarse orthogonal Schensted algorithm and describe the bijection
it produces. Section 4 describes the fine and general orthogonal analogs of the
above identity. Section 5 treats the general mixed situation. The main result
of this paper, Theorem 5, states that the general algorithm gives a bijection
involving orthogonal tableaux which is analogous to the bijection described
by the Schensted algorithm. The proofs of the coarse and general bijections
are presented in Sections 6 and 7. Section 8 provides an interpretation of the
combinatorial results from the vantage point of representation theory. Readers
who have some familiarity with representation theory are encouraged to refer to
this section while reading Sections 2 and 4 so that the presentation will be more
motivated. Section 9 contains some concluding remarks and open problems.

2. The symplectic and coarse orthogonal identities. A shape ) is a diagram
which has \; (left-justified) squares in its ith row, where Ay 2 Ay 2 -+ 2 X\, >
0. An N-semistandard (Young) tableau of shape X is a filling of the squares
in the shape A with letters from the alphabet {1,2,...,N} such that the letters
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strictly increase down each column and weakly increase across each row. The
weight monomial of an N -semistandard tableau is
xilu'sxgz‘smxﬁN's,

where #¢’s is the number of times the letter ¢ appears as an entry of the tableau.
The Schur function sy(xy,...,xy) is defined to be the sum of the weight mono-
mials of all N-semistandard tableaux of shape A. Suppose that a shape A has
k squares. A standard (Young) tableau of shape A is a k-semistandard tableau
of shape A which uses each of the numbers from {1,2,...,k} exactly once
each. Such a standard tableau can also be viewed as a sequence of shapes
P, AW AP A® = X, wherein each shape is obtained from the preceding
one by adjoining one square.

A 2n-symplectic tableau of shape X is a 2n-semistandard tableau such that
the letters 2i — 1 and 2i do not occur below the ith row. (Hence 2n-symplectic
tableaux cannot have more than n rows.) The weight monomial of an 2n-
symplectic tableau is

xiﬂ s—#2 sx;B s—#4’s B "x;t(Zn—l) s—2#n s.

The symplectic Schur function Sp,,(X; x1, ... ,x,) is defined to be the sum of the
weight monomials of all 2n-symplectic tableaux of shape A. An n-oscillating
tableau of final shape X\ and length k is a sequence of k + 1 shapes §), AV,
A@_ . A8 = ) each of which has no more than n rows, such that each shape
is obtained from the preceding one by adjoining or removing one square. Let
gx(n, k) be the number of such tableaux. Berele obtained the following (Laurent)
polynomial identity as a consequence of his algorithmic bijection:

(x +x,“’ + X +x2”l +-0 4, +x,,“l)k = Zg,\(k, mSp2a (A X1, X2, ...y Xp).

Here the sum is over all shapes A with k — 2¢ squares, ¢ 2 0, and no more than
n rows.

A shape ) is said to be N-orthogonal if the sum of its first two column lengths
does not exceed N. An N-semistandard tableau which has no more than a total
of g entries in the first two columns which are = ¢ is said to satisfy the gth
orthogonal condition, or the value q case of Condition A. The 5-semistandard
tableau shown here satisfies the value 1, 3, and 5 cases of this condition, but
not the value 2 and 4 cases:

1 2
2 45
An N-orthogonal tableau is a N-semistandard tableau which satisfies the gth

orthogonal condition for all 1 < g < N. Let Oy(\) be the number of N-
orthogonal tableaux of shape A. An oscillating N-orthogonal tableau of final
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shape A and length k is an N-oscillating tableau of final shape A and length
k such that each shape in the sequence is N-orthogonal. Let Ay (N, k) be the
number of such tableaux. The following result is an immediate consequence of
either Theorem 3 or Corollary 4:

COROLLARY 2.
N =" ha(k, Oy (V).
Here the sum is over all N-orthogonal shapes \ with k — 2¢ squares, ¢ 2 0.

3. The coarse orthogonal bijection and algorithm.

THEOREM 3. The coarse orthogonal Schensted algorithm described below
gives a bijection between the sets:

{1,2,...,N} o UP) x Q(\ k),

where P () is the set of all N-orthogonal tableaux of shape A\, Q (\, k) is the
set of all oscillating N -orthogonal tableaux of final shape A\ and length k, and
the union is over all N-orthogonal shapes A\ with k — 2¢ squares, ¢ 2 0.

Before describing our algorithm, we first review the original Schensted algo-
rithm [9]. Given a word of length k from {1,2,...,N}, the algorithm creates a
pair of tableaux in k steps, each of which is called an insertion. One begins with
the following pair: the left member P”) is the semistandard tableau on the empty
shape and the right member Q© is the history sequence (or tableau) consisting
of the empty shape. Suppose that after # — 1 “insertions” of letters from the
input word one has a pair consisting of a semistandard tableau T = P%~1 and a
history sequence of shapes Q1. Let b be the next (the hth) letter in the input
word. The insertion process consists of a series of “bumps”. First replace the
leftmost copy of the smallest letter ¢ in the first row of T which is > b with
b to produce a new semistandard tableau U. We say that b bumps c¢ out of the
first row. Repeat this procedure with the bumped letter ¢ being inserted into the
second row of U to produce a tableau V and a loose letter d. We say that ¢
lands in U converting it to V; or briefly, ¢ lands in U /V . The generic symbols
we will use are:

vUSvLw

If at some stage an element g is 2 all of the elements in its target row in Y,
then the new left output tableau P’ = Z is obtained by placing g at the end
of that row. After the bumping process has finished in the left tableau, the right
tableau (or history sequence) is updated by appending the shape of Z, thereby
creating Q™.
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The overall structure of the symplectic and coarse orthogonal algorithms are
the same as for Schensted’s algorithm. Letters from the input word are suc-
cessively inserted into the left tableau. The right member of the output pair is
the history sequence of shapes. Hence we need to specify only the method of
inserting one input letter into a current left tableau 7. As before [1] [10], the
philosophy within one insertion is to do ordinary Schensted bumping until a
bad left tableau is produced. Then the pair of trouble-making letters are anni-
hilated. This is accomplished by backing up one bump step and discarding the
bumping letter just before it is to be placed in its offending position, and by
erasing one other letter in the left tableau. The empty square thereby created in
the left tableau is denoted A. This empty square A is slid out to the southeastern
boundary with a series of jdt steps: Repeatedly interchange A with the smaller
of the two entries which are below or to the right of A. (Pick the entry below
if the two choices are equal.) Forget about A once it reaches the southeastern
boundary.

COARSE ORTHOGONAL INSERTION PROCEDURE. Do ordinary Schensted bumping
until a letter d = r lands in the first (second) column of V /W and participates in
a violation of the rth orthogonal condition. (If this never happens then the usual
output tableau Z becomes the new left tableau.) Replace the other occurrence
of r in the second (respectively first) column of V with A and slide it out to
produce the new left tableau Z.

Suppose that the first 11 letters (reading from left to right) of the input word
53164365476, 2,7 7 have been inserted so far: Condition A is never
violated, and therefore by regular- Schensted insertion the left tableaux at this
point PV =T = U is:

1 3 46

3 4 57

5 6 6
Now insert the 2. It bumps out the 3 from the first row, thereby creating V. The
3 then lands in the second row, thereby creating W. But now W has 4 entries
which are each = 3 in its first two columns, which violates the 3rd orthogonal
condition. As implicitly claimed by the procedure, there is another occurrence of
a3at(2,1)in V. Replacing this 3 by A in V and discarding the loose bumping

3 we have:
1 2 4 6
A4 5 7
5 6 6

Now A successively trades places with the 4, the 5, and then the 6. The 12k
insertion step is complete, and for P{!2 we have:

1 2 4 6
4 5 6 7
5 6
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Lemma 6.1 confirms that the procedure makes sense, i.e., that there always
necessarily exists another occurrence of r in the “complementary” column. This
lemma will also confirm that when a letter is inserted into an N-orthogonal
tableau, another N -orthogonal tableau is produced.

In the original notation of [1], the input sequences (or words) for Berele’s al-
gorithm were formed of letters from the alphabet {1,1,2,2,...,n,7}. When in-
serting into the left (symplectic) tableau, annihilations always occurred between
a letter i and its opposite i. This was reflected in the generating function context
(after weights x; and x,-“ were assigned to the letters i and i) by x,x, ! = 1.
This will also be the case in the fine orthogonal algorithm. However, in the
coarse algorithm, one has each letter cancelling with itself in “bad” situations;
hence there is no polynomial identity implied by the coarse correspondence of
Theorem 3.

4. The fine and general orthogonal identities. When the number of letters
in the alphabet {1,2,...,N} is even, N = 2n, the terminology ‘fine situation”
will refer to the following choices. The letters are paired as follows: 1 « 2,
3«—4,...,2n—1+2n. When N =2n+1 it is impossible for every letter to
be a member of a pair. One might specify that the letter 2n+ 1 (or 1) behave as
in the coarse algorithm and then pair off the other 2n letters. More generally,
one could choose any letter 2i + 1 to be unpaired and then pair off the other 2n
letters in the obvious fashion. Even more generally, the terminology “general
situation” refers to any fixed set of choices of the following form: There are a
total of N = 2m+g letters in the alphabet, which are still denoted {1,2,...,N}.
There are m pairs of consecutive letters ¢ — 1 «— g specified; the remaining g
letters are said to be unpaired. When N = 2n + 1, the fine situation refers to
taking the letter 2n + 1 to be unpaired and the other letters to be paired.

At this point it is natural to hope that we will simply define an orthogonal
Schur function of shape A to be the sum of the same weight monomials as were
used in Section 2 for symplectic Schur functions, where the sum is taken over
all N-orthogonal tableaux of shape A. Unfortunately small examples indicate
that the resulting Laurent polynomials are not invariant under the interchanges
x; <> x;7! and x; & x;, which is a necessary property for characters of the
orthogonal group. However, the number of N-orthogonal tableaux of shape A
is equal to the dimension of the corresponding irreducible representation of the
Nth orthogonal group. The problem described above could therefore be remedied
by modifying the definition of weight monomial. Alternatively, with the same
amount of effort, we will retain the definition of weight monomial and describe
a different kind of orthogonal tableau, which will be equinumerous (with respect
to some fixed shape) with the original orthogonal tableaux.

The entries of an N-semistandard tableau T are denoted in the usual matrix
fashion: T(i, j) is the jth entry in the ith row. A semistandard tableau T is
said to satisfy the value 2p case of Condition B if whenever i +j = 2p and
TG,1) =2p—1and T(,2) =T(,3) =+ =T(,h—1) =2p—1 and
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T(j,h) =2p,then T(j—1,h) = 2p—1. In words, taking 2p = 6and 2p—1 =5
(which we will do throughout the paper for the sake of readibility): If there is a
5 in the first column at (i, 1) and a 6 in a later column at (j, ) such that their
row coordinates add up to 6, and if every other entry (except possibly the first
one) in the jth row preceding the 6 is a 5, then the 6 at (j, #) must have a 5
directly above it. For example, the tableau shown here satisfies the value 6 case
of Condition B if and only if * = 5:

4 4 * 6

We say that the entry T( j, h) = 2p is protected above by the entry T(j—1,h) =
2p — 1. If j = 1 then it is impossible for T to satisfy the value 2p case of
Condition B since there will be no place to put a “protecting” 2p — 1. Note that
the condition still makes sense when & = 2; i.e., it is not necessary to have at
least one 2p — 1 in the same row as the 2p.

A fine 2n-orthogonal tableau is a 2n-semistandard tableau which satisfies the
value 2p cases of both Conditions A and B for each 1 = p = n. (Condition
A, also called the orthogonal condition, was defined near the end of Section 2.)
A fine (2n + 1)-orthogonal tableau satisfies in addition the value 2n + 1 case of
Condition A. The tableau shown above is not a fine 8-orthogonal tableau even
when * = 5 since the 4 at (1, 2) is not protected above by a 3. However, if the
(1, 2) and (3, 1) entries were interchanged, the resulting tableau would be fine
orthogonal. Knowing that the value 2p case of Condition A is satisfied makes
the evaluation of the 2p case of Condition B more straightforward. Then the
presence of a 2p in the first column would make a violation of Condition B
impossible. Also note that if the value 2p — 2 case of Condition A is known
to hold true, and if T(i,1) = 2p — 1 while T(j,h) = 2p with i +j = 2p,
then it is necessarily true that T(j,g) = 2p — 1l or 2p for 2 = g < h. In
other words, there is a potential for the value 2p case of Condition B to fail
only when Condition A barely holds true both for the values 2p — 2 and 2p.
Incidentally, semistandardness alone implies that if the leftmost 2p in the jth
row has a 2p — 1 directly above it, then any other 2p’s in the jth row will also
have 2p — 1’s directly above.

The following result will not be used in this paper, but the proof should be
read to help understand the above definitions.

PropoSITION 4. The number of N -orthogonal tableaux of shape \ is equal to
the number of fine N -orthogonal tableaux of shape \. )

Proof. By viewing N-semistandard tableaux as being built up by an in-
creasing sequence of M -semistandard tableaux as M runs through the values
2,4,6,...,N —2,N when N is even (or 2,4,6,...,N —3,N — I,N when N
is odd), we see that we can prove the proposition with induction on M if we
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can show that the number of ways of adjoining 2p —1 =M —1and 2p = M
is the same at each stage for each definition. (When N is odd, the last stage
going from N — 1 to N is the same in each case.) For the orthogonal tableaux
we must satisfy both the 2p — 1 and 2p cases of Condition A, while for the fine
orthogonal tableaux the 2p cases of both Conditions A and B must be satisfied.
After adjoining some 5’s and 6’s, there are four classes of newly constructed
semistandard tableaux which satisfy the 6-case of Condition A: those satisfying
the S-case of A but not the 6-case of B, vica versa, those satisfying both, and
those satisfying neither. Obviously we will be done if we can show the first two
classes are equinumerous. Here is how to bijectively convert a member of the
second class into a member of the first class. In order to fail the S-case of A
while satisfying the 4-case of A, there must be T'(i, 1) = 5 and T(j,2) = 5 with
i +j = 6. Change all of the 5’s in the jth row to 6’s, as shown here:

* 56 56
* 6 — 6
E3

+ W %
+ W o*
N o%x % %
+ O\ *
+ O\ *

5

None of the entries below the 5’s could have been 6’s, since we are assuming
the 6-case of A; hence the result is semistandard. Furthermore, the result violates
the 6-case of B since obviously T(j — 1,2) < 5. Going in the other direction,
note that in order to fail the 6-case of B while satisfying the 5-case of A, there
must be T(i,1) = 5 and T(j,2) = 6 with i+j = 6 and T(j — 1,2) < 5. Convert
all of the 6’s in the jth row which do not have 5’s above them into 5’s. It is not
hard to see that is a two-sided inverse to the other conversion. (Don’t forget that
we are not considering tableaux which fail both the 5-case of A and the 6-case
of B.)

When N = 2n or 2n+ 1, the weight monomial of a fine N-orthogonal tableau
is defined in exactly the same way as for a 2n-symplectic tableau (Section 2).
(Hence when N = 2n + 1, the letter 2n + 1 is given weight 1.) The orthogonal
Schur function On(X\;xy,...,x,) is defined to be the sum of the weight mono-
mials of all fine N-orthogonal tableaux of shape A. The following result is a
corollary to the main result of this paper, Theorem 5, in the Nth fine situation.
The quantities sy, (N, k) were defined at the end of Section 2.

COROLLARY 4. Let N = 2n(+1). Then the following Laurent polynomial iden-
tity holds:

Grtxr 4 x o  FD) =) N, KON X1, Xa),s

where the sum is over all N -orthogonal shapes \ with k — 2¢ squares, ¢ 2 0.

In reference to some fixed general situation, a general N -orthogonal tableau is
an N -semistandard tableau which satisfies the value g cases of both Conditions
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A and B for each pair of letters ¢ — 1 «— ¢ and which satisfies the value r
case of Condition A for each unpaired letter r. Incidentally, when N = 2n + 1
and the letter 1 is chosen to be the single unpaired letter, Condition B for fine
N-orthogonal tableaux could be replaced with a different and slightly simpler
condition. For each odd ¢, prohibit the following: T(i,1) =gand T(i —1,1) <
q — 1 with T(j,2) = ¢ — 1 and i +j = q. Then it could be shown that the
sum of the usual weight monomials over this family of tableaux would be
On(X;x1,...,X,). Recasting the general algorithm in the next section to take
advantage of this would probably lead to a slightly simply simpler algorithm for
this special case.

Although we will not use any of the following observations, it is interesting
to note that the various conditions can be described in terms of dominoes, which
occupy two squares, as follows. The condition for 2n-symplectic tableaux can be
restated as: If T(i,u) = 2p and T(j,v) = 2p—1, then i+j < 2p. It is sufficient to
require this for u = v = 1; then a vertical domino of paired letters is prohibited
from being too far down. Alternatively: If T(i,u) =< 2p and T(j,v) < 2p, then
i+j = 2p. The condition for orthogonal tableaux can be restated as: If T(i,u) = r
and T(j,v) = r (so necessarily u # v), then i +j =< r. It is sufficient to require
this for ¥ = 1 and v = 2; then a “broken” horizontal domino of equal entries is
prohibited from being too far down. Alternatively: If T(i,u) < r and T(j,v) = r
with u # v, then i +j = r. The conditions for fine 2n-orthogonal tableaux can be
restated as: If T(i,u) < 2p and T(j,v) < 2p with u# v, then [ +j < 2p; and if
T(i,1)<2pand T(j,v) =2p withi+j =2p, then T(j —1,v) = 2p — 1. Again
this can be viewed as prohibiting certain kinds of broken horizontal dominos in
certain positions.

5. The general orthogonal algorithm. In a fixed general situation, paired
and unpaired letters from the alphabet {1,2,...,N} are to be assigned weights
x; or x; ! and 1 respectively, as in the following example:

1 < 2 « 3 < 4 < 5 « 6 < 71 < 8
1

1 X1 X! 1 X2 x5! 1

The weight of a word or of a tableau formed from the alphabet is defined to
be the product of the weights of the constituent letters. This agrees with the
weights defined for fine orthogonal tableaux in Section 4.

Here is the main result of this paper.

THEOREM 5. Suppose that m of the letters in the alphabet {1,2,...,N} have
been paired together, where N = 2m + g. The general orthogonal algorithm
described below gives a bijection between the sets:

{1,2,..., N} > UP) x Q (\k),

where P ()) is the set of all general N-orthogonal tableaux of shape )\, and
Q (A, k) and the union are as in Theorem 3. The bijection is weight preserving.
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As with the coarse algorithm, for the general algorithm we only need to
describe the insertion of an input letter into the current left tableaux, which is
assumed to be general orthogonal with respect to some fixed general situation.
In order to handle general orthogonal tableaux, the algorithm becomes more
complicated as far as details are concerned. However, the spirit remains the
same: When a violation occurs during the insertion process, two offending entries
with inverse weights are annihilated. There are many possible ways in which
a bump can create a violation of either Condition A or Condition B. During
the “nitty-gritty” details of the proof, it will be most expedient to give up
on the big view and to specify 15 subcases. However, the general algorithm
is not that “ad hoc”. (As before, for the sake of readibility we will take the
symbols 5 and 6 to be synonymous with the generic paired letters g — 1 «— ¢
respectively.) A slightly inaccurate rough description is: Typically a 5 (or 6) will
land in one of the first two columns, thereby causing a violation of one of the
conditions together with a 6 (or respectively 5) in the other one of the first two
columns. Then one “rewinds” one (sometimes two) steps and throws away the
offending 5 or 6 before it lands while at the same time replacing the opposite
entry 6 or 5 with an empty square A. Rather than drily listing 15 cases as in
Table 2, the general algorithm will be stated in as close a fashion to the above
“typical” pattern as possible. This will make it necessary to simultaneously use
two “respectively”’s, so that four kinds of situations will be handled at once.
The first pair of possibilities concerns the “landing” entry, which is a 5 (or 6).
A complication arises concerning the second pair of possibilities, viz. that of
the offending entry landing in the first or in the second column. Sometimes it
is not the second column which is relevant, but instead a later column of the
tableau which we will call the “key” column. Throughout we will assume that
i+j = gq; note that i 2 j in all meaningful situations. If V(i,1) = V(j,2) =
V(,3)=---=V(j,h—1) =5and V(j, h) = 6, then the key column of V is the
hth column. Otherwise, the key column is the second column. The second pair
of possibilities consists of the first column and the key column; then opposite
column refers to the other of these two possibilities. However, we will not call
the second column the key column unless it is necessary to do so. If the ¢ = 6
case of Condition A is violated, then the lowest 5 or 6 entries in each of the first
two columns of the tableau are said to participate in the violation. If the g = 6
case of Condition B is violated, then the leftmost 6 in the tableau and all 5’s in
columns to the left of that 6 are said to participate in the violation. The notation
conventions for U,c,V,d, and W are as in Section 3.

GENERAL ORTHOGONAL INSERTION PROCEDURE. Do ordinary Schensted bumping
until an inserted element d lands in V /W and participates in a violation of
Condition A or Condition B. (If this never happens then the usual output tableau
Z becomes the new left tableau.) If d = r is an unpaired letter then proceed
as in the coarse insertion procedure. In all cases where a violation arises, a
tableau X with an empty square A is to be formed from V or from U.
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Assume that d = 5 (or 6) participates in a q = 6 violation of Condition A. If
the special case (3) does not hold, then suppose that d lands at W(i + 1,1) in
the first column (or at W(j + 1,2) in the second column).

(1) If there exists a 6 (or 5 respectively) in the key (respectively first) column
of V, then replace it with A.

(2) Otherwise, if there is not an opposite entry in the opposite column, it
must necessarily be true that d = 6 was bumped out of U by ¢ = 5. Then in U
replace the 6 in the second (respectively first) column with A.

(3) Suppose that d = 6 lands at W (j + 1,2), with W(j,2) =5, W(i,1) = 6,
and W(i — 1,1) = 5. Then in U replace U(i, 1) = 6 with A.

Assume that only a violation of Condition B is participated in by d = 5 or 6.

(4) If d = 6 lands at W(j, h), then in'V replace V(i,1) =5 with A.

(5) If d =5 lands at W (i, 1), then in V replace the leftmost 6 in the jth row
with A.

In all cases slide A out of X to produce the new left tableau Z.

Proofs of any implicit or explicit claims in the statement of the procedure
are deferred to Lemma 7.1. With the exception of the special case (3) and the
notion of key column, the specified action in each case is the obvious action to
take if the philosophy of annihilation with preservation of weight stated above
is kept in mind. (One should also keep in mind that the notion of “horizontal
domino” suggests that the annihilated pair of entries should be from different
columns, in contrast to the “vertical domino” symplectic situation, wherein the
annihilated pair both come from the first column.) In the following pictures,
* = 4 and + 2 7. Here is an illustration of one possibility for case (1), showing
U,c,V,d,W,e, and X:

* % * % * % * %
c=15
x 6 *x 5 *x 5 *x 5
d=6
*  + *x  + * 6 *x  +
e =+
5 5 5 A

The careful reader might object that Condition B is violated in U and that
therefore the bumping should have stopped sooner. However the first sentence
of the procedure specifies that bumping stops when a landing entry participates
in a violation. Here ¢ = 5 was bumped out of the (1, 2) location of T (for
which Condition B was not violated); the violation of this condition was not
participated in by the * which landed in U. If the 5 at (4, 1) in each tableau in
the above example is replaced by a 6 and the 5 at (2, 2) in X is replaced by a
6, then the example will now illustrate one instance of case (2): There is now
no 5 in the first column for the problem 6 to cancel with. Here the bumping is
backed up two steps to U. Then the problem 5 is dropped before it can bump
the 6 in the second column, and the 6 at (4, 1) is replaced by A.
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One is supposed to check for (3) first. Here is an example:

* % * % * % * %
c=5
* 6 x 5 x 5 * 6
d=6
5 + 5 + 5 6 5 +
e =+
6 6 6 A

From the stated heuristic principles, one would normally expect that the 6 in the
second column would be dropped before landing, while the 5 in the first column
was replaced by A. However, because of subtle interactions which occur between
Conditions A and B when constructing an inverse to the insertion procedure, it
is necessary to define this one case in this fashion. Both cases (4) and (5) are
relatively straightforward; here is an example of (5), showing V,d, W e, and X:

x %k * % * k%
*x 5 6 *x 5 6 *x 5 A
+ x + *  +

d=>5
+ 5 +

e =+

The following boundary values are to be used to make sense of any references
in this paper to locations just outside of a tableau T of shape A; viz. T(0, j) = 0,
T@,0)=i—1, and T(i, j) = oo for (i, j) otherwise not in A.

6. Proof of the coarse bijection. In this section we return to the context of
Sections 2 and 3: all letters are unpaired, and orthogonal tableaux are those for
which Condition A holds for all s = N.

Lemma 6.1. Given a semistandard tableau T, let r be the minimal value for
which Condition A fails. Then there exist i’ and j' such that i’ +j' = r +1 with
TG\ H=T("2)=r.

Proof. There are no more than r — 1 letters in the first two columns which
are < r — 1, and at least r + 1 which are < r. Hence there are at least two r’s in
the first two columns. But since T is semistandard, there can be no more than
one r per column. So there is exactly one r in each of the first two columns,
and exactly r — 1 entries = r — 1.

LEMMA 6.2. When applied to an N -orthogonal tableau T, the coarse insertion
procedure makes sense and produces an N -orthogonal tableau Z.

Proof. There are initially no violations of A in T, and violations of A can arise
only with a newly landed entry taking part. So if r participates in a violation
of A after landing in V/W, then r is the minimal value for which the condition
is violated by W. By Lemma 6.1, there is another » in W as claimed in the
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description of the procedure. So the procedure makes sense. It is well known
that bumping and sliding out preserve semistandardness, see e.g. Section 3 of
[10]. Now check that Z is orthogonal. Any violation of A arising from bumping
is avoided by the prescribed annihilation, and then bumping stops. At a fixed
location, the only possible change due to sliding A out is an increase in the
size of the entry there, which is an improvement as far as A is concerned. If no
annihilations occur, then the definition of the procedure assures that the output
satisfies A.

Proof of Theorem 3. The overall framework of the proof is induction on k.
From the various definitions and Lemma 6.2, it is clear that the output of the
algorithm is contained in the claimed set. (Note that an N -orthogonal tableau is
necessarily of N -orthogonal shape, and that the parity of the number of squares in
the left tableau is always the same as the parity of £.) Given an orthogonal tableau
T of shape A\ and an input letter b from the alphabet, the insertion procedure
produces a new orthogonal tableau Z of shape p together with knowledge of
the change from A to p (or, just the memory of A). Hence the proof of the
bijection consists of constructing a two-sided inverse to the insertion procedure:
Given any Z of shape p and a A which differs from p by one square, we need
to recover the corresponding tableau T and loose letter » unambiguously.

If X has one more square than does p, then adjoin A to Z at that location. We
will backslide A to the northwest with a series of reverse jdt steps: Interchange
A with the larger of the two entries which are above or to the left of A. (Pick
the entry above if the two are equal.) At each step Condition A is tested for by
temporarily assigning to A the maximum value of the two. entries above or to
the left of A, even if doing this violates column strictness. If p has one more
square than ), then the usual Schensted inverse is performed: The entry in the
square p — A is taken as a loose letter and is unbumped into the row above. This
is repeated until an entry is unbumped out of the first row.

COARSE INSERTION INVERSE. If p D A, do the usual Schensted inverse to get T
and b. If p C A, then backslide A until it participates in a violation of Condition
A, say in row i. Let r — 1 be the maximum value for which Condition A fails
here, and set j = r —i. Replace A with r. To get T and b do the usual Schensted
unbumping starting with a loose letter r being unbumped into the jth row.

Assume A D p. We first confirm that the tableau T produced is orthogonal.
Condition A does not become violated during the backsliding before A stops, by
the checks being performed. From the value of the violation of A, a value = r—1
must have been temporarily assigned to A. But this was the maximum of the two
entries to the left or above. So replacing A by r does not violate semistandardness
in those directions. If the last switch with A was horizontal with something
< r — 1, then A would have already been violated to value r — 1, contradicting
the orthogonality of Z. If the last switch with A was vertical with something
< r, then A should have stopped backsliding sooner. So semistandardness in
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the other two directions is all right. Since A was alright before the arrival of
A, the failure of A at value r — 1 is by only a deficit of one square. Therefore
changing the value of the stopped A from the temporary value to r will cure
the failure of the (r — 1)-case of A. A failure at value r will not be created
because the new r is the only r now in the first two columns: The maximality
of the value of the failure of A rules out having another r in the column other
than the one in which A stopped. Hence Condition A is satisfied for all values
before unbumping begins. And unbumping can only help Condition A. So T is
orthogonal.

Next show that this procedure is a two-sided inverse to the “forward” insertion
procedure. It is well known that sliding out and backsliding are inverses, as well
as bumping and unbumping [10]. Hence we need only confirm that the transitions
from bumping to sliding out or vica versa occur at the same time, regardless of
which procedure is done first. First check that this is true “locally”. In the forward
procedure, when r is replaced with A, and r — 1 violation of A would exist if
A were temporarily assigned a value. So an A violation will be encountered
here during backsliding. On the other hand suppose that the inverse procedure
is followed by the forward procedure. Note that if the r that is unbumped into
the jth row by the inverse is instead bumped into the (j + 1)s¢ row, then an r
violation of A occurs. So here the forward procedure will stop and rewind one
step and replace an r with A, thereby matching up with the inverse picture at this
point. So the forward and inverse operations involving the r entries and A are
locally two-sided inverses to each other. If the forward procedure is applied to
the T and b produced from Z, no premature < r violations of A occur because
we are just recreating the < r portion of Z. Hence the claimed inverse is a pre-
inverse. Now start with an orthogonal T and a letter . Even with A temporarily
assigned values, Condition A will be no worse off for values 2 r as A is slid out
than it was in 7. Hence the backsliding does not stop prematurely, and we have
a post-inverse as well. For the p D A case the arguments for the unbumping
portion of the A D p case can be used again.

7. Proof of the general bijection. The treatment of unpaired letters within
the general algorithm is identical to the treatment of letters in the coarse al-
gorithm. Furthermore, it is easy to see that pairs of letters ¢ — 1 «— g do not
interact in any significant fashion with unpaired letters r. (In other words, the
letter r does not care whether ¢ — 1 and g are paired or not.) Therefore here
we will prove just the N = 2n fine special case of the general case. Adding
g unpaired letters anywhere (as long as paired letters remain adjacent) will not
harm anything, and the proof of the coarse case can be referred to for this por-
tion of a general alphabet. The proof of the even fine case roughly follows the
proof of the coarse case; we will omit some routine verifications or explanations,
especially if they are the same or similar to verifications in the coarse case.

LemMA 7.1. When applied to a general N-orthogonal tableau, the general
insertion procedure makes sense and produces a general N -orthogonal tableau.
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The procedure preserves weight.

Proof. First we confirm that the procedure handles all possibilities and makes
sense. Suppose that d lands into a violation of A in W. Then this must be the
minimal violation of A. Counting d, there must now be a total of at least three 5’s
and 6’s in the first two columns of W, by reasoning similar to that of Lemma
6.1. Note that the non-trivial sense of “key column” can arise in (1) only if
d = 6 lands in the first column after being bumped by a 5. But then that 5 = ¢
participated in a violation of B in V before the bumped 6 landed in W, if there
was not a “protecting” 5 above the 6 in the key column. Since this would stop
the procedure one step earlier, we see that here there must be a protecting 5 in
a non-trivial key column, and (1) applies. So if neither (3) nor (1) holds, we are
concerned with just the first two columns in (2); i.e., non-trivial key columns
will never occur in (2). Now in (2) there must be an entry equal to d in the
other of the first two columns. By semistandardness and the nature of bumping,
there cannot be a 6 in the same column with a newly landed d = 5. Hence we
must have d = 6 landing in a column which has a 5 in it, and with another 6 in
the other of the first two columns. If a 6 lands directly below a 5, then it must
have been bumped out by a 5. So ¢ = 5 with there being another 6 in the other
column as stated in (2). This same reasoning applies to (3), so we see there that
¢ = 5 also. In (4), it is necessary for W (i, 1) = 5 in order to have a violation of
B.Buti 2 j implies that V (i, 1) = W(i, 1) = 5. In (5) it is possible (when i = j)
for the leftmost 6 in the jth row of V to be different from the leftmost 6 in the
jth row of W, but we only need to know that one exists. There are no other
cases to consider for d landing into a violation of B: A short argument using
semistandardness, the non-existence of earlier violations of B, and the definition
of bumping rules out having a 5 land into a “connecting” role in a column g
with 1 < g < h. The wording “If only a violation of B ...” assures unambiguity
in the definition of the procedure. Since each of the possibilities discards one 5
and one 6, it is clear that weight is always preserved.

Now verify that a fine 2n-orthogonal tableau is produced, if we start with
one. If no annihilations occur, the output tableau will satisfy A. Can bumping
indirectly create a violation of B? This can momentarily happen in the fashion
described in the first example after the statement of the insertion rule, but notice
that the violation will always immediately disappear, as in that example. Hence
an annihilation free insertion produces a fine orthogonal tableau. Case by case,
it is clear that violations of either condition participated in by a newly arrived
entry are avoided by backing up to U or V and annihilating the offending entries
as specified. It is easy to see that the actions specified to avoid violations of
either ¢ = 6 condition will not cause a secondary ¢ = 6 violation of A, and that
actions specified to avoid a B violation will not cause another ¢ = 6 violation
of B. However, it is conceivable that an action specified to avoid an A violation
could cause a secondary B violation. Much of the complexity of the algorithm
is caused by this consideration. Case by case, it can be checked that this does
not happen. The most interesting case is when a 6 lands too far down in the
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first column with a 5 above it. If there is a protecting 5 in the key column, it
is to be erased, temporarily leaving its 6 unprotected. However, the violation of
B disappears after A is slid out. So at this point it is clear that the ¢ < 6 cases
of the two conditions are satisfied. Sliding A out only helps higher cases of A.
Suppose that sliding A out cases a ¢ > 6 violation of B. Put 9’s and 10’s into a
configuration which violates B. At least one of these participating entries must
be in a position which was occupied by an entry < 9 before the slide out began.
But this would contradict the ¢ = 8 case A for the original tableau 7. Hence an
insertion involving an annihilation produces a fine orthogonal tableau.

Proof of Theorem 5. Only additional considerations for the fine case will be
mentioned; i.e., parts of the proof of Theorem 3 will be used implicitly. Now A
is to be backslid until either it participates in an even violation of Condition A
with its temporarily assigned value, or until a violation of Condition B occurs
for a value ¢ = A + 2. (Use the value temporarily assigned to A.) If an even
case of Condition A is violated, let ¢ — 2 = 4 be the maximum value for which
it fails. If Condition B is violated, let ¢ = 6 be the value for which it fails. In
other words, A has the temporary value 4 when it stops in either case. Let X
be the tableau at hand when A stops, and let o — 1 (respectively § — 1) be the
number of entries in the first (second) column of X other than A which are < 4.
Let X(B,h — 1) be the rightmost entry (possibly A) in the (th row of X which
is = 5. The usage of the letters V and X does not coincide with the usage in
the forward procedure.

FINE INSERTION INVERSE. If 4 D A, do the usual Schensted inverse to get T and
b. If u C ), then backslide A until a non-fine orthogonal tableau X is obtained
as described above, with A stopping at X(s,t). Replace A in X with the letter
indicated in Table 1 to obtain a tableau V. (There all 5 or 6 entries in the
first two columns of X before the replacement of A are listed in the columns
headed “1” and “2”. In case (12) the new 6 is to be interchanged with the
rightmost 5 (if any) in the same row, in cases (7), (9), and (13) the new 6 is
to be interchanged with the 5 below it.) Then using the d andy y listed in the
table, get T and b from the ordinary Schensted inverse: Start by unbumping d
into the yth row of V.

The inverse procedure could be described more concisely; it is stated in this
fashion to facilitate checking that it is a two-sided inverse for all possible cases
coming from both the forward and reverse direction.

As before, the p D A case can be handled with the arguments for the un-
bumping portion of the A D u case. So take A D p. For now assume that the
details for the region of 5 or 6’s work. Apply the inverse to a fine orthogonal Z
and for now assume that the inverse always makes sense. So we get a tableau T
and a letter b. By the definition of the inverse, there will be no g > 6 violations
of B in T arising from backsliding. Unbumping cannot cause a ¢ < 4 violation
of B unless a g violation of A existed in Z. So T is fine orthogonal. The same
observation implies that the forward procedure when applied to the T and b
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TABLE 1
Inverse Cases

Condition Other Case
Violated t s 1 2 Conditions A d y Number
A 1 a None XPB-1,m=4 5§ 6 B-1 (1)

orS X@B,hH>6
A 1 a 5 XB-1,n=4 6 s B-1 2)
XB,h) =6
A 1 a 5 XB-1,mn=5 5 6 B 3)
a>b
A 1 a 5 XB-1,mH=5 5 6 B “4)
a=
A 1 o 6 a>B 6 5 B-1 5)
A 1 a 6 a=f 6 5 B-1 (6)
A 1 a 5 6* S5 B-1 @
A 1 "1 6 5 6 pB-1 8)
A 2 B 5 6* 5 a-—1 )
A 2 B 6 5 6 a-—1 (10)
A 2 B 5 5 6 a (11)
A 2 B None 6* S a-—1 (12)
or 6
B 1 a 5 S5or6 6 5 B-1 (13)
B 2 B 5 6 S 6 a (14)
B h B-1 5 5 S 6 a (15)

gotten from Z will not prematurely stop because of any ¢ < 4 violations of
B. Hence the claimed inverse is a pre-inverse. Apply the insertion procedure to
a fine orthogonal T and a letter b to get a fine orthogonal Z; then apply the
inverse. It can be seen that the fine orthogonality of T together with the way in
which A is temporarily assigned values imply that the backsliding will not stop
prematurely due to a ¢ > A value B violation. So we have a post-inverse.

Now for the 5 or 6 region details. The inverse procedure is unambiguous (the
cases are disjoint) and nothing needs to be proved to make sense. Does it handle
all possible cases for X? (Note that if A slides all of the way to (1, 1), it will
be temporarily assigned the value 0 because of the boundary value conventions
stated at the end of Section 5. This creates a value 0 violation of Condition A,
which is then handled routinely.) Suppose A stops due to a ¢ — 2 = 4 violation
of A, with ¢ — 2 maximal. Then A is in the first or second column, and the
maximality of ¢ — 2 implies that there is at most one 5 or 6 in the first two
columns. Having no other such entries is handled in cases (1) and (12). An
other such entry is either in the second or the first column, and it is either a 5
or a 6. It is obvious that within this classification the subcases are exhaustive.
(In case (1) the “Other Condition” holds automatically if there is no 5 in the
second column.) Now suppose that A stops due to a ¢ = 6 violation of B. By the
backsliding stopping criteria, A has a temporary value = 4 and hence the entries
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TABLE 2
Forward Cases

Condition Landed in Other 5/6’s Other 5/6’s Other Inverse
Violated d Column in 1st Col. in 2nd Col. Conditions Case
A 5 2 5&6 @)
A 6 2 5 S 3)
A 6 2 6 5 h-1>2 ?2)
A 6 2 6 5 h—-1=2 5)
A 6 2 5&6 )
A 6 2 5&6 5 (13)
A 5 1 5&6 9)
A 6 1 5 5 WPB,h')>6 an
a>B
A 6 1 5 5 W@PB,h')>6 )
a=
A 6 1 5 S WPB,h')=6 (15)
A 6 1 5&6 (10)
A 6 1 5 5&6 (14)
B 6 h' 5 None (€))
ors
B 5 5o0r6 a>p (12)
B 5 1 6 a=B 6)

above and to the left of A are = 4. Note that A cannot be above a connecting
5: semistandardness and the definition of reverse jdt steps imply that a 5 cannot
be pulled down into a connecting role; and A would stop due to the same B
violation before it could slide into such a position from the right. Hence either
A is in the first column above a 5 (case (13)) or in a later column above the
6 participating in the violation. The latter situation is split into subcases (14)
and (15), depending upon whether A is in the second column or is further to
the right. In all three cases it is obvious that the other 5’s or 6’s in the first two
columns are necessarily as claimed. So all possibilities for X are handled.

If A stopped backsliding because of A, then replacing A with a 5 or 6 will cure
the g —2 = 4 violation of A, or else A would have stopped sooner. For either an
A or a B stoppage, replacing A with a 5 or 6 will not cause a ¢ = 6 violation of
A for the same reason. Case by case, it is clear that no B violations exist after the
inverse procedure and that the specified interchanges insure semistandardness.
Hence the inverse produces fine orthogonal tableaux.

Table 2 indicates how the claimed inverse is to be applied to situations arising
from the forward procedure. Here Schensted bumping stops when the newly
arrived entry d in W participates in a violation of A or B. The “Other 5/6’s”
columns refer to W. And «, 8, and /' are as a, 3, and h were defined for X
before. For a ¢ = 6 violation of A to occur, either a 5 or a 6 lands in the second
or first column of W. After d lands, there must be a total of at least three 5 or

https://doi.org/10.4153/CJM-1990-002-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1990-002-1

46 ROBERT A. PROCTOR

6’s in the first two columns. As noted in the proof of Lemma 7.1, a B violation
can only arise when a 5 lands in the first column or the participating 6 lands in
the second or a higher column. So all possibilities are treated.

We will not give all of the verifications that the claimed inverse is actually a
two-sided inverse. One of the easy cases is (10). Here there is a 6 in the second
column below A and « 2 3+ 2. Replace A with a 5 and use a 6 to unbump the
largest entry p < 4 in the first column of V. Now go forward. Letting p bump
the 6 back out causes a ¢ = 6 violation of A in W when the 6 lands in the first
column. The key column is the second, and following (1) of the general insertion
procedure returns us to where we started. Cases (5) and (6) help to illustrate why
there are so many cases. In both cases one has A in the first column and a 6 in
the second. In both cases for the forward situation one has a 6 in the first column
and a 6 in the second column, with a 5 arriving in row 3. When o > (3 in case
(5), a violation of A occurs during the forward procedure. However, if o = 3,
then a violation of B occurs during the forward procedure before the violation
of A can arise. One of the trickier cases is (2). If & = 3 then it can be seen that
such an inverse problem can never arise, because Z would have had a ¢ = 6
violation of B to start with. So assume o > (3. Then replacing A with a 6 yields
a semistandard tableau; unbump a 5 into row 3 — 1. Going forward, we see that
(2) of the general insertion procedure returns us to where we started. A similar
situation occurs in (4), the hardest case. Even if X(3— 1, h) = 5, it cannot be the
case that X (3, h) = 6, or else Z would have had a ¢ = 6 violation of B to start
with. Going forward, bump d = 6 into row 3+ 1, where it will land in the first
column and cause a g = 6 violation of A. Since X (3, ) > 6, the key column is
the second column. Hence the 5 in the second column is replaced with A. We
are not back to where we started, since A was one square to the left. However,
it easy to see that A will now slide out to the same location where it started
when we began the inverse backsliding procedure. A similar situation occurs in
(12), wherein replacing A with a 6 necessitates the special horizontal interchange
operation. In three cases it is necessary to vertically interchange the 6 which
replaces A with a 5 directly beneath it. In all four cases, the special interchange
operation is needed because A slightly “overshoots” during backsliding. One of
vertical interchange cases is (13), where one should take care to note that the
special case (3) of the original general insertion procedure comes into play in
the forward direction.

8. Representation theory interpretation. The relevant Lie group for this
paper is Oy, the “full” orthogonal subgroup of GLy(C), not the special or-
thogonal subgroup SOy. When studying tensor representations, Oy is the more
natural group to consider [6]. According to [14, Theorem 5.7.G], the distinct
irreducible tensor representations of Oy are indexed by N -orthogonal partitions.
Let On()\) denote such a representation. Let Oy, set-wise consist of the same
group elements as does SOy: The different notation is used to indicate that we
regard this as a subset of elements of Oy, and not as a subgroup. (This avoids
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the undesirable splitting of O,, characters indexed by partitions with exactly n
rows when restricting to SOy. Any representation of Oy indexed by a shape A
with more than [N /2] rows when restricted to SOy has the same character as
its “associate” representation which is indexed by a shape A’ which has no more
than [N /2] rows. Using this fact is actually disadvantageous here, giving another
reason to use Oy and not SOy.) An element g of O3, has 2n eigenvalues oc-
curring in inverse pairs: x;,x;!,..., %, x, !; an element g of O3,,, has 2n such
eigenvalues together with the value 1 occurring once. The character of Oy ())
at an element g in Oy is a function only of these eigenvalues of g; therefore
denote this character by Oy (A; x, . ..,x,). According to Theorem 6.1 of [6], this
character can be combinatorially described as Oy (X; xy,...,x,), the orthogonal
Schur function defined in Section 4 of this paper with fine orthogonal tableaux.
More simply, by Theorem 3.1 of [6], the dimension of the representation Oy ()
is equal to the number of orthogonal tableaux of shape .

By definition, the group Oy acts on the space V = CV of column vectors. This
representation is denoted Oy (1) and has character (x; +x," +txtx, 1+1)).
The following result can be proved by applying the techniques of Sections 8
and 9 of [7] to the one determinant expression for Oy (A; xj,...,x,) given in
Appendix A2 of [6].

ProposiTioN 8. The result of multiplying an irreducible orthogonal character
by the character of the defining representation is:

O} (1;x)0}(Aix) = ) Of (s ),

where the sum is over all N -orthogonal shapes p which can be obtained from
A by adjoining or removing one square.

Iterating this result k£ — 1 times gives another proof of Corollary 4. With any
proof, Corollary 4 describes the decomposition of the representation @V of Oy
into irreducibles. Since there is (at least in theory) a basis for the representation
space of Oyn()\) whose elements are indexed by fine N-orthogonal tableaux,
we see that the main result of this paper, Theorem 5, implies that our general
orthogonal algorithm does indeed model tensor representations of Oy in the same
sense that the Schensted and Berele algorithms model tensor representations of
GLy and Sp), respectively.

9. Comments and open problems. The existence of such an algorithm for
orthogonal representations is yet another manifestation of the remarkable and
mysterious correspondence between jeu de tacquin and Schensted-like proce-
dures on the one hand and representation theory on the other. We do not know
of any explanation at a deeper level. Such algorithms seem to inexorably arise;
this algorithm did so in spite of some adversity in the form of the complicated
notion of fine orthogonal tableau. In.light of Berele’s algorithm and the dual-
ity of tensor representations of the orthogonal and symplectic groups (e.g. [8,
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Proposition 1]), this algorithm is pretty much what this author had expected all
along, especially with the following heuristic picture [8, Section 4] in mind.
The bilinear forms defining Sp,, and Oy are respectively elements of AV * and
S2V*. Corresponding to these forms are elements of ®*V which are fixed under
the actions of Spy, and Oy. Picture them as vertical and horizontal dominoes
respectively. Part of the description of the restrictions of the Atk tensor repre-
sentation of GLy to Sp;, and Oy uses pavings of subshapes of A with vertical
and horizontal dominos respectively. The key step in Berele’s algorithm can
be viewed as annihilating an inverse pair of letters when they form a vertical
domino which been has pushed too far down in the tableau. The annihilation
step in the orthogonal algorithm presented here can be viewed as annihilating
an inverse pair of letters when they form a (possibly broken) horizontal domino
which has been pushed too far down. Thus, this algorithm seems more natu-
ral than Sundaram’s [11], which retained the vertical annihilation of Berele’s
algorithm. Her algorithm worked only for the odd cases SO,,.i(= O03,,,, but
with a different set of irreducible representations). The tableaux she employed
were not semistandard and therefore do not seem as closely related to the Young
symmeterizer construction of irreducible tensor representations.

Sundaram’s thesis [12] is based upon Berele’s algorithm, and contains sev-
eral nice results concerning the algorithm and tensor representations of Spj,.
These include: a combinatorial description of the branching coefficients for the
restriction from GL,, to Sp,, mentioned above, a combinatorial proof [13] of
the Cauchy series identity for Sp,,, and a characterization of the usual Knuth
relations in this context. Hopefully these results can be extended to the orthogo-
nal case via the algorithm given here. Finding the analog of the Knuth relations,
viz. characterizing which input words are mapped to the same left tableau by
the algorithm, is an open problem in both cases.

The paper [7] extended Berele’s algorithm to handle an input alphabet con-
sisting of both paired and unpaired letters. However, the unpaired letters cor-
responded to free eigenvalues (as opposed to unity eigenvalues as is the case
here). The purpose of doing this was to study tensor representations of “inter-
mediate” symplectic groups (especially Sp,,+1), defined by possibly degenerate
skew symmetric bilinear forms. It is natural to hope that similar results can be
found in the orthogonal context.

Although Weyl first classifies and describes tensor representations of Oy in
terms of N-orthogonal partitions in Chapter V of [14], he soon switches in
Chapter VII to the more familiar requirement of having no more than n rows
in the partition (where N = 2n or 2n + 1), together with the notion of associate
representation. All other authors since, including the influential Littlewood, seem
to do the same. We believe that the original orthogonal partition indexing of
irreducible tensor representations is more natural because of the following fact
[14, Theorem 5.7.A]: The subspace of trace free tensors of symmetry type A
is null unless the sum of the first two column lengths of A is = N. Perhaps
using this original indexing will also be helpful elsewhere, say for example
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while studying the Brauer centralizer algebra for the orthogonal ®*V context
(e.g. [5]). Note that the lengths of the (n + 1)st through Nth “extra” rows in
N -orthogonal partitions are 0 or 1. These are the residue classes of Z modulo
2, which is the length of a horizontal domino.

Addendum. Defining Condition B as “... then either T(j — 1,h) = 2p — 1

or the value 2p case of Condition A is violated” and requiring V(i +1,1) > 6
and V(j+1,2) > 6 in the definition of key column would have been slightly
better. The first change would prevent simultaneous violations of A and B during
insertion, which are now handled by the wording “only a violation of B” in the
algorithm.

8.

9.
10.
11.
12.

13.
14.
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