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SUMMARY

Three different methods were used for estimating the basic reproductive number (R0) from data

on 110 outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 that occurred in

village poultry in Romania, 12 May to 6 June 2006. We assumed a village-level infectious period

of 7 days. The methods applied were GIS-based identification of nearest infectious neighbour

(based on either Euclidean or road distance), the method of epidemic doubling time, and a

susceptible–infectious (SI) modelling approach. In general, the estimated basic reproductive

numbers were consistent : 2.14, 1.95, 2.68 and 2.21, respectively. Although the true basic

reproductive number in this epidemic is unknown, results suggest that the use of a range of

methods might be useful for characterizing epidemics of infectious diseases. Once the basic

reproductive number has been estimated, better control strategies and targeted surveillance

programmes can be designed.
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INTRODUCTION

The basic reproductive number (R0) is the average

number of secondary cases caused by one infectious

individual during its entire infectious period in a fully

susceptible population [1]. In epidemiological studies,

the unit of interest might also be functional groups of

individuals, such as villages, towns and cities, or herds

and flocks. There is not an overallR0 for an infection –

R0 is specific to populations. Estimating R0 for an in-

fection in a population is critical to designing disease

control and prevention strategies [1].

R0 consists of three components [1] : the rate of

contact between the proportion (true mass action

principle) or number (pseudo-mass action principle)

of susceptible and infectious individuals (c), the prob-

ability of transmission on contact (p), and the duration

of infectiousness (D). These components are related

to the three principal factors determining infectious

disease epidemiology: (1) natural history (‘course ’) of

infection in the individual ; (2) transmission route; and

(3) the environment and/or behavioural characteristics

of the specific population. For the purposes of esti-

mation from field data, these components can be

combined into the number of contacts that occur

during the infectious period (cD) and the number of

‘successful ’ contacts (pc), also referred as the trans-

mission coefficient (b).
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The preceding expressions for R0 always contain

some reference to the rate of contact between suscep-

tible and infectious individuals (or epidemiological

units). However, contact rate is difficult or impossible

to estimate in the field for most infections, especially

those transmitted directly via close contact or via

multiple routes of infection [2]. Thus, other methods

must be used to estimate R0. In general, these are

based on empirical data, either at the invasion

(epidemic) or endemic phases of the host–parasite

relationship. During the epidemic phase, the full

potential for disease spread (R0) is exhibited: there are

no constraints on the growth rate of the epidemic.

Reported data from epidemics are a valuable source

for estimating R0. However, appropriate data is rarely

available. Methods for estimating R0 from epidemic

data rely on circumstances in which the population

is naive (entirely susceptible) to the infection (e.g.

foreign animal diseases) and the infectious disease

spread is rapid and disease reporting occurs on a fine

time-scale. Methods used to estimate R0 from epi-

demic data apparently have not been compared.

Highly pathogenic avian influenza (HPAI) virus

subtypeH5N1 is a threat to world health: it has caused

numerous disease outbreaks in domestic poultry and

wild bird populations, and there is a fear that it could

become the next pandemic influenza strain [3]. Because

exposure to sick or dead poultry is a strong risk factor

for human disease caused by HPAI subtype H5N1 [4],

the threat of pandemic influenza can be effectively

reduced by controlling and preventing the spread of

HPAI subtype H5N1 through national poultry flocks.

Avian influenza virus infection is endemic in a range

of free-living bird species worldwide [3], particularly

species associated with water [5]. Waterfowl can be

infected by all subtypes of type A influenza viruses,

with few or no symptoms [6]. Although these species

are capable of spreading influenza viruses between

regions [7, 8], and HPAI outbreaks in poultry are

sometimes assumed to occur from contact with wild

avian species [9–11], the transport of infected poultry

and contaminated poultry products have been blamed

for spreading the disease within regions. To plan

the most effective control programmes, quantitative

estimates of the spread of the disease through popu-

lations of poultry are needed. Epidemic data provide a

valuable insight into disease spread patterns.

The aim of the present study was to estimate R0

from a subset of data collected during the epidemic of

HPAI subtype H5N1 that occurred in village poultry

in Romania, 2005–2006. Tracing information from

field investigation of the outbreaks was unavailable,

therefore three different indirect estimation methods

were used.

MATERIALS AND METHODS

Data source

The epidemiological characteristics of the 2005–2006

Romanian epidemic of HPAI subtype H5N1 have

previously been described [12], and some spatial risk

factors of outbreak occurrence have been investigated

[13]. Briefly, the epidemic occurred between 7 October

2005 and 6 June 2006, and affected a total of 161

villages. Three phases of the epidemic were charac-

terized, based on detailed geostatistical and spatial

statistical analysis of the data [12] : October–

December (23 outbreaks, 14.3%), January–March

(28 outbreaks, 17.4%) andMay–June (110 outbreaks,

68.3%). Risk mapping suggested that outbreaks first

appeared in eastern and southern Romania. During

the autumn and winter of 2005 (epidemic phases 1 and

2), the environment and landscape (specifically the

Danube River Delta) played a critical role in the in-

troduction and initial spread of HPAI subtype H5N1

[13]. The transport of poultry and poultry products

might have introduced the infection into central

Romania during the spring and summer of 2006,

where the disease spread rapidly during a 26-day

period, presumably via direct or indirect contact be-

tween villages. The current study focused exclusively

on this final phase of the epidemic, which was tem-

porally and spatially distinct from preceding epidemic

phases that had occurred in Romania [12]. For each

outbreak, its location (x,y-coordinates) and reported

date of first detection – but not its probable infectious

source – was available.

Data analysis

As is the case in many disease epidemics, detailed and

reliable tracing information from field investigations

of the outbreaks was unavailable. Thus, the basic

reproductive number for between-village spread of

HPAI subtype H5N1 was indirectly estimated from

the dataset using three different methods – nearest

infectious neighbour, a susceptible–infectious (SI)

epidemic model, and epidemic doubling time.

Nearest infectious neighbour method

Reported outbreaks were mapped (ArcGISTM 9.0;

ESRI Inc., Redland, CA, USA) using a shape file
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(Dealul Piscului 1970 Datum, Stereographic 70 Pro-

jection) of Romanian administrative units (counties).

For each outbreak, outbreaks reported up to 7 days

previously were selected and Euclidean distances (km)

were calculated (Hawth’s Analysis Tools for ArcGIS;

http://www.spatialecology.com/htools/). The closest

outbreak was classified as the infection source of the

outbreak-of-interest. This process was repeated until

all outbreaks (except the first outbreak reported) had

a designated source.

The frequency distribution and average number of

outbreaks attributable to each source was calculated;

the latter was an estimate of R0. The spatial distri-

bution of R0 estimates was characterized by Moran’s

autocorrelation statistic (ArcGISTM 9.2, Spatial Stat-

istics), using an inverse distance weight. Local clusters

of the R0 estimates were investigated using Anselin’s

local indicator of spatial autocorrelation (LISA)

statistic (ArcGISTM 9.0, Spatial Statistics). Spatial

weights were defined by the inverse of Euclidean dis-

tance, and were globally standardized.

Outbreak locations were projected on to a map

of primary and secondary Romanian roads, and vil-

lage locations were assigned to the nearest road.

The above procedure was repeated, except that the

source for each outbreak-of-interest was identified

as the outbreak that had occurred up to 7 days

previously and that was closest (km) by road distance.

In addition, the sensitivity of the estimated R0 to as-

sumed period of infectiousness (7 days) was assessed

by repeating the above estimation procedures, but

assuming a period of infectiousness of 14 days.

SI modelling method

R0 was estimated using a method described by

Stegeman et al. [14]. The transmission of HPAI sub-

type H5N1 between villages was estimated from the

relationship between the number of newly infected

villages each day (case villages, Ct) and the number of

infectious villages each day (infectious villages, It),

assuming an infectious period of 7 days. Assuming

that all newly infected villages were infected by an

infectious village during this phase of the epidemic, a

simple deterministic SI model was used to describe

the transmission of HPAI subtype H5N1 between

villages. The number of susceptible villages was the

total number of villages in Romanian counties affec-

ted during this phase of the epidemic (17 counties

containing 7872 villages). All villages were assumed

to have poultry and be at risk of an outbreak of

HPAI subtype H5N1. Thus, we assumed that at the

beginning of the epidemic, 7872 villages were at risk.

We assumed that all outbreaks were detected and

reported. Furthermore, we assumed that during the

epidemic, the number of susceptible villages decreased

only via the depopulation of infected village poultry

populations.

We assumed [14] that the rate at which susceptible

villages became infected (C) depended only on the

proportions of susceptible (S/N) and infectious

(I/N) villages in the population and the transmission

coefficient, b. Thus, b was estimated for each epidemic

day as (NC)/(SI), and R0 was estimated as bT. The

period of infectiousness (T) was assumed to be 7

days.

Beginning 5 May 2007 (7 days prior to the first

reported outbreak in this epidemic phase), the num-

ber of newly infected villages (Ct), the number of

susceptible villages (St) and the number of infectious

villages (It) were calculated for each epidemic day,

and b was estimated as described above (Table 1).

Epidemic doubling time method

During the exponential phase of an epidemic (intro-

duction of an infectious individual into a susceptible

population), the number of secondary disease cases

increase at an exponential rate. Each infection gives

rise to R0 new infections per generation of infection,

assuming a constant doubling time. The doubling

time (td, the time period in which the number of

outbreaks doubles) can be approximated as (ln2D)/

(R0x1), so that an estimate of R0 is 1+[(ln2D)/td],

where T is the duration (days) of infectiousness of an

outbreak [2]. The average doubling time was calcu-

lated for all possible combinations occurring during

the ascending phase of the epidemic (days 1–13).

Assuming that T was 7 days, R0 was estimated as

1+(7/td) ln2.

RESULTS

The epidemic of outbreaks (n=110) between 12 May

and 6 June 2006, is shown in Figure 1. The estimated

R0 using the nearest infectious neighbour (Euclidean

and road distance), the epidemic doubling time, and

the SI modelling methods were 2.14, 1.95, 2.21 and

2.68, respectively. Assuming a period of infectious-

ness of 14 days and using the nearest neighbour

method based on Euclidean and road distances, the

estimated R0 (2.10 and 1.91, respectively) was not

substantially different.
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Using Euclidean distance to define infectious

sources, the mean distance and mean time elapsing

between source villages and outbreak villages was

23.36 km (95% CI 18.19–28.53) and 3.08 days (95%

CI 2.72–3.45), respectively. Using road distance to

define infectious sources, these parameters were esti-

mated to be 33.37 km (95% CI 25.17–41.56) and 3.09

days (95% CI 2.74–3.45), respectively. The distance

and time period between source villages and outbreak

villages was not significantly (P>0.5) correlated using

either of the methods to define proximity. However,

both distances (0.8925) and time periods (0.8168)

estimated with the two methods were significantly

(P<0.001) correlated. The frequency distributions of

R0 are shown in Figure 2; the distribution defined

by road distance was more skewed than that defined

by Euclidean distance (skewness statistics 3.07 and

1.30, respectively).

Significant spatial autocorrelation was not detected

for the source locations, whether these source loca-

tions were identified using Euclidean distance (I=
0.0125, P=0.5730) or road distance (I=–0.0773, P=
0.7610). No significant (P>0.05) local clusters of

spatial autocorrelation were detected.

The product of the proportions of susceptible and

infectious villages (SI/N) increased quickly between

epidemic days 1 and 11 (Fig. 3), peaking on day 15

and sharply decreasing to day 24. The estimated daily

transmission coefficients decreased (0.8723 per day)

significantly (P=0.0011) throughout the epidemic

(Fig. 4). The estimated mean epidemic doubling time

(td) was 2.89 days (95% CI 2.42–3.35).

Table 1. Estimates of the number of villages newly

infected (C), the number of infectious villages (I), the

number of susceptible villages (S) and the daily

infection rate parameter (b) (N=7872)

Day S C I (SI)/N b

0 7872 0 0 0.00 —

1 7871 1 0 0.00 —
2 7869 2 1 1.00 2.001
3 7865 4 3 3.00 1.335

4 7863 2 7 6.99 0.286
5 7850 13 9 8.97 1.448
6 7850 0 22 21.94 0
7 7836 14 22 21.90 0.639

8 7828 8 36 35.80 0.223
9 7819 9 43 42.72 0.211
10 7813 6 50 49.64 0.121

11 7807 6 52 51.62 0.116
12 7795 12 56 55.52 0.216
13 7783 12 55 54.53 0.220

14 7778 5 67 66.39 0.075
15 7774 4 58 57.54 0.070
16 7773 1 54 53.62 0.019

17 7771 2 46 45.72 0.044
18 7771 0 42 41.77 0
19 7770 1 36 35.83 0.028
20 7769 1 25 24.92 0.040

21 7767 2 14 13.97 0.143
22 7767 0 11 10.98 0
23 7764 3 7 6.99 0.429

24 7763 1 9 8.99 0.111
25 7763 0 8 7.99 0
26 7762 1 8 7.99 0.125

27 7762 0 8 7.99 0
28 7762 0 7 6.99 0
29 7762 0 5 5.00 0

30 7762 0 5 5.00 0
31 7762 0 2 2.00 0
32 7762 0 1 1.00 0
33 7762 0 1 1.00 0
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Fig. 1. Epidemic curve of highly pathogenic avian influenza
subtype H5N1 outbreaks (n=110) in Romania, 12 May–6
June 2006.
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Fig. 2. Frequency distribution of estimated secondary

outbreaks of highly pathogenic avian influenza subtype
H5N1 outbreaks in village poultry populations, Romania,
12 May–6 June 2006, using either Euclidean distance (&) or
road distance (%) to define the spatial relationship between

outbreaks and an assumed period of infectiousness of 7
days.
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DISCUSSION

Estimates of R0 using the three methods of nearest

(Euclidean or road distance) infectious neighbour, SI

modelling, and epidemic doubling time ranged from

1.91 to 2.68. Although the true R0 in this epidemic is

unknown (because the actual source of each outbreak

is unknown), a range of methods might be useful for

characterizing epidemics of infectious diseases. These

methods of indirectly estimating R0 have application

in the common field situation in which tracing infor-

mation is unavailable or incomplete. Once R0 has

been estimated, better disease control strategies can

be designed.

R0 depends on contact patterns between susceptible

and infectious individuals (or groups of individuals,

such as village poultry populations), and this par-

ameter is specific for a given population during a

given time period. Thus, determining which method

of estimating R0 in field situations is the most accurate

is virtually impossible because the source of each in-

fection can rarely be verified. For this reason, a com-

parison of R0 values estimated from field data using

different methods is useful to determine if such

methods provide consistent results. Consistency can

provide a greater level of confidence in the estimate

made. In addition, if results are consistent then a

method that is technically easy to perform, demands

few restrictive assumptions, and can be applied to the

imperfect data that is often the only source of infor-

mation available in disease outbreaks, would be pre-

ferred. In the present study, the epidemic doubling

method might the method of choice, if the preceding

characteristics are considered important.

Several assumptions are implicit in the approaches

used to estimate R0. Most importantly, in all of the

methods used it was assumed that a population of

village poultry was infectious for 7 days and that this

period was constant during the epidemic. This latter

assumption appears reasonable, given the very short

during of the epidemic (26 days) compared to the as-

sumed period of infectiousness (7 days) and the fact

that the epidemic did not spread across jurisdictions.

The incubation period of avian influenza viruses in

individual poultry is generally 3–5 days (but may be

longer) (http://www.oie.int/eng/avian_influenza/A_

Fiches_IA.pdf). Other investigators have assumed

incubation periods of 2–6 days [15] and 1–4 days [16].

However, accurate estimates of the period of in-

fectiousness at the aggregated (village) level are un-

available. Assuming that poultry are infectious during

the incubation period, the period of infectiousness

might range from 1 to 6 days. The village-level period

of infectiousness is likely to be longer, because we

assumed that several birds with clinical signs would

need to be observed before the outbreak was reported,

investigated, and control measures that prevented

further village-to-village transmission from occurring

were applied. Although this parameter is uncertain,

the focus of this study was the comparison of esti-

mates from the different methods used, rather than

precise estimation of R0 using only one method. In

addition, estimation of R0 (using the nearest neigh-

bour method based on Euclidean and road distances),

assuming a period of infectiousness of 14 days, re-

sulted in no substantial differences in the estimated R0

(2.10 and 1.91, respectively). Other investigators have
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Fig. 3. The proportion of susceptible and infectious villages
(SI/N) during an epidemic of highly pathogenic avian
influenza subtype H5N1 in village poultry populations,

Romania, 12 May–6 June 2006 (epidemic days 1–26),
assuming a period of infectiousness of 7 days.

0

1

1

2

2

3

1 4 7 10 13 16 19 22 25 28 31 34

Epidemic day

T
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt

Fig. 4. Estimated daily transmission coefficient (b) during an
epidemic of highly pathogenic avian influenza subtype
H5N1 in village poultry populations, Romania, 12 May–6
June 2006 (epidemic days 1–26), assuming a period of in-

fectiousness of 7 days.
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assumed the flock-level period of infectiousness,

based on assumed incubation period and the delay

between clinical signs, reporting and flock depopu-

lation, to be 11.3–12.3 [15] and 8–13.8 days [17].

Overestimating the period of infectiousness will result

in underestimating R0, and vice versa. Better estimates

of the period of infectiousness, and particular infor-

mation on factors that influence this parameter,

would be useful in future studies of the epidemiology

of HPAI subtype H5N1.

An assumption made using the nearest infectious

neighbour method was that the nearest (based on

either Euclidean or road network distance) neighbour-

ing village within the infectious window period of

7 dayswas a source for each outbreak of interest. Thus,

it was assumed that proximity in both time and space

are the strongest factors driving the spread of a con-

tagious disease such as HPAI. Clustering of disease

events in time and space provides compelling evidence

of disease spread, however the same patterns can

arise from the presence of other risk factors that are

spatially correlated [18]. It is thought that HPAI virus

can be introduced into populations of domestic

poultry from wild waterfowl [19]. Although the

mechanism of spread between populations of dom-

estic poultry in districts is unclear, it is likely to be via

the movement of live birds : illegal movements of

poultry and other avian species have been docu-

mented as contributing to H5N1 spread in several

instances [20, 21]. Live bird markets have also been

the presumed source of avian influenza outbreaks in

domestic poultry [21–24]. We assumed that the closest

infectious village to each outbreak served as the

source of that outbreak. Information on the contact

structure of villages, with respect to the movement of

poultry, poultry products and potentially contami-

nated fomites, would improve the validity of this

method of estimating R0. However, in most situations

it is unlikely that such information (with sufficient

spatial and temporal detail) can ever be collected. The

assumption that each village was only infected by one

other village might not be realistic, but the chances of

a village being infected by more than one other village

simultaneously would seem to be remote. If such in-

fections occurred commonly in this epidemic, then we

might have underestimated R0.

In the SI modelling method, we assumed that at all

villages located in counties in which one or more

outbreaks occurred were at risk of HPAI subtype

H5N1 virus infection. Three of the counties included

in this current study had previously reported a total of

11 outbreaks (between 5 December and 10March), all

in areas peripheral to the third epidemic phase.

Removing villages located in these three counties

would have reduced the initial susceptible population

from 7872 to 7165, but the estimated R0 would have

increased only from 2.212 to 2.213. Estimated R0 is

insensitive to the number of susceptible villages in this

model because the number of infectious villages at

any point in time is only small (<1%) compared to

the number of susceptible villages [14]. In addition,

there were no recovered (and therefore resistant) vil-

lages included in the model (all village poultry popu-

lations in which HPAI subtype H5N1 was detected

were depopulated). Finally, it was assumed that the

number of new outbreaks on each day of the epidemic

depended only on the density of infectious and sus-

ceptible villages [14], the ‘ true mass action’ formation

of an SIR model [25]. In general, heterogenous mixing

increases the potential for a pathogen to invade and

persist in the population, so that we might have un-

derestimated R0 using the SI modelling approach.

The highest estimate of R0 in this study (2.68) was

made using the epidemic doubling time method. We

assumed that each outbreak produced R0 outbreaks

per generation of infection (7 days), and the distri-

bution had a constant doubling time. This approach

also assumes that the proportion of resistant in-

dividuals in a population is negligible compared to the

population at risk. It approximates well the initial

phases of an epidemic. This case study involved the

invasion of HPAI subtype H5N1 into the central part

of Romania, where the disease had not previously

been reported. It is possible that other subtypes of

avian influenza (e.g. low pathogenic strains) could

exist in this part of the country and provide some level

of protection against HPAI subtype H5N1. Also, the

epidemic curve (Fig. 1) shows a reduction in reported

outbreaks between days 8 and 11, but then an increase

on days 12 and 13. These fluctuations may be real, or

could represent reporting delays. In the present study,

doubling time was estimated for the first 13 days of

the epidemic. If this period is restricted to the first 8

days (data not shown), the mean doubling time is 1.73

days and the estimated R0 would be 4.05. The doub-

ling method relies on accurate reporting of field data.

Whilst it is a robust method, relying on few assump-

tions, it might not be appropriate in all situations.

There are few estimates of the R0 of HPAI in

poultry populations. Using a generalized linear

model, Mannelli et al. [15] estimated between-farm

transmission parameters for the 1999–2000 HPAI
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subtype H7N1 epidemic in northern Italy. Between-

farm R0 for the regions of Lombardy and Veneto,

during the initial phase of the outbreak, were esti-

mated to be 1.8 and 1.5, respectively. These estimates

assumed average periods of infectiousness of 12.3 and

11.3 days, respectively [15]. If a period of infectious-

ness of 7 days is assumed (as for the present study),

these estimates would be 1.05 and 0.91, respectively.

The much lower R0 estimates, compared to the pres-

ent study, might reflect underreporting of case flocks

or could be a real effect as a result of lower contact

rates between commercial poultry farms vs. villages in

our study. In a study of an epidemic of HPAI subtype

H7N7, occurring in The Netherlands in 2003 [17], the

between-flock R0 before detection of the first outbreak

was estimated for two affected regions (Gelderse

Vallei and Limburg) to be 6.5 and 3.1, respectively

(assuming periods of infectiousness of 13.8 and 8

days, respectively). If a period of infectiousness of 7

days is assumed, then these estimates would be 3.29

and 2.73, respectively. Thus, the estimates of R0

(1.95–2.68) in the present study lie in between those

made from the 1999–2000 Italian epidemic of H7N1

(0.91–1.05) and those made from the 2003 Dutch

epidemic of H7N7 (2.73–3.29). An important con-

sideration when interpreting R0 estimates for be-

tween-flock transmission of HPAI is the relative

density of the populations studied [17].

Surprisingly, few estimates of the R0 for pandemic

influenza in human populations have been made.

Massad et al. [26] examined the 1918 pandemic H1N1

outbreak in the city of Sao Paulo. Using a math-

ematical model, R0 was estimated to be 2.68. Mills

et al. [27] estimated an R0 value of 2–3 for the 1918

influenza epidemic by fitting a deterministic SEIR

model to pneumonia and influenza death curves from

45 US cities. R0 values ranging from 1.6 to 2.4 were

considered in stochastic simulation models used to

investigate pandemic influenza spread in rural

Southeast Asia [28] and the US population [29]. These

estimated or assumed values for R0 are consistent with

the R0 values (1.95–2.68) estimated in the present

study. Thus, the analysis of epidemiological data from

outbreaks of HPAI subtype H5N1 in poultry might

further assist with the development of control pro-

grammes for pandemic influenza.

Efforts to prevent between-flock spread, such a

quarantine, depopulation and disinfection, if effective

(49–63%, based on R0 estimates in this study and

critical threshold theory), would provide a high pay-

off in disease control programmes. Our understanding

of the epidemiology of HPAI subtype H5N1 will be

increased by further studies utilizing epidemic data,

and thus will greatly assist in the design of better dis-

ease control programmes.
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