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Abstract

Boundary value problems where resonance phenomena are studied are most often trans-
formable to parameter dependent Sturm-Liouville (SL) eigenproblems with interior sin-
gularities. The parameter dependent Sturm-Liouville eigenproblem with interior poles is
examined. Asymptotic approximations to the solutions are obtained using an extended
Langer's method to take care of the resulting complex eigenvalues and eigenfunctions.

1. Introduction

We consider the self-adjoint Sturm-Liouville (SL) eigenproblem with a parameter:

+ k2[r(x)E - q(x)]u = 0, l = [a,b], a < 0 < b, (1)

ii(fl) = u(b) = 0, (2)

where q(x) has a simple or double pole in the interior of / , A. is a real parameter and
E is the eigenvalue parameter. Standard SL theory permits singularities only at the
end points, and for r(x) and q(x) real and continuous on [a, b]. Real eigenvalues
and eigenfunctions exist even if either r(x) or q{x) has a pole at a or b\ and in this
case Langer's asymptotic method has been shown [3,4,8] to provide a uniformly
approximate solution. However, such an asymptotic solution has not been obtained
for (1H2) with interior poles. For the parameterless counterpart of (1), the existence
of complex eigenvalues and eigenfunctions has been proved in [6] for the simple pole
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case and in [2] for the double pole case. Asymptotic solutions have been obtained
using a direct sum approach [7], and by employing Titchmarsh-Weyl m-function
theory [2]; for the parameterless problem. It is the purpose of the present article to
provide an extension of Langer's method to the simple or double pole case with a
parameter, that is, (l)-(2).

The importance of studying our system cannot be overemphasized as evidenced by
an ever increasing occurrence of problems with interior singularities in fluid wave
theory ([2,6,7,10] for example) and mathematical physics [9], where resonance
phenomena are studied using WKB analysis to obtain asymptotic solutions over
split intervals. We note that the equation studied in [9] may be transformed into the
parameter dependent interior double pole SL problem, whence our method is also
applicable to the study of Schrodinger resonances. To exploit available literature, we
shall assume the specific form for our B VP is of the type

+ k2V^E\ 0 ' [ « i 2 (3)I x"
u(a) = u(b) = 0, a < 0 < b. (4)

We may re-write (3) as

where F(x, A.) = \f(x)/x" - E\.
Then from [5] or [8] we obtain the expansion of the solution for (3) in the form

u = B(x, k)w($, y) + \-^+v)>^v+2)C(x, k)w'Q, y), (5)

where fj. is the sum of the orders of zeros and v is the sum of the orders of poles,
iu(£, y) is the solution to the corresponding comparison equation, and the functions
B and C are to be determined. Following [3] and [8], we further assume that F, B, f
and yk have the large A. asymptotic expansions

^"W (6)
p=0

where Fo = -E, Fp = f (x)/x", p > 0,

00

B(x, k) ~ £ A-'fl,(jc), C(x, k) ~ ^X-'C^Ot) (7)
p=0 p=0
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and

00

*(* , X) = X2^+v+2)<f>(x), yk = X^+v+2)'3 J^ X-"Ykp. (8)

Thus we require y^ for k < 1 in (8). From [3,4] we have

Xoo = <t>'(b0), yOp = [(pibo^-^Fpibo) + rp(b0)}, yip=0, p = 1, 2 , . . . ,

N

where F(x, k) has a pole of order n, at* = bj,j = 0 , . . . , N,andr(;t) = Y[(x—b)"'.

The main object of the paper then becomes the determination of the function
0 (x). This paper is organized as follows. In the next section we obtain the form of the
solution in terms of parameters 6m and Em for the simple pole case. The corresponding
solution for the double pole case is obtained in Section 3. In Section 4 we present
a determination of the parameters 6m for both cases while Section 5 presents the
computation of the eigenvalues Em. We finally present, in Section 6, the leading order
asymptotic solutions for the simple and double pole cases.

2. The simple pole case

The comparison equation for

d2w y(

d%2

w{a, y,) =

(3) when n

D + SKI

= w(b, y,)

= 1

= 0,

= 0,

is

/ =

a

= \a,

< 0

b]

< b.

(9)

(10)

The eigenproblem (9) with (10), using analysis similar to that in [6], has large X
solutions

i - 1 / 4

1/2

(ID
Yo J \ Yo •

and the eigenrelation would be
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where k = —j/0/(2y,l/2). The asymptotic solution (5) also becomes

u = B(x, k)wtf, YX) + k~i/2C(x, k)w'($, Yi). (13)

On substitution of (13) into (3), employing (9) and subsequently (6)-{8), we have on
equating powers of k~p for +p < —2 that

fix)-Ex

x

where x = a is the turning point of (3), that is, the zero of / (x) — Ex for the simple
pole case. Thus

/ " —ds+\ — —
Jtt>(-x) s J<t>(<X+) s

ds

where a* = (j>(a) and similarly hereafter. The split interval of integration in (15)
conforms with the Direct Sum Method [7], if a* and Y\ are real so that the eigenvalues
Em of (3) are real. An application of Langer's method in this case is straightforward.
If however, a*, Y\ a nd consequently E are complex as would be the case when the
whole interval / is considered, then a suitable transformation is needed so that <p(x)
still retains its properties as in [3-5] and [8]. We may re-write (3) for n = 1 as

u(a) = u(b) = 0, a < 0 < b.

Now suppose the turning point r (and subsequently the complex eigenvalue Em) of
(3) lies at the indicated position on the complex A:-plane, see Figure 1.

In order to apply Langer's method a suitable path of integration would be the s-axis,
obtained by rotating the real *-axis through 9m. The transformation employed would
then be

(17)

where Im denotes the imaginary part and Re denotes the real part of the eigenvalue.
Thus (16) transforms to

+ A-21 — — | {cosem)um = 0, (18)

= [asec0m,isec0m],
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Im*
s-axis

Re*

FIGURE 1.

provided Em is not pure imaginary. The zero of f(scos8m) — \Em\(cos0m)s is real
on the s-axis, so that <j)(x) may be obtained from

<Ks)-<t>(asecOm) f (scos0) - (scos9m)\Em\
cos0m, (19)

where s is as defined in (17). That is,

r> ,t _ 5)i/2

77,— dt +
(t-a)1'2

(20)

where <f>(x secOm) = x and similarly hereafter, and js_s Gdt = f°s Gdt + f^. Gdt.
Evaluating the integral on the right-hand side of (20) we then have

[(P(-s)(<t>(-s)-a)]1/2-[<P(s)(4>(s)-a)]1/2+alog

(21)

With 4>{s) as obtained in (21) and the functions Bp and Cp determined as in [3-5] and
[8], a substitution into (13) then gives the required solution to the BVP (3) with (4)
for n = 1.
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3. The double pole case

When n = 2 in (3) the asymptotic expansion of the solution of this eigenproblem
becomes

u = B(x, k)w(%,y2) + k ' C{x,k)w'{%,y2), (22)

where iu(£, y2) is the solution to the comparison equation

d2W ( Vn + Vt£ + V?£ 2\

_ + W t m t m j ^ = Q [flj &L (23)

with boundary conditions

w(a. YT) = w(b, y2) = 0, a < 0 < b. (24)

The solution u>(£, y2) is as obtained in [2]. The split interval consideration enables
us to apply Langer's method as employed in the first part of Section 2, above. That is,
4>{x) may be obtained from

! . / « ^ ! . ( 2 5 )

so that
/•*(•*> \(t - T*^(t - r fn 1 ' 2 .., r \f(t\ - Et2]1/2

dt, (26)
f*M [(f-T,*)(f-T2*)]'/

2 _ _1/2 r
I - at - y2 I

J<H-x) ' J-x

from which </>(*) may be obtained by a direct application of Langer's method, provided
the eigenvalues and turning points are real. However, if a second solution other than
the 'distinguished' solution (see [7]) is considered (which is normally the case when
the whole interval is relevant), the eigenvalues, the turning points and <p(x) are all
complex. In this context we need to use a transformation similar to (17). The presence
of two turning points which may be separated or may lie on the same half plane (as in
Tables 1 and 2 of [2]) gives rise to two transformations.

The turning points lie in the first and third quadrants (refer to Figure 2) but a similar
transformation would be obtained if they lie on any part of the complex x -plane.

A rotation of the positive real *-axis through 9+ gives the transformation

and similarly the negative real *-axis through 6~ gives the transformation

-x = (cos8-)s, 9- = tan"
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Im*
s-axis

Rex

FIGURE 2.

These then transform (3) to

d2um 2

~dx^ + X = 0 (27)

where either only the upper signs or only the lower signs are chosen. The differential
equation from which we may compute <j> (x) will then be

V2 (s) - sec e - <p (r2 sec 0*)]

That is,

Jtp(-s)
dt+ rfr

£
,-' /2 (28)

The determination of Bp and Cp as in [3,4] and [8], with <p(s) as obtained in (28)
completes the asymptotic approximation to the solution of (3) for the double pole case
as presented in (22).
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fi-axis i-axis

Re*

FIGURE 3.

4. Determination of 9m

At this point we need an additional equation in each case for the determination of
0m, since the equations (21) and (28) for the computation of <j>(x) contain unknowns
Em and 0m. The unknown Em will be determined in the next section, once 6m is
computed. We shall tackle this problem by constructing an fi-axis perpendicular to
the 5-axis. Along this axis, there are no turning points since r, lies on the s-axis (see
Figure 3).

Under this transformation, namely x = [±sin6m]Sl and 9m = arg(Em), the BVP
(3) with (4) devoid of Em is

d2um
2

2um=0, I = [-acscem,bcsc6ml (29)

um(-a esc 6m) = um(b esc 9m) = 0. (30)

4.1. Determining 6m for the simple pole eigenproblem Now for n = 1, that is,
the simple pole case, (29) becomes

d2um

d&

The comparison equation to (31) is

(±sin0m)um=O. (31)

(32)
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The solutions are cylindrical functions of order 1, that is,

where am, fim are constants, and £ is defined as £ = A2/30(£2) and

p=0

with yoo arbitrary. The absence of turning points in (32) enables us to invoke Theorem 3
of [7] without the 'full interval' analysis of the earlier sections. The distinguished
solution of this case would be the Bessel function J\, so that

w = U 0 m ( f i ) « m 7 1 ( 2 y o ^ 0 m ) . 2(H>A.)V« € [0, bcscdm]
JO, 2(Yok)l/2(t>me[-acscem,0].

In order to satisfy the boundary conditions on [0, bcsc 6m], we require that along the
£2-axis J^y^k^^b esc dm)] = 0.

Since </>m and y0 are real, the m'h positive zero of 7t, Zm, may be computed ([1,11])
as follows:

ib csc em) = Zm

so that

^{^^'2)\ (33)

where <p^ is the inverse function of </>m. Thus 0m would be finally obtained if 0*
appearing in (33) is computed.

We now apply Langer's method to the transformed BVP (29) with (30) along the
fi-axis. Namely, <p{x) may then be obtained from the differential equation

(34)
4> &

that is,

For a specific / (x), (33) and (34) may be solved simultaneously for <j>m and 6m. This
completes the determination of 6m for the simple pole case.
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4.2. Determining 0m for the double pole eigenproblem When n = 2, the trans-
formed BVP (29) becomes

um(-acsc0m) = um(b esc 9m) = 0.

The comparison equation to (35) is

< + YaV2Wm = 0,

which has a solution u>m($) = ampiw+-fl=*vi> + ^ ' / a a - v r a ^ where am, 0n are
constants. In this case

As usual we appeal to Theorem 3 of [7] and choose the distinguished solution as
>») so that, on using (36),

on I = [O,bcsc$m],

0 on / =[-acsc0m,O].

On application of the boundary condition at b we get

Going by Langer's method, along the £2-axis, </>(fi) may be obtained from

(37)

so that

-dt. (38)r*-m (yo + n o ^ dt = r0 yo«in
J<t>(0) t Jo t

The integration on the left-hand side would be done in the limit just as it should be
on the right-hand side. Thus we obtain 0m and <f>m from (37) and (38). This completes
the determination of 8m for the double pole case.
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5. Eigenvalues En

We recall (18):

tPu,
- + A2 COS0m«m = 0.

Comparing this with (1.1) of [4] we have

II(Z, X) -+ um(s, X) = / ( 5 C ° S m) cos6m,

E^-\Em\(cos26m). (39)

And going by [8] we have

L *
Thus with analysis similar to that in [5]; if y0 is an eigenvalue of (9) then for the n-th
eigenvalue

Y\ = gm(Yo,Y2 Yn)- (40)

Using the expansion of yk(k), (40) becomes

(=0

The solution for \Em\ in (39) gives the m-th eigenvalue |£m(A.)| for (18). With yOl as
obtained in [8], and Ti being the turning point in the right half plane say (that is, the
zero of/ (s cosdm) — s(\Em\ cos2 9m)) then from [4] we may write

- f ^ \f(SC°$em)cos0m - \Em\cos*em] ds + Oik'1) = gm.
* Jo L * J

I fweset |E m | = |£° (k)\ + A.- ' |^(X) | + O(X"') as in [5] and expand the left-hand
side of (40) in powers of A"1 and equate coefficients of like powers of A."1, we have

J* Jo
[f (s cos 6m) cos 6m - iEmI cos2 0m

where gm = 0(A.-') .
This gives the first two terms in the asymptotic expansions for \Em\ from which

we may then obtain \Em\ as Em = |Em|cos0m + / | £ m | sin#m. This completes the
determination of Em.

The procedure for the double pole is very much the same except that (27) will be
used in place of (18) and gm would be such that y2 = gm(yo, Y\,Yi,--- , Ym) in place
of (40).
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6. The asymptotic solutions

6.1. First order pole case Employing the method for the determination of the
functions Bp and Cp as in [4,5] and [8], we obtain Bo = (<j>'(s))~l/2 and Co = 0,
where <p(s) would be as in (21). From [8], (<p'(s))-1'2 = kl/4[$'(s, k)]~x/2. For (11)
and (13), the asymptotic expansions of the solution to the BVP (3) with (4) for n = 1
may then be written as

X COS
Yo ) \ Yo ) \ Yo

where yx is as obtained in (12), and s = (sec 9m)x as in (17).
For the split interval, in which case the eigenvalues are real and only the distin-

guished solution is considered, with <f>(x) as in (15) we find that

u ~ am(<p'(x)y1/2Mk^(x, /,)) + O (k~V4),

where wm = amMktfl(t-(x, Yim))) as in [2] and y,(m) is obtained from the m'h positive
zero of the Whittaker function Mkyfl(-). Itis worth noting that in computing the integral
for (p (x) from (15), for this case f_x ds = 0 as a result of the application of Theorem 3
of [7].

6.2. Second order pole case With similar calculations we find that for the double
pole case

Bo = (4>'(s))-1'2 and Co = 0, (41)

where <f> (s) is as obtained in (28).
A substitution of the solution to the comparison equation (23) with (24), and (41)

into (22) gives the asymptotic solution for the BVP (3) with (4) for n = 2 (the double
pole case). That is,

where ir+{-) and V-(0 are as obtained in [2] and £ takes the form £ = kl/i<f>(x). For
the split interval consideration </>(*) would be obtained from (26) and the asymptotic
solution will take the form

u ~ am(cl>'(x)rl/2Mk,^(x, Yi)) + O (k~5/6) ,

where Mk^(£(x, y2)) is as defined in [2] and y2 here will be obtained from the zeros
of the Whittaker function Mk^{-).
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7. Concluding remarks

The split interval analysis for both cases (simple pole and double pole)' is similar
though the eigenrelations are different as is evident in [2]. The similarity in the
analysis of the comparison equations is principally because one half of the complex
plane is considered and the connection formula for both cases would be the same if
the turning points in the double pole case coalesce.

It is obvious from the analysis that except for the split interval consideration, where
the only difference in the asymptotic solutions would be in the variable parameter fj,
(of the Whittaker function for the double pole case and the resulting eigenrelations),
the asymptotic solutions would be very different in both cases. An important feature
of these solutions as presented in Section 6 is that the solution for the double pole case
has two asymptotic representations for the two arms of the real x-axis, whereas the
simple pole case has a single asymptotic representation. Also, for large k, we see that
the first term for the double pole case would be a better asymptotic approximation to
its solution than would be the first term of the simple pole case.
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