Mathematical Notes.

A Review of Elementary Mathematics and Science.

PUBLISHED BY

THE EDINBURGH MATHEMATICAL SOCIETY
 Edited by P. PInkerton, M.A., D.Sc.

No. 11.
October 1912.

A Puzzle of Dr Whewell's.-

69 Northumberland Street, Edinbtrgh.

Dear Dr Pinkerton,
Is the following trifle worthy of a place in your
Mathematical Notes? I came on the puzzle in a volume of the letters of Dr W. Whewell, the well-known Master of Trinity College, Cambridge. At the end of a letter to Professor A. De Morgan, dated 18 th January 1859, he says:
"I can express every whole number from 1 to 15 (I think) by means of four nines. Thus $2=\frac{9}{9}+\frac{9}{9}$. Is it worth while working this out further?"

A note to the letter states that:
"Two more examples from a fragment in Dr Whewell's handwriting will illustrate the meaning of this:

$$
6=\sqrt{9+9+9+9} \quad 10=\frac{99-9}{9} "
$$

Here are my solutions of the puzzle for the numbers 0 to 40 , excepting 38. Some ingenious young mathematician may be instigated to complement my solutions, and to carry the matter still further.
J. S. Mackay

$$
\begin{aligned}
0 & =99-99 \\
& =(9+9)-(9+9) \\
& =(9-9)+(9-9) \\
& =(9-9)-(9-9) \\
& =9 \times 9-9 \times 9
\end{aligned}
$$

$$
\begin{aligned}
0 & =\frac{9}{9}-\frac{9}{9} \\
& =9-\sqrt{9}-\sqrt{9}-\sqrt{9} \\
& =\sqrt{9}-\cdot 9-9-9 \\
& =(\sqrt{9}+\sqrt{9})-(\sqrt{9}+\sqrt{9})
\end{aligned}
$$

MATHEMATICAL NOTES.

$$
\begin{aligned}
& 0=\text { and so on } \\
& =(\cdot \dot{9}+\cdot \dot{9})-(\cdot \dot{9}+\cdot 9) \\
& =\text { and so on } \\
& =(9-9)+(\sqrt{9}-\sqrt{9}) \\
& =(9-9)-(\sqrt{9}-\sqrt{9}) \\
& =9 \sqrt{9}-9 \sqrt{9} \\
& =\frac{9}{\sqrt{9}}-\frac{9}{\sqrt{9}} \\
& =(9-9)+(\cdot 9-. \dot{9}) \\
& =(9-9)-(\cdot \dot{9}-\dot{9}) \\
& =9 \times \dot{9}-9 \times \cdot \dot{9} \\
& =\frac{9}{.9}-\frac{9}{.9} \\
& =(\sqrt{9}-.9)-(\sqrt{9}-.9) \\
& \text { = and so on } \\
& =. \dot{9} 9-. \dot{9} \\
& =. \dot{9} \dot{9}-. \dot{9} \dot{9} \\
& =. \dot{9}-999 \\
& =9-9 \times \cdot \dot{9} \dot{9} \\
& =9-\frac{9}{.99} \\
& =\frac{9 \times \dot{9}}{\sqrt{9}}-\sqrt{9} \\
& =\text { and so on } \\
& \mathrm{l}=\frac{99}{99} \\
& =\frac{9+9-9}{9} \\
& =\frac{9}{9} \times \frac{9}{9} \\
& =\frac{9}{9} \div \frac{9}{9} \\
& =\frac{\sqrt{9 \times 9}}{\sqrt{9 \times y}} \\
& =\frac{9}{\sqrt{9}}-\sqrt{9}+9 \\
& =\sqrt{9} \times \sqrt{9}-9+9 \\
& =. \dot{9999} \\
& 1=\cdot 999 \times \cdot 9 \\
& =-999 \div 9 \\
& =. \dot{9} \times \cdot \mathbf{9} 9 \\
& =-9 \div 999 \\
& =. \dot{9} \times .99 \\
& =.99 \div .99 \\
& \begin{aligned}
2 & =\frac{9}{9}+\frac{9}{9} \\
& =\frac{99}{9}-9 \\
& =9-9+\sqrt{9}-\cdot \dot{9} \\
& =\frac{9+9}{\sqrt{9}}-. \dot{9}
\end{aligned} \\
& 3=\frac{9+9+9}{9} \\
& =\frac{9+9}{9}+9 \\
& =9-9+\cdot 9 \times \sqrt{9} \\
& =\frac{9}{9}+\sqrt{9}-\cdot 3 \\
& 4=\frac{9}{9}+\frac{9}{\sqrt{9}} \\
& =.9+9+\cdot 9+9 \\
& =(\cdot \hat{9}+\cdot 9)(\cdot 9+9) \\
& =9-9+\sqrt{9}+9 \\
& =9-\sqrt{9}-.9-9 \\
& =\sqrt{9}+.999 \\
& =\frac{9 \times \cdot \dot{9}}{\sqrt{9}}+\cdot \dot{9} \\
& 5=9-\frac{9}{9}-\sqrt{9} \\
& =\frac{9}{9}+\sqrt{9}+9 \\
& =\frac{9}{\sqrt{9}}+\sqrt{9}-\cdot 9 \\
& =9 \times .9-\sqrt{9}-9
\end{aligned}
$$

A PUZZLE OF DR whewelle's.

$$
\left.\begin{array}{rlrl}
5 & =\frac{9}{\cdot \dot{9}}-\sqrt{9}-\dot{9} & 9 & =9 \cdot \dot{9}-\cdot \dot{9} \\
6 & =\sqrt{9+9+9+9} & & =9+\frac{\sqrt{9}}{\sqrt{9}}-\cdot \dot{9} \\
& =9-9+9-\sqrt{9} & & 10 \\
& =9-\sqrt{9}+\cdot \dot{9}-\cdot \dot{9} & 9
\end{array}\right)
$$

$$
\begin{aligned}
& 13=9 \times \cdot 9+\sqrt{9}+\cdot 9 \\
& =\frac{9}{.9}+\sqrt{9}+\cdot 9 \\
& =9+\sqrt{9}+9 \times \cdot \dot{9} \\
& =9+\sqrt{9}+\frac{. \dot{9}}{.9} \\
& =9+\sqrt{9}+.99 \\
& 14=9+\sqrt{9}+\cdot \dot{9}+9 \\
& =9+9-\sqrt{9}-.9 \\
& 15=9+9-\frac{9}{\sqrt{9}} \\
& =9+\frac{9+9}{\sqrt{9}} \\
& 16=9+9-\sqrt{9}+\cdot \dot{9} \\
& =9+9-9-9 \\
& =9 \cdot 9+\sqrt{9}+\sqrt{9} \\
& =(9-9)(\sqrt{9}-9) \\
& 17=9+9-\frac{9}{9} \\
& =9+9-.99 \\
& =9 \sqrt{9}-9-.9 \\
& =9+\sqrt{9} \times \sqrt{9}+9 \\
& 18=9+9+9-9 \\
& =9+\sqrt{9}+\sqrt{9}+\sqrt{9} \\
& =\frac{(9-\sqrt{9}) 9}{\sqrt{9}} \\
& =9 \sqrt{9} \times \dot{9}-9 \\
& =\frac{9 \sqrt{9}}{. \dot{9}}-9 \\
& 19=9+9+\frac{9}{9} \\
& =9 \sqrt{9}-9+\cdot 9 \\
& =9+\sqrt{9} \times \sqrt{9}+9 \\
& 20=9+\frac{99}{9} \\
& 20=9+9+\sqrt{9}-9 \\
& =(9+9)(\sqrt{9}-9) \\
& 21=9+9+\frac{9}{\sqrt{9}} \\
& =9 \sqrt{9}-9+\sqrt{9} \\
& =9+9+9 \times \sqrt{9} \\
& =9+9+\frac{\sqrt{9}}{.9} \\
& 22=9+9+\sqrt{9}+\cdot \dot{9} \\
& 23=9 \sqrt{9}-\sqrt{9}-9 \\
& 24=9+9+9-\sqrt{9} \\
& =9+9+\sqrt{9}+\sqrt{9} \\
& =9 \sqrt{9}-\frac{9}{\sqrt{9}} \\
& =\frac{99}{\sqrt{9}}-9 \\
& 25=9 \sqrt{9}-9-9 \\
& =9 \sqrt{9}-\sqrt{9}+9 \\
& 26=9+9+9-9 \\
& =9 \sqrt{9}-\frac{9}{9} \\
& =9 \sqrt{9}-.99 \\
& 27=9+9+\sqrt{9 \times 9} \\
& 28=9+9+9+\cdot \dot{9} \\
& =9 \sqrt{9}+\frac{9}{9} \\
& =9 \sqrt{9}+9 \dot{9} \\
& 29=9 \sqrt{9}+9+9 \\
& =9 \sqrt{9}+\sqrt{9}-\dot{9} \\
& 30=9+9+9+\sqrt{9} \\
& =\frac{99-9}{\sqrt{9}} \\
& 31=9 \sqrt{9}+\sqrt{9}+9 \\
& 32=-\frac{99}{\sqrt{9}}-.9
\end{aligned}
$$

A puzzle of dr whewell's.

$$
\begin{array}{rlrl}
33 & =(9+\sqrt{9}) \sqrt{9}-\sqrt{9} & 36 & =9 \sqrt{9}+\sqrt{9 \times 9} \\
& =\frac{99}{\sqrt{9}} \times \cdot \dot{9} & & =9 \sqrt{9}+9 \times \cdot \dot{9} \\
& =\frac{99}{\sqrt{9}} \div \cdot \dot{9} & & =9 \sqrt{9}+\frac{9}{9} \\
34 & =\frac{99}{\sqrt{9}}+\cdot \dot{9} & & =9(\sqrt{9}+\cdot \dot{9} \dot{9}) \\
35 & =9 \sqrt{9}+9-\dot{9} & 37 & =9 \sqrt{9}+9+\cdot \dot{9} \\
36 & =9+9+9+9 & 38 & =9 \sqrt{9}+9 \cdot \dot{9}+\cdot \dot{9} \\
& =\frac{99+9}{\sqrt{9}} & \text { (Intractable }) \\
& 39 & =(9+\sqrt{9}) \sqrt{9}+\sqrt{9} \\
& 40 & =(9+\dot{9})(\sqrt{9}+\cdot \dot{9})
\end{array}
$$

On the Solubility of Linear Algebraic Equations.-

(a) It is proved in treatises on Algebra that the equations (in three variables for brevity)

$$
\left.\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \tag{1}\\
a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{array}\right\} .
$$

have a unique solution given by

$$
x\left|\begin{array}{l}
a_{1}, b_{1}, c_{1} \tag{2}\\
a_{2}, b_{2}, c_{2} \\
a_{3}, b_{3}, c_{3}
\end{array}\right|+\left|\begin{array}{l}
d_{1}, b_{1}, c_{1} \\
d_{2}, b_{2}, c_{2} \\
d_{3}, b_{3}, c_{3}
\end{array}\right|=0 ; \text { etc. }
$$

provided the determinant

$$
\Delta \equiv\left|\begin{array}{l}
a_{1}, b_{1}, c_{1} \tag{3}\\
a_{2}, b_{2}, c_{2} \\
a_{3}, b_{3}, c_{3}
\end{array}\right|
$$

does not vanish.
(b) It is also proved, from (2), that if the "degenerate" homogeneous system

$$
\left.\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=0 \tag{4}\\
a_{2} x+b_{2} y+c_{2} z=0 \\
a_{3} x+b_{3} y+c_{3} z=0
\end{array}\right\}
$$

has a non-null solution (i.e. a solution in which the variables are not all zero), then $\Delta=0$.

