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Abstract  Non-degenerate monoids of skew type are considered. This is a class of monoids S defined
by n generators and (;) quadratic relations of certain type, which includes the class of monoids yielding
set-theoretic solutions of the quantum Yang-Baxter equation, also called binomial monoids (or monoids
of I-type with square-free defining relations). It is shown that under any degree-lexicographic order on the
associated free monoid FM,, of rank n the set of normal forms of elements of S is a regular language in
FM.,,. As one of the key ingredients of the proof, it is shown that an identity of the form zNy"V = yNzN
holds in S. The latter is derived via an investigation of the structure of S viewed as a semigroup of
matrices over a field. It also follows that the semigroup algebra K[S] is a finite module over a finitely
generated commutative subalgebra of the form K[A] for a submonoid A of S.
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1. Introduction

Automaton algebras (and automaton semigroups) were defined by Ufnarovskii [16] with
the condition that the set of normal forms of elements of the algebra (a semigroup)
is a regular language. Namely, let A be a finitely generated algebra over a field K

with a set of generators aj,...,a,. Let K{(x1,...,2,) denote the free K-algebra of
rank n and let 7: K{(x1,...,2,) — A be the homomorphism such that 7(z;) = a;
for all i. Assume that a well order is fixed on the free monoid FM,, = (z1,...,zp)

which is compatible with the multiplication in FM,,. Let I be the ideal of FM,, con-
sisting of all leading monomials of elements of ker(w). Then the set N(A) = FM,, \I is
called the set of normal words corresponding to the chosen presentation and the cho-
sen order on FM,,, and the minimal set of generators of I is called the set of obstruc-
tions. One says that A is an automaton algebra if N(A) is a regular language. Recall
that the latter means that this set is obtained from a finite subset of FM,, by apply-
ing a finite sequence of operations of union, multiplication and operation * defined
by T* = U5, T* for T C FM,,. If T = {w} for some w € FM,, then for the sake
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of simplicity we sometimes write 7% = w*. For basic facts on regular languages and
automata theory we refer the reader to [8]. If S is a semigroup, then S is an automa-
ton semigroup if the semigroup algebra K[S] is an automaton algebra. In this case we
also write N(S) = N(K]JS]). The class of automaton algebras contains the class of
algebras with a finite Grébner basis (or, equivalently, algebras with a finitely gener-
ated ideal of obstructions). There are several results indicating that not only has this
class better computational properties, but also several algebraic and structural prop-
erties behave better than in the class of arbitrary finitely generated (or even finitely
presented) algebras. For example, in this context one can quote results on the growth
and Gelfand—Kirillov dimension [16, § 5.10], results on the radical in the case of monomial
automaton algebras [16, §7.6], results on prime algebras of this type [2] and also results
concerning the special case of finitely presented monomial algebras in [12, Chapter 24]
and [13].

In general, Ufnarovskii’s notion depends not only on the given presentation but also
on the chosen order on the corresponding free monoid FM,,. His approach was later
continued in [9,10].

The object of our study in this paper is the class of so-called monoids (and algebras) of
skew type. Let X = {x1,%a,...,2,}. Assume that a function 7: X? — X2 is given. Then
(x4, 15) = (To,(5), T~,i)) for some maps o1,..., 00,71, ;v {1,...,n} = {1,...,n}.
Assume also that 72 = idx> and r(z,2) = (z,) for all z € X. By the monoid of skew
type S = (z1,...,2,) associated to r, we mean the monoid presented with generators
x1,...,2, and with the defining relations z;z; = x,,(j)2,, ) for all 1 < 4,5 < n. We
shall also write S = (X;R), where R denotes the set of defining relations. We refer
the reader to [7], where it is shown in particular that these monoids provide us with
intriguing classes of Noetherian PI algebras with additional nice properties. Algebras of
this type are also called algebras with quantum binomial relations [4]. In particular, they
include the class of so-called square-free algebras of I-type, which are semigroup algebras
of monoids yielding set-theoretic solutions to the quantum Yang-Baxter equation (3,5,
7,15].

Let Sym,, be the symmetric group of degree n. If o1,...,0, € Sym,,, then we say that
S is right non-degenerate, and if v1,...,7, € Sym,, then S is left non-degenerate. If
both conditions are satisfied, then we say that S is a non-degenerate monoid of skew
type. Our main result shows that under any degree-lexicographic order on the associated
free monoid FM,, of rank n the set N(S) of normal forms of elements of S is a regular
language in FM,,. One of our main motivations is a fundamental result saying that
if A is a square-free algebra of I-type, then there exists a degree-lexicographic order
on FM,, such that the corresponding ideal I of obstructions is generated by the set
{wix; | zw; = wpa; and @205 > 2w}, or, equivalently, that N(A) = {z! - 2" [z, <
<<z, o = 0}, (Actually, so-called binomial monoids were first defined in terms of
the Grobuer basis in [3]; then, in [5], it was shown that binomial monoids are of I-type,
while in [15] it was shown that every square-free monoid of I-type is a binomial monoid.)
As one of the key ingredients of the proof, it is shown that an identity of the form
2NyN = yN2N holds in S. The latter is derived via an investigation of the structure
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of S viewed as a semigroup of matrices over a field. This is then used to show that
C = (sV | s € S) is a finitely generated commutative submonoid of S such that

s=Jrc=ct

feF feF

for a finite subset F' C .S, which seems to be a result of independent interest.

Notice that every monoid of skew type S has a degree function induced by the length of
the words in FM,,, because the defining relations of S are homogeneous. We will denote
by deg(a) the degree of a € S.

2. Monoids of skew type as linear semigroups

From [7, Theorem 9.4.2], we know that, for every field K, the algebra K[S] of a non-
degenerate monoid S of skew type is a Noetherian PI algebra. Therefore, by a result
of Anan’in [1], the algebra K[S] is representable, which means that it embeds into the
algebra M, (L) of matrices over a field extension L of K for some m > 1. Our aim in this
section is to prove certain structural properties of S viewed as a semigroup of matrices
over a field and to derive an important combinatorial property that will be crucial in the
next section.
First we prove the following technical lemma.

Lemma 2.1. Let S = (X; R) be a right non-degenerate monoid of skew type. Then,
for every a,b € S, a™"b € bS, where n = | X| and m = deg(b).

Proof. We shall prove the result by induction on deg(b). If deg(b) = 0, then b =1
and the result is clear in this case.

Suppose that deg(b) = m > 1 and the result is true for all a,b’ € S with deg(b') < m.
Since deg(b) > 1, there exist b’ € S and z; € X such that b = b'x;. Since deg(b’) = m—1,
by the induction hypothesis, there exists ¢ € S such that a™" Ny = e Therefore,

a™"p =™ = 0 M.
Let ¢ = @y, - -~ x;,. Then, by using the defining relations z;z = 4, (1), (;), We have

CTj = Ly * " Ly Ui = Tiy = Tiy_1 Loy, (i) Ty (in)

Tiy = Tig—oPoiy 04 ()Tg, ) (k1) Trilin)
. o
= Loy, 04y, ()€

for some ¢ € S. Since S is right non-degenerate, o1, ...,0, € Sym,,. Hence, there exists
¢’ € S such that ¢"'z; = x(oi1-~'o1,k)"’(i)cl/ = x;¢”. Therefore,

a™" b =¥ = Vaid = b’ €bS,

and the result follows by induction. |
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Now we are ready to prove the main result of this section. For basic background on
the structure of semigroups of matrices, including the description of Green’s relations on
the full multiplicative monoid M,, (L) over a field L, we refer the reader to [12].

Theorem 2.2. Let S be a non-degenerate monoid of skew type and let K be any field.
Then S embeds into the multiplicative monoid M,, (L) of matrices over a field extension
L of K for some m > 1 and, if S is viewed as a subsemigroup of M,,(L), then the
following conditions hold.

(i) S intersects finitely many H-classes of the multiplicative monoid M,, (L).

(ii) If H is a maximal subgroup of M,,(L), then S N H generates a finitely generated
abelian-by-finite subgroup of H that is the group of quotients of SN H.

(iii) If e, f are idempotents such that e € Hy, f € Hs for some maximal subgroups
H,, Hy of M,,,(L) intersecting S, then ef = fe.
NbN — bNCLN

(iv) There exists a positive integer N such that a for every a,b € S.

Proof. Asnoted at the beginning of this section, K[S] embeds into the algebra M,, (L)
of matrices over a field extension L of K for some m > 1. Thus, in order to prove asser-
tions (i)—(iv), we view S as a subsemigroup of the multiplicative monoid M, (L). The
first assertion is an easy consequence of the fact that K[S] is right and left Noetherian [7,
Proposition 5.1.1]. Then, from [12, Proposition 3.16], it follows that for every maximal
subgroup H of M,,(L) intersecting S the subgroup of H generated by S N H is finitely
generated. Since K[S] is a PI algebra, this group must be abelian-by-finite [14, Theo-
rems 5.3.7 and 5.3.9], and it is the group of quotients of SN H. Thus, the second assertion
follows.

Let a € SN Hy, b € SN Hy for maximal subgroups Hy, He of M,,(L) intersecting S.
From Lemma 2.1 and its dual we know that

a®b = be, ab® = da, ba” = db, ba = ad (2.1)

for some positive integers a;, 3, 7, § and some elements ¢,c’,d,d" € S. Let b’ € Hs be the
inverse of b in Hy. Then

a®f = a®bb’ = beb’ = fbeb'.

Hence,
a®f = fa®f.

Since a € Hy and e is the identity of Hi, by the Cayley-Hamilton Theorem we know
that e = >°7_, Xi(a®)" for some \; € K, where j is the rank of all matrices in H;. Then
fla®)if = (a®)*f for every i > 1. Hence,

J J
ef =Y Xi(@®)'f =Y Nf(a®)'f = fef.
i=1 =1
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In a similar way, the remaining three equalities in (2.1) imply that

ef =efe,  fe=fef,  fe=efe

Then ef = efe = fe, which proves assertion (iii).

Let H3 be the maximal subgroup of M,,(L) containing the idempotent ef. Then every
element of the set Hy Hs is J-related in the monoid M, (L) to ef.

In view of (i), the set C of R-classes of M,,(L) intersecting the set (SN Hy)(SNHy) is
finite. Let H; = (SN H;)(SNH;) ! fori=1,2,3. Let aj,az € SNH; and by, by € SNHo.
We have seen above that there exists a positive integer o such that a§b; € 1.5 and this
leads to fa$'f = a$f. Since a§f L ef in M,,(L) and fa3f € feM,,(L) = ef M,,(L), this
implies that faSf =a$f € Hs. If a;l denotes the inverse of ay in Hy, then we also get
ag “fMy(L) = a5 fag f My, (L) = ef M, (L). Thus,

alaglblbgle(L) = alag‘_laQ_O‘me(L)
= alag_leme(L)
= alag‘_lble(L).

Therefore, the set of R-classes of M,,(L) intersecting ﬁlﬁg coincides with the set C,
so it is finite. The elements of S N H; act by left multiplication on C'. So, this gives a
homomorphism ¢: SN H; — Sym,, where ¢ is the cardinality of C. This homomorphism
¢ can be extended to a homomorphism ¢’: H, — Sym,. It follows that the kernel of
¢’ is a normal subgroup of finite index dividing ¢! in H;. So, the action of every at', for
a € SNHy, is trivial. Let k; = t!. It follows that a*tef R ef in M,,(L). Since a*tef L ef,
it follows that a*ef € Hs. In particular, a®*ef = efa* ef. A symmetric argument shows
that there exists a positive integer ko (which depends on the cardinality of the finite set
of L-classes of M,,(L) intersecting (S N Hy)(S N Hy)) such that fea* = fea*: fe. Let
k = kiky. Since ef = fe, we get that a*ef = efa”. Similarly, it follows that b'ef = efb!
for some [ > 1 (which depends on the cardinality of the finite set of R-classes of M,, (L)
intersecting (SN Hy)(SNH;) and on the cardinality of the finite set of L-classes of M,, (L)
intersecting (S N Hy)(S N Hz)). From (ii) we know that there exists a normal abelian
subgroup A of finite index in the subgroup H; of Hy generated by SNHs. If r = [ﬁg : Al
then (afef)"(blef)" = (blef)"(a*ef)". Therefore,

akrblr — (akre)(fblr) —_ (akref)(efblr) —_ (blref)(efakr) — blrakr.

Notice that for every a € S there exists a maximal subgroup H of M, (L) such that
a™ € H. Since the set Z of maximal subgroups of M,, (L) intersecting S is finite, asser-
tion (iv) follows with N = my/, where r' is the least common multiple of indices of
abelian normal subgroups (of finite index) for all groups of the form (SN H)(SN H)™!,
where H runs through the set Z and of the finite set of all possible integers k, | defined
as above (for all pairs of maximal subgroups from the set Z). O

As mentioned above, a right non-degenerate monoid of skew type satisfies the ascending
chain condition on right ideals. For arbitrary submonoids of nilpotent-by-finite groups
with the latter property, the assertion of Lemma 2.1 can also be proved.
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Lemma 2.3. Let S be a submonoid of a nilpotent-by-finite group G. Assume that S
satisfies the ascending chain condition on right ideals. Then there exists a positive integer
q such that for every s,t € S we have st € tS and ts? € St.

Proof. By [7, Lemma 4.1.5], for every u € S there exists n,, > 1 such that s™u € uS.
Moreover, S has a group of quotients. Hence, we may assume that G = SS~! = §718.
Theorem 4.4.6 of [7] also implies that G has a normal subgroup A of finite index such
that the commutator subgroup [A, A] is contained in S.

First, consider the case where A is abelian. Let F' be a finite set of coset representatives
of Ain G. Since A has finite index in G, such an F' can be chosen so F' C S. Let m = |F|.
Then, for every t € S, we get

s = (st = () = S,
where f € F' is chosen so that At = Af. Therefore,
tflsmnft — (fflsmnf f) —_ (fflsnff)m €S,

Hence, s?t € tS follows, with ¢ = meeF ny.

Now, consider the general case. Let S = S/[A, A] C G = G/[A, A]. Applying the
previous case to any elements s, € S we get 59¢ € tS, where @ denotes the image of
u € S in S. This means that s9 € tS[A, A] C tS because [A, A] C S. The symmetric
assertion follows from the fact that S also satisfies the ascending chain condition on left
ideals [7, Theorem 4.4.7]. So, there exists ¢’ > 1 such that ts? € St for every s,t € S.
The result follows. ]

Assume that S = (ai,...,a,) is a cancellative monoid. Let 7: FM,, — S be the
natural homomorphism and assume that an order on FM,, is given such that S = 7w(N)
for a regular subset N C FM,, that is a union of finitely many subsets, each of the
form wiyfways - - - wyy; for some k and some w;,y; € FM,,. The growth of S is then
polynomial, whence by the theorem of Grigorchuk [11, Theorem 8.3], S has a nilpotent-
by-finite group of quotients. So, if S satisfies the ascending chain condition on right
ideals, then the previous lemma can be applied. Observe that if .S does not satisfy the
ascending chain condition on right ideals, then this is no longer true, as the following
example shows [7, Example 4.3.4]. Let G = A x C, where A is a free abelian group of
rank 2 with basis a,b and C = (¢} is the cyclic group of order 2 with the action ca = bc,
¢b = ac. Then in the submonoid S = (a, ac) of G we have (ac)ta‘(ac) = c talc=b' ¢ S

for every i.

3. Normal forms of elements as regular languages

It is known that, in general, changing the order on the free monoid FM,, with basis X
may result in a dramatic change of the properties of the subset N(S) of normal words of
a monoid S defined by a presentation S = (X; R). The following example comes from [9].
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Example 3.1. Let S = (z,y | zyz = ya?). If y > =, then zyxr — yx? forms a
Grébner basis for S, so the ideal of obstructions is of the form I = (yz?). If z > v,

then xyiz® — ytx'*L, i > 1, forms a Grébner basis and I = (zy‘a? | i > 0). Hence, in the

latter case the set of normal forms in FMs of elements of S is not a regular language.

Our main aim in this section is to prove that, for every non-degenerate monoid of skew
type S = (X; R) and any degree-lexicographic order on the free monoid FM,, with basis
X ={x1,...,x,}, the subset of all normal forms in FM,, of the elements of S is a regular
language.

However, it is not true that if S = (X; R) is a non-degenerate monoid of skew type
and S has a finite Grébner basis for some degree-lexicographic order on the free monoid
FM,, with basis X, then it has a finite Grobner basis for every degree-lexicographic order
on FM,,. Even in the class of binomial monoids this is not true, as the following example
shows.

Example 3.2. Let M = (z1, 29,23, 24) be the monoid of skew type defined by the
relations

T1X2 = XT3X4, T1X3 = T2T4, T2X1 = T4T3,

T3T1 = T4T2, T1Tg = Ty, T2X3 = T3T2.

Note that M is a binomial monoid (isomorphic to the monoid B*° of [7, Proposi-
tion 10.2.1]). If FMy is ordered by z1 < z4 < 2o < x3, then N(M) = {ziafzkal |
i,7,k,1 > 0} and the defining relations yield a Grobner basis for M. So, the ideal of
obstructions I = (zox1, 321,41, Toky, T3Za, T3T2). On the other hand, it is easy to
see that, when the degree-lexicographic order on FMy is defined by 1 < z2 < 3 < 24,
M does not admit a finite Grobner basis. In other words, the corresponding ideal of
obstructions I of FMy is not finitely generated. In fact,

T3X1T3 = QXT3 — T4T3X9 — T2X1LQ — XX3Ty4 — T3T2X4

shows that xsx1z3 € I. Then, by an easy induction we get 2E3£L’?k+11'3 € I forevery k > 1.

On the other hand, one verifies that zzz?*z3 € (x3M NxyM) \ (x1M U x9M) for every
k > 1. Since M is cancellative, this easily implies that ng%kwg ¢ I. Therefore, I is not
a finitely generated ideal of F'M,.

In order to distinguish the generators of S from the generators of FM,,, we denote
the generators z1,...,x, of S by a,...,an, respectively. Thus, S = (aj,...,a,) and
FM,, = (x1,...,2,). We will denote by 7 the unique homomorphism 7: FM,, — S such
that m(x;) = a; for all ¢ = 1,...,n. Assume that we order FM,, by the degree-lexico-
graphic order with 1 < x5 < - -+ < z,,. For a € S define its normal form by min(7~*(a)),
i.e. the minimum of all words in FM,, that represent a.

For a subset Y of {1,2,...,n} define

Sy =[S, Sy =[)Sa

€Y i€Y
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and

Dy ={a € Sy | if a = a;b for some b € S, then i € Y},
Dy ={a € Sy | if a = ba; for some b € S, then i € Y}.

For i € {1,2,...,n} define

si= U s, si= U s

Y.|Y|=i Y.|Y|=i

By [7, Theorem 9.3.7], we know that if S is right non-degenerate, then S; is an ideal
of S and
Sngsnfl §§51§S7

and S\ S2 = U, a;{(a;). Similarly, if S is left non-degenerate, then S; is an ideal of S
and
S, C8, ,C-CSCS,

n—1
and S7\ S5 = U ai{a;).
Lemma 3.3. Assume that S is right non-degenerate. Let a € S\{1}. Then there exists

a non-empty subset Y of {1,...,n} such that a € Dy and the normal form w € FM,, of
a is of the following form

w = w1y ways® - wm Y, (3.1)
where m,qi,...,qn, are positive integers, m < |Y| < n, deg(w;) < 2", and y; €
{z1,...,z,} foralli=1,...,m.

Proof. We shall prove the result by induction on Y| = k.

If kK =1, then Y = {i} for some i € {1,...,n}, and a = a! for some positive integer
q. Furthermore, 7~ 1(a) = {z?}. Therefore, z{ is the normal form of a, and we get the
result in this case.

Suppose that & > 1 and the result is true for all b € Dy, where Z is any subset of
{1,...,n} of cardinality less than k.

Let w = yjyh -y, be the normal form of a, where y,...,y. € {x1,...,2,}. Let
wi =yiyYiq oy, and by = m(w)) for j = 1,2,...,7. It is clear that w is the normal
form of b;. Let Z1,...,Z, C {1,...,n} be the subsets such that b; € Dz,. Since a = by,
we have Z; =Y. Since S,, € S,_1 C--- C Sy C S is a chain of ideals of .S, it is easy to
see that

k=Y|=|Z|>12%| 22 |Z:| = 1.

Let s be the greatest integer such that s < r and |[Z,| = k. Then b1 € Dz,
and |Zs41| < k. Therefore, by the induction hypothesis w/,; is of the form (3.1), with
m < |Zs41] < k. If s < 27, then clearly the normal form of a is of the form (3.1). Thus,
we may assume that s > 2". Since the sets Z; are subsets of {1,...n}, there exist positive
integers s1 < sg such that so < s and Z;, = Z,,. Suppose that s; is the smallest positive
integer such that there exists a positive integer so satisfying the above properties. Then
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clearly s;1 < 2". In order to prove that a has a normal form of the form (3.1), it is
sufficient to prove that
Voo = Vi1 = =Y

Let i = min(Z;). We have that yjys - - - yg = @i, 4, - - ;.. Recall that a;a; = aq,(j)a,, @)
for all 4,5 € {1,2,...,n}. Since S is right non-degenerate, the maps o; € Sym,,. Since
|Z1] = |Za] = --- = |Zs| and a;;bj 1 = 7(y})bj+1 with bj € Dz;, the restriction of o;; to
Zj41 is a bijection from Z;4; to Z; for all j =1,2,...,s— 1. Furthermore, since i; € Z;
and oy, (ij) = ij, we have that i; € Z; ;. Therefore,

i1 20 2 0 2 s
Since Zs, = Zs,, we have that is, = is,41 = -+ = ig,. We have that the maps
Y1 Zisl-i-l — Zisl yoreyPsg—sq - ZSz — ZSz—la

defined by ¢;(i) = 0, (i) for all i € Zs, 4; and all 1 < j < s2 — s1, are bijections. Since
Zs, = Zs,, the bijection from Z,,,1 to Zs, given by the restriction of oi,, to Loyl
is the bijection ¢ : Zi51+1 — Zi51~ Hence, Zs, 11 = Zs,+1 and thus 45,41 = 5,41 = s, -
An easy inductive argument shows that Z; = Z;_,, 4, for all s < j < s. Therefore,
s, = %541 =+ = i5. Hence,

/ .7 _ 7
ysl _y31+1 ==Y

and thus a has a normal form of the form (3.1). Therefore, the result follows by induction.

|
Lemma 3.4. Assume that S is right non-degenerate. Let wi,ws, ..., w, € FM,,
Y1,Y2,---,Ym € X and let N be a positive integer. Then there exist positive integers

Ny, Na, ..., Ny, all divisible by N, such that for every positive integer ¢ < m and for all
0<rj <Ny, withi < j <m, we have
N; i i m\ i i m\ IV
Ty, Wi Yy Wiy s WmYpy) = T(Wi1 Y Wiy o WY )a (3.2)
for some a € S.

Proof. Let [ be a positive integer such that deg(wi),...,deg(w,,) < I. We choose
N,, = N. We shall prove by induction on m — 4 that if N;y1,..., N, are chosen, then
there exists a positive integer N; satisfying the statement of the result.

Let ¢ < m and suppose that N;,1,..., N, are chosen. Let 0 < r; < N;, with¢ < 7 < m.
We have that

T T m .
deg(wiy1y; ' wiy2y; (5 - wmypr) < (M — i)l + Nip1 + -+ Ny
Let N; = N - (n!)(m=9i+Nipat+Nm By Lemma, 2.1,
N; Tit1 Ti42 m\ Ti41 Tit2 m\ N
m(y; Wit1Y; 17 Wit2Yits WY )= 7T(wi+1%‘+1 Wit2Y; 'y WYy )a

for some a € S. Thus, the result follows by induction. |
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We denote by N(S) the subset of FM,, of all the normal forms of elements of the
monoid of skew type S.

Theorem 3.5. If S is a non-degenerate monoid of skew type, then N(S) is a regular
language.

Proof. Note that the subset

T ={wyf" - wpyhr € FM, [m <n, y; € X, ¢; 20, deg(w;) <2", V1< j<m}

is a regular language. By Lemma 3.3, we have that N(S) C T.
Let m be a positive integer such that m < n. Fix y1,...,ym € X and wy,...,w, €
FM,, such that deg(wy), ..., deg(w,,) < 2". Consider the following subset of T"

T(Y1, - Ymy, W, - ey W) = WIYT *** Wi Y,

Since T is a finite union of subsets of the above form, in order to prove the result it is
sufficient to show that every N(S)NT(y1,...,Ym,w1,...,Wy) is a regular language.
By Theorem 2.2, there exists a positive integer N such that

a™oV =bNaV  for every a,b € S. (3.3)

By Lemma 3.4, there exist positive integers Ny, Na, ..., N,,, multiples of N, such that,
for every positive integer ¢ < m and for all 0 < r; < N; with ¢ < j < m, equality (3.2)
holds for some a € S. Since S also is left non-degenerate, by the dual of Lemma 3.4,
there exist positive integers N7, N4, ..., N/ . multiples of N, such that, for every positive
integer ¢ < m and for all 0 < 7; < NJ’- with 1 < j <, we have

N !
T(wry wayh? - wiyy; ) = aNw(wiy ways® - wiyl) (3.4)

for some a € S.
Let M; = N;N/ for i = 1,...,m. Define for (r1,...,7y), such that 0 < r; < M;, the
subset of T'(y1, - -+, Ym, Wiy« -, W),

Tiryeroirm) = W1y (1) - Wi (g ™)™

Since T'(y1, .- - Ym, W1, ..., Wy,) is a finite union of subsets of the above form, in order
to prove the result it is sufficient to show that N(S) N T, . .., is a regular language.

Claim 3.6. The set

I={(t1,.. tm) € N™ [ iy y " - wpylmyMmtn ¢ N(S)}

is an ideal of the additive monoid N™.

Proof of Claim 3.6. Let (t1,...,ty,) € I. In order to prove the claim, we shall show
that (¢1,...,¢-1,¢; + L, tjq1,...,tm) € I for every 1 < j < m. Let

z=wiyty e w gl y et (3.5)
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Also define

Z1 —wly Yy

and

rit1, Mjtitj4
22 = WiY41 Y ’

so that z = zlijjtj 29. Let

Mty |

M; (tﬁ-l)

zfzy

1tj

T Wi— 1% 1?/] ’

1 T
wjyj

Mptm

”
WYy Ym )

397

(3.8)

Let w = uv € FM,, be the normal form of n(z), with deg(u) = deg(z1) and deg(v) =
M;t; + deg(z2). Note that deg(z) = deg(w) and, since (t1,...,t,) € I, it follows that

w=uv < z.

Case 1 (u < z1). Let 7}, t; be non-negative integers such that r; = 7} + N;t; and

0 <7} < Nj,fori=1,...,m. By Lemma 3.4 we get that there exist b;,b;41, ...

such that

’ 7 ’
N; Tit1 Tm\ Tit1
W(yi 1wi+lyi+1 ce U/myvﬁn) = 7T(U/i+1yi+1 ce

NI N
wmyﬂr)bi

abm—l es

(3.9)

foralli=4,j+1,...,m— 1. Let b, = m(ym ). Hence, first using (3.7) and the fact that
M; = N;N! and then applying (3.9) several times, we get

’"L 1
X Wy 1ym 1 WY )b

(Y " 2) = mly; wiayps
= 7r(y] wJ+1yjflly]qul(tj
= ﬂ(yj wg+1yjffyjj\ﬁl(tJ
= () Ny

r’ /
= m(Wjr1y; i Wmyni*)b;
Therefore,
7(2")

m(z y]M 3t z9) by (3.8)

i !
Zlyj wj-‘rlyjfl,-l : wmym )b

NN'

+1+ _]+1 ]+1)

1N ati4) Cw

+1+ _]+1 J+1)

r

Jj+1

M,
cWm ym Ym™

")

wmym Ym

Nmfl(t
m—1

bNNlb (]+1+ j+1 7+1)

(

= by
! N( 4Nt )
= W(Zly] w]+1y]+1 P wmymm)bj+1]+l j+1ti+1) b
Myt NN’

= m(a1y; P wpn Y  omyr gty
= m(2)b; NN by (3.5) and (3.6)

(

™

uv)b;
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rl. Nm(t,,+N/.t ))

77\ 1 Non (B, + N tm )
mym )b

Tm—2 N Z(tm 2+Nm gtnL 2)
* Wm— Qym 2ym 2

m—1 Ny tm—1) y Now (b, + N, tn )
bm

e NN )

NNj N 4N ati0) N (4 Nt
m

N (&), +N),tm) y NN
m b;

(3.10)

by (3.10)
by (3.3)
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(where the fourth equality follows as in (3.10), by applying (3.9) several times in the
reverse order). Since u < z1, we have that the normal form of w(z’) is not z’. Hence,
z' ¢ N(S) and thus (t1,...,tj—1,t; +1,tj41,...,tmn) € I in this case.

Case 2 (u = z1). In this case, since uv < z, we have that v < yyjtj zo. Let 1l t}
be non-negative integers such that r; = r; + N/¢; and 0 < r} < N/, for i = 1,...,m.
By (3.4), there exist dq,ds,...,d; € S such that

’

i N] / i
m(wiyyt - wisry; S wiys ) = AN m(wiyyt w1y w;) (3.11)

foralli=1,2,...,7. Hence, in view of (3.6) and using (3.11) several times, we get

m(uy, )

r1, Mity 1, Mj_1t;1 M; r;
(wryityy e wy wiy; 'y, )

’ !
N{(t}+N1t1) iy Ni_(t 7~_1+Nj—1tj—1) ri Nt
m(wiy v, w1y Y wiyy "y Y )

M
m(z1y; )

™

_ GN(#y+N1t1) ry  Nj(th+Natz) i1 Nj_ (1 4+Nj_1tj—1)
=d; (wly1 W2Ya2" Yo U Wi-1Y;1 Y0 .
t

My 75 Nty
X wiy; Yy )

/ N(t. No 1t ) ’ A .
_ div(t1+N1tl) . ~-dj,(§]’1+ -1t 1)d§VN]7r(w1y;1 ~-~wj71y;]:11wjy;])- (3.12)

Therefore,
n(2) = m(z1y) "V z25) by (3.8)
—d N(ty+Nit1) “d;_\/_(i;_ﬁNj,ltjfl)d;\fNj
X 7r(w1y;1 ---wj,ly;;__lley;jy;wjtj@) by (3.12)
_ dJ_VdeiV(t/lJertl)”.df_V(t;,1+Njfltjfl)

4 - Mt
x 7(wyyy* -~-wj_1y;-illey;]yj 7 29) by (3.3)

= d) N (wry e wgy y  wgy Y Y 2)

= dijJW(Z) = dNNjW(uv) by (3.5)

= d]-V 7(wy y”yMltl- wj 1yj 0 y] ]1 1hi= ley;jv) by (3.6)

- diV i dj»v_(i"*”j‘”-"‘“dj-v Nﬂ‘w(wly’ﬁ cewg oy g v) by (3.3)

= ﬂ(uyJij)

(the fourth, eighth and last equalities follow as in (3.12) by applying (3.11) several times).
Since v < y;»wjtj z2, we know that the normal form of 7(z’) is not 2’. Hence, 2’ ¢ N(S5)
and thus (¢1,...,¢-1,¢; + 1, tj41,...,tm) € I in this case.

Therefore, I is an ideal of N, and the claim follows. O
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It is well known that ideals of N are finitely generated [6, Theorems 5.1 and 7.8].
Therefore, there exist (t1,1,...,¢1,m),---, (5,1, tsm) € I such that

S

I=J((tigs - tim) +N™).

i=1

Therefore,
S
M ti, m mbli,m m
Tiry o) \N(S) = [ wriyy ™ (0 ™) - wmyp gyl o (ymd )
i=1

is a regular language. Note that if L is a regular language in FM,,, then FM,, \L is a
regular language [8, Chapter 6]. In particular, since T(;, ,.) is a regular language,
FMp \T{r,....,r,) is also a regular language. Since T(;., ...,y \ V() is a regular language,
it follows that

FM, \(T(m,--.,f’m) N N(S)) = (FMn \T(n,»--,rm)) U (T(ﬁ,--.,rm) \N(S))

is a regular language. Therefore, N(S) N T\, ., ) is a regular language. Hence, N (S5) is
a regular language and the result is proved. (|

Remark 3.7. If S is a cancellative right non-degenerate monoid of skew type, then
N (S) is a regular language. This is proved via a modification of the argument used in the
proof of Theorem 3.5. Namely, we can use Lemma 2.3 and, since the group of quotients
of S is abelian-by-finite, assertion (iv) of Theorem 2.2 also holds. Then cancellativity
of S can now be used in the part of the proof that originally required the left non-
degenerate assumption. Namely, case 2 of the proof of Claim 3.6 can be proved easily
using cancellativity.

Corollary 3.8. If S is a non-degenerate monoid of skew type, then there exists N > 1
such that the monoid A = (s | s € S) is commutative and finitely generated and

S=Jra=JAr
feEF feF

for a finite set F' C S. Moreover, A is a disjoint union of cancellative subsemigroups of S.

Proof. We use the notation of the proof of Theorem 3.5. Let A = (s™ | s € S). Let
m be a positive integer such that m < n. For y1,...,yn € X and wq,...,w,, € FM,
such that deg(wi), ..., deg(w,,) < 2", define

F(yi, .. Ym, W1, ..., W) = {m(wiyi* - - wmyy) | 0 < rj < M},

where the integers M; are defined as in the proof of Theorem 3.5. Define

F = U ( U ( U F(Zh,...,ym,wl,...,wm)>>.

m 150 Ym €X W EFM,,,
deg(w;)<2"
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Clearly, 1 = 7(2)) € F(z1,1) C F. From the proof of Theorem 3.5 it follows that

s=Jra=JA4r

feF fer

Hence, K[S] is a finitely generated (right and left) module over the commutative subal-
gebra K[A]. For every f;, f; € F we choose a;; € A, f;; € F such that fif; = f; ja, ;.
Let C = (a;; | fi, f; € F). Note that a, = w(xy) € F for all k = 1,...,n. We shall see
that S = U;cp fC.

Suppose that S # ;e fC. Let s € S\ (U;cp fC) be of minimal degree. Since ay, € F'
for all k = 1,...,n, we have that deg(s) > 1. Hence, there exist s’ € Sand 1 < k < n
such that s = ays’. Since deg(s’) < deg(s), s" € U;cp fC. Thus, there exist ¢ € C' and
f' € F such that ' = f’c. Then

s=apf'ce U fC,

fer

because ay € F' and all a; ; € C, which is a contradiction. Therefore, S = UfeF fC.
Then K[S] is a finitely generated right module over K[C]. Clearly, K[C] is a com-
mutative Noetherian algebra. Then K[S] is a Noetherian K [C]-module; hence, its sub-
module K[A] also is a Noetherian K[C]-module. Then K[A] is a Noetherian algebra, so
from [7, Theorem 5.1.5] we know that A is a finitely generated monoid. The proof of
Theorem 3.5 also shows that A is a disjoint union of cancellative semigroups, because
the integer N is chosen as in the proof of Theorem 2.2, implying that every sV lies in a
maximal subgroup of the corresponding monoid M,,(L). O

The above is a natural extension of the results known earlier in the special case of
monoids S satisfying the cyclic condition [7, Proposition 9.4.4], and hence, in particular,
the results in the case of monoids of I-type with square-free defining relations [7, Chap-
ter 8].
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