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Abstract Let p(n) denote the overpartition function. In this paper, we study the asymptotic higher-
order log-concavity property of the overpartition function in a similar framework done by Hou and
Zhang for the partition function. This will enable us to move on further in order to prove log-concavity
of overpartitions, explicitly by studying the asymptotic expansion of the quotient p(n−1)p(n+1)/p(n)2

up to a certain order. This enables us to additionally prove 2-log-concavity and higher Turán inequalities
with a unified approach.
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1. Introduction

Partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. Let p(n) denote the number of partitions of n. Recall that a sequence {an}n≥0

is called log-concave if

a2n − an+1an−1 ≥ 0, n ≥ 1.

Moreover, this sequence is said to be asymptotically r -log-concave if there exists N such
that

L̂ {an}n≥N , L̂ 2{an}n≥N , . . . , L̂ r{an}n≥N
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Higher order log-concavity of the overpartition function 165

are all non-negative sequences, where

L̂ {an}n≥0 = {a2n+1 − anan+2}n≥0 and L̂ k{an}n≥0 = L̂
(
L̂ k−1{an}n≥0

)
.

Based on the Hardy–Ramanujan–Rademacher formula [1, 8, 9, 18] and the error esti-
mation given by Lehmer [14, 15], DeSalvo and Pak [6] showed that the partition function
p(n) is log-concave for all n > 25, which was conjectured by Chen [2]. Consequently,
Chen, Wang and Xie proved the DeSalvo–Pak conjecture that states

Theorem 1.1 (Conjecture 1.3, [4]). For n ≥ 45, we have

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
.

Recently, Chen et al. [3] proceeded further to show that {p(n)}n≥95 satisfies the higher
order Turán inequality and to formulate a conjecture [3, Conjecture 1.2] in a somewhat
similar spirit to Theorem 1.1, which was settled by Larson and Wagner [13, Theorem 1.2].
Hou and Zhang [11] proved the asymptotic r -log-concavity of p(n), and as a consequence,
they showed that {p(n)}n≥221 is 2-log-concave, whereas an alternative approach through
studying determinant of certain class of matrix can be found in [12].
The overpartition function also reflects similar log-behavior. Recall an overpartition [5]

of a non-negative integer n is a partition of n where the first occurrence of each distinct
part may be overlined. Let p(n) denote the number of overpartitions of n. Zuckerman
[20] gave a formula for the overpartition function, which was considered by Sills [19] as a
Rademacher-type convergent series

p(n) =
1

2π

∞∑
k=1
2-k

√
k

k∑
h=0

(h,k)=1

ω(h, k)2

ω(2h, k)
e−

2πinh
k

d

dn

(
sinh π

√
n

k√
n

)
, (1.1)

where

ω(h, k) := exp

(
πi

k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

))

for positive integers h and k.
Let µ̂(n) := π

√
n. From this Rademacher-type series (1.1), Engel [7] provided an error

term for the overpartition function

p(n) =
1

2π

N∑
k=1
2-k

√
k

k∑
h=0

(h,k)=1

ω(h, k)2

ω(2h, k)
e−

2πinh
k

d

dn

(
sinh µ̂(n)

k√
n

)
+R2(n,N),

where R2(n,N) satisfies

|R2(n,N)| ≤ N
5
2

nµ̂(n)
sinh

(
µ̂(n)

N

)
.
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In particular, when N =3, we have

p(n) =
1

8n

[(
1 +

1

µ̂(n)

)
e−µ̂(n) +

(
1− 1

µ̂(n)

)
eµ̂(n)

]
+R2(n, 3), (1.2)

where

|R2(n, 3)| ≤
3
5
2

nµ̂(n)
sinh

(
µ̂(n)

3

)
≤ 3

5
2 e

µ̂(n)
3

2nµ̂(n)
. (1.3)

Similar to the work done in the world of partitions, Engel initiated the study of log-
concavity property of the overpartition function in his work [7]. The second author and
Liu established the analog of Theorem 1.1 in context of overpartitions in [16, Equation
(1.6)]. They also proved the higher-order Turán property of p(n) for n ≥ 16 (see
[16, Theorem 1.2]). Following the treatment in [12], the first author [17, Theorem 1.7]
laid out a proof that {p(n)}n≥42 is 2-log-concave.
In this paper, our main goal is to prove the asymptotic r -log-concavity for the over-

partition function, stated in Theorem 1.2. In the proof of Theorem 1.2, we give a bound
for p(n+1)/p(n) and an asymptotic expression of p(n−1)p(n+1)/p(n)2. More precisely,
we shall study the asymptotic growth of the quotient p(n− 1)p(n+ 1)/p(n)2 up to n−4,
stated in Theorem 1.3. This in turn helps for a further study of certain quotients stated in
Theorems 1.6 and 1.9. A host of inequalities for overpartition function, see Corollaries 1.4,
1.5, 1.7, 1.8, 1.10 and 1.11, appear as a special case of the theorems and are analogs of
results in the case of p(n). The primary objective of this paper is to exploit the proof of
Theorem 1.2, so that one can bring in all the proofs of Corollaries 1.4, 1.5, 1.7, 1.8, 1.10
and 1.11 under a unique structure, unlike the different array of structure of proofs for
inequalities in the context of the partition function.

Theorem 1.2. The sequence {p(n)}n≥1 is asymptotically r-log-concave for any
positive integer r.

We need some notation to state our next result. Define the sequence un by

un :=
p(n− 1)p(n+ 1)

p(n)2
.

Theorem 1.2 is entangled with Theorem 1.3 by its proof methodology. Precisely,
Theorem 1.2 requires the full asymptotic expansion of un, and by error bound com-
putation for the asymptotic expansion after partial sums of the first seven terms, we get
Theorem 1.3.

Theorem 1.3. For all n ≥ 37, we have

sn − 15

n4
< un < sn +

20

n4
, (1.4)

https://doi.org/10.1017/S0013091523000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000093


Higher order log-concavity of the overpartition function 167

where

sn := 1− π

4n3/2
+

1

n2
− 3

4πn5/2
+

−32 + π4

32π2

1

n3
−
(

5

4π3
+

21π

64

)
1

n7/2
.

Theorem 1.3. has manifold applications to various types of inequalities for p(n) arising
from different contexts. Log-concavity and its companion inequality for p(n), given in
Corollaries 1.4 and 1.5, are direct consequences of Theorem 1.3.

Corollary 1.4. ([7, Theorem 1.2]). {p(n)}n≥4 is log-concave.

Corollary 1.5. ([16, Equation (1.6)]). For n ≥ 2,

p(n− 1)

p(n)

(
1 +

π

4n3/2

)
>

p(n)

p(n+ 1)
. (1.5)

Applying Theorem 1.3, we obtain an inequality for the quotient
(1− un)

2

u2n(1− un−1)(1− un+1)
in Theorem 1.6 so as to prove 2-log-concavity and its

companion inequality for p(n), given in Corollaries 1.7 and 1.8.

Theorem 1.6 For all n ≥ 31,

tn − 120

n5/2
<

(1− un)
2

u2n(1− un−1)(1− un+1)
< tn +

120

n5/2
, (1.6)

where

tn := 1 +
π

2n3/2
− 7

2n2
.

Corollary 1.7. ([17, Theorem 1.7]). {p(n)}n≥42 is 2-log-concave.

Corollary 1.8. For n ≥ 52,

u2n(1− un−1)(1− un+1)
(
1 +

π

2n3/2

)
> (1− un)

2. (1.7)

As a final application of Theorem 1.3, we get Theorem 1.9 which helps us to retrieve
the higher-order Turán inequality along with its companion inequality for p(n), stated in
Corollaries 1.10 and 1.11.

Theorem 1.9 For all n ≥ 2,

vn − 120

n5/2
<

4(1− un)(1− un+1)

(1− unun+1)2
< vn +

101

n5/2
, (1.8)

where

vn := 1 +
π

4n3/2
− 25

16n2
.

https://doi.org/10.1017/S0013091523000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000093


168 G. Mukherjee, H. W. J. Zhang and Y. Zhong

Corollary 1.10. ([16, Theorem 1.2]). {p(n)}n≥16 satisfies the higher-order Turán
inequalities.

Corollary 1.11. For n ≥ 2,

(1− unun+1)
2
(
1 +

π

4n3/2

)
> 4(1− un)(1− un+1). (1.9)

The paper is organized as follows. The proof of Theorem 1.2 is given in § 2. First we
obtain an error estimation of p(n) in § 2.1. We then compute the asymptotic expression of
un by studying the bounds for the ratio p(n+1)/p(n) in § 2.2. The proof of Theorems 1.3,
1.6 and 1.9 and Corollaries 1.4, 1.5, 1.7, 1.8, 1.10 and 1.11 are given in § 3.

2. Proof of Theorem 1.2.

In this section, we utilize the Rademacher-type convergent series and the error estimation
given by Engel to derive an estimation for p(n). In view of Equation (1.2), p(n) can be
written as

p(n) = T̂ (n) + R̂(n), (2.1)

where

T̂ (n) :=
1

8n

(
1− 1

µ̂(n)

)
eµ̂(n), (2.2)

R̂(n) :=
1

8n

(
1 +

1

µ̂(n)

)
e−µ̂(n) +R2(n, 3). (2.3)

2.1. Estimation of the error term for p(n)

In this section, our goal is to get an upper bound for the absolute value of the error
term R̂(n)/T̂ (n) which in turn helps to get an estimation for the error term of p(n). To
obtain the error estimation of p(n), we need to introduce the following lemma.

Lemma 2.1. For any integer m ≥ 1, there exists a real number

N0(m) :=

1, if m = 1,

2m logm−m log logm, if m ≥ 2,

such that

xm e−x < 1, for x ≥ N0(m).

Proof. For m =1, it is immediate that N0(m) = 1. For m ≥ 2, rewrite the inequality
xm e−x < 1 as f(x) := x−m log x > 0. Now f (x ) is strictly increasing for x >m. In order
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to show f(x) > 0 for x ≥ N0(m), first we show that N0(m) > m and then it is enough to
show f(N0(m)) > 0. To prove N0(m) > m, it is equivalent to show m2 > e logm, which
holds for m ≥ 2. Next, we observe that

f(N0(m)) > 0 ⇔ logm > log 2 + 2 log logm+ log

(
1− log logm

2 logm

)
.

For m ≥ 3, we have log

(
1− log logm

2 logm

)
< 0, and hence, it is sufficient to prove

logm > log 2 + 2 log logm⇔ m > 2 (logm)2,

which holds for m ≥ 14. Therefore, f(N0(m)) > 0 for all m ≥ 14, and we conclude the
proof by checking numerically that f(N0(m)) > 0 for 2 ≤ m ≤ 13. �

With the aid of Lemma 2.1, we obtain the following result.

Theorem 2.2. For any integer m ≥ 2, there exists an integer N1(m) with

N1(m) := max

{
184,

⌈
9

4π2
N2

0 (m)

⌉}
,

such that for all n ≥ N1(m),

|ŷn| <
(
3

2

)m+1

µ̂(n)−m,

where ŷn := R̂(n)/T̂ (n).

Proof. Using Equation (1.3) in addition to Equations (2.2) and (2.3), we have

ŷn ≤ e−
2µ̂(n)

3

(
T̂1(n) + R̂1(n)

)
, (2.4)

where

T̂1(n) :=
µ̂(n) + 1

µ̂(n)− 1
e−

4µ̂(n)
3 , R̂1(n) := 4 · 3

5
2

1

µ̂(n)− 1
.

From the fact that T̂1(n) and R̂1(n) are decreasing functions of n for n ≥ 184, it follows
that

T̂1(n) + R̂1(n) ≤ T̂1(184) + R̂1(184) <
3

2
.

Therefore,

|ŷn| <
3

2
e−

2µ̂(n)
3 , for n ≥ 184.
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According to Lemma 2.1, there exists a real numberN0(m), such that for 2
3 µ̂(n) ≥ N0(m),

e−
2µ̂(n)

3 <

(
3

2

)m
µ̂(n)−m.

On the other side,

n
1
2 =

µ̂(n)

π
.

Therefore, when

n ≥ max

{
184,

⌈
9

4π2
N2

0 (m)

⌉}
= N1(m),

we have

µ̂(n) >
3

2
N0(m),

which completes the proof. �

2.2. Bounds for the ratio p(n + 1)/p(n)

In order to obtain an estimation of p(n + 1)/p(n), we need the following lower and

upper bounds for T̂ (n+ 1)/T̂ (n).

Lemma 2.3. For any integer m, let m′ := bm2 c, ν̂(n) := µ̂(n)(µ̂1(n)− 1) and

µ̂1(n) :=
m′∑
k=0

(
1/2

k

)
π2kµ̂(n)−2k, ε̂1(n) :=

∣∣∣∣( 1/2

m′ + 1

)∣∣∣∣π2(m′+1)µ̂(n)−2(m′+1),

µ̂2(n) :=
m′∑
k=0

(
−3/2

k

)
π2kµ̂(n)−2k, ε̂2(n) :=

∣∣∣∣( −3/2

m′ + 1

)∣∣∣∣π2(m′+1)µ̂(n)−2(m′+1),

ν̂1(n) :=

(
µ̂1(n)− ε̂1(n)−

1

µ̂(n)

) m∑
k=0

µ̂(n)−k,

ν̂2(n) :=

(
µ̂1(n) + ε̂1(n)−

1

µ̂(n)

)( m∑
k=0

µ̂(n)−k + 2µ̂(n)−m−1

)
,

then

T̂ (n+ 1)

T̂ (n)
> ν̂1(n) (µ̂2(n)− ε̂2(n)) (1− µ̂(n)ε̂1(n))

m∑
k=0

ν̂(n)k

k!
(2.5)
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and

T̂ (n+ 1)

T̂ (n)
< ν̂2(n)(µ̂2(n) + ε̂2(n))(1 + 2µ̂(n)ε̂1(n))

(
m∑
k=0

ν̂(n)k

k!
+ eν̂(n)

ν̂(n)m+1

(m+ 1)!

)
,

(2.6)

where T̂ (n) is defined as in Equation (2.2).

Proof. By Equation (2.2), we have

T̂ (n+ 1)

T̂ (n)
=
µ̂(n+ 1)− 1

µ̂(n)− 1
· µ̂(n)3

µ̂(n+ 1)3
· eµ̂(n+1)−µ̂(n). (2.7)

Now we consider the above ratio term by term. For the first factor, we have

µ̂(n+ 1)− 1

µ̂(n)− 1
=

µ̂(n+1)
µ̂(n) − 1

µ̂(n)

1− 1
µ̂(n)

.

By Taylor’s Theorem, we have since(
1− 1

µ̂(n)

)−1

=
∞∑
k=0

µ̂(n)−k

that

m∑
k=0

µ̂(n)−k <

(
1− 1

µ̂(n)

)−1

<
m∑
k=0

µ̂(n)−k + 2µ̂(n)−m−1. (2.8)

Note that

µ̂(n+ 1) = µ̂(n)

(
1 +

π2

µ̂(n)2

) 1
2

.

Since

(
1 +

π2

µ̂(n)2

)1
2

=
m′∑
k=0

(
1/2

k

)
π2kµ̂(n)−2k +

(
1/2

m′ + 1

)(
π2

µ̂(n)2

)m′+1

(1 + ξ)
1
2−m

′−1
,

where ξ is some number in the interval
(
0, π2

µ̂(n)2

)
, we have

µ̂1(n)− ε̂1(n) <
µ̂(n+ 1)

µ̂(n)
< µ̂1(n) + ε̂1(n). (2.9)

https://doi.org/10.1017/S0013091523000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000093


172 G. Mukherjee, H. W. J. Zhang and Y. Zhong

Combining Equations (2.8) and (2.9), we deduce that

ν̂1(n) <
µ̂(n+ 1)− 1

µ̂(n)− 1
< ν̂2(n). (2.10)

For the second factor, we have

µ̂(n)3

µ̂(n+ 1)3
=

(
1 +

π2

µ̂(n)2

)−3/2

.

Since(
1 +

π2

µ̂(n)2

)− 3
2

=
m′∑
k=0

(
−3/2

k

)
π2kµ̂(n)−2k +

(
−3/2

m′ + 1

)(
π2

µ̂(n)2

)m′+1

(1 + ξ)
−3

2−m
′−1

,

where ξ is some number in the interval
(
0, π2

µ̂(n)2

)
, we have

µ̂2(n)− ε̂2(n) <
µ̂(n)3

µ̂(n+ 1)3
< µ̂2(n) + ε̂2(n). (2.11)

For the last factor, using Equation (2.9), we have

eν̂(n)−µ̂(n)ε̂1(n) < eµ̂(n+1)−µ̂(n) < eν̂(n)+µ̂(n)ε̂1(n).

Evidently, for 0 < x < 1
2 ,

e−x > 1− x, ex < 1 + 2x,

and for x > 0,

m∑
k=0

xk

k!
< ex <

m∑
k=0

xk

k!
+ ex

xm+1

(m+ 1)!
,

so that

eµ̂(n+1)−µ̂(n) > (1− µ̂(n)ε̂1(n))
m∑
k=0

ν̂(n)k

k!
(2.12)

and

eµ̂(n+1)−µ̂(n) < (1 + 2µ̂(n)ε̂1(n))

(
m∑
k=0

ν̂(n)k

k!
+ eν̂(n)

ν̂(n)m+1

(m+ 1)!

)
. (2.13)

Applying the estimates (2.10)–(2.13) to (2.7), we reach Equations (2.5) and (2.6). This
completes the proof. �
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Theorem 2.4. For any positive integer m, there exists an integer N1(m), real numbers
ak and C1, C2 > 0 such that for n ≥ N1(m), we have

m∑
k=0

akµ̂(n)
−k − C1µ̂(n)

−m−1 <
p(n+ 1)

p(n)
<

m∑
k=0

akµ̂(n)
−k + C2µ̂(n)

−m−1. (2.14)

Proof. By Equation (2.1) and Theorem 2.2, for any m ≥ 2, there exists an integer
N1(m) such that

∣∣∣p(n)/T̂ (n)− 1
∣∣∣ < (3

2

)m+1

µ̂(n)−m, for all n ≥ N1(m).

Therefore, we have

T̂ (n)

(
1−

(
3

2

)m+1

µ̂(n)−m

)
< p(n) < T̂ (n)

(
1 +

(
3

2

)m+1

µ̂(n)−m

)
.

Since µ̂(n) is an increasing function of n, we derive that

T̂ (n+ 1)

T̂ (n)

1−
(
3
2

)m+1
µ̂(n)−m

1 +
(
3
2

)m+1
µ̂(n)−m

<
p(n+ 1)

p(n)
<
T̂ (n+ 1)

T̂ (n)

1 +
(
3
2

)m+1
µ̂(n)−m

1−
(
3
2

)m+1
µ̂(n)−m

.

We find that for 0 < λ < 1/3,

1 + λ

1− λ
< 1 + 3λ and

1− λ

1 + λ
> 1− 2λ.

By

0 <

(
3
2

)m+1

µ̂(n)m
<

1

3
,

we have for all n ≥ N1(m) that

T̂ (n+ 1)

T̂ (n)

(
1− 4 · 2mµ̂(n)−m

)
<
p(n+ 1)

p(n)
<
T̂ (n+ 1)

T̂ (n)

(
1 + 6 · 2mµ̂(n)−m

)
. (2.15)

By Lemma 2.3, we can see that T̂ (n + 1)/T̂ (n) is bounded by a pair of polynomials in
µ̂(n)−1 whose difference is a polynomial in µ̂(n)−1 of degree at least m +1. Combining
Equation (2.15) and limn→+∞ µ̂(n) = +∞, we have Equation (2.14). This completes the
proof. �

For any positive integer m, we can explicitly determine the parameters ak , C 1, C 2 in
the above result. To do so, we follow the Mathematica package of Hou and Zhang [11] to
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compute these parameters. For example, we compute that for n ≥ 184, we have

4∑
k=0

akµ̂(n)
−k − 146

µ̂(n)5
<
p(n+ 1)

p(n)
<

4∑
k=0

akµ̂(n)
−k +

756

µ̂(n)5
,

where

4∑
k=0

akµ̂(n)
−k = 1 +

π2

2µ̂(n)
+

−π2 + π4

8

µ̂(n)2
+

π2

2 − 5π4

8 + π6

48

µ̂(n)3
+

π2

2 + 5π4

4 − 3π6

16 + π8

384

µ̂(n)4
.

We give a specific example to present the calculating process in § 3.
The following lemma given by Hou and Zhang [10] plays an important role in the proof

of Theorem 1.2.

Lemma 2.5. Let {an}n≥0 be a positive sequence such that R2an = anan+2/a
2
n+1 has

the following asymptotic expression

R2an = 1 +
c

nα
+ · · ·+ o

(
1

nβ

)
, n→ ∞,

where 0 < α ≤ β. If c< 0 and α< 2, then {an}n≥0 is asymptotically bβ/αc-log-concave.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Based on Equation (2.14), we consider the bound of
µ̂(n + 1)−r and 1/h(µ̂(n)−1), where h(µ̂(n)−1) is a polynomial in µ̂(n)−1 with constant
term 1.
Let c denote the coefficient of the term with the highest power of h(µ̂(n)−1) − 1. If

c> 0, there exists a positive integer N such that

h(µ̂(n)−1)− 1 > 0, for all n ≥ N.

By Taylor’s Theorem, we have

1− λ+ λ2 − · · ·+ (−1)mλm − λm+1 <
1

h(µ̂(n)−1)
=

1

1 + (h(µ̂(n)−1)− 1)

< 1− λ+ λ2 − · · ·+ (−1)mλm + λm+1,

where λ = h(µ̂(n)−1)− 1. If c< 0, there exists a positive integer N such that

0 < 1− h(µ̂(n)−1) <
1

2
, for all n ≥ N.
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So

1 + λ+ λ2 + · · ·+ λm + λm+1 <
1

h(µ̂(n)−1)
=

1

1− (1− h(µ̂(n)−1))

< 1 + λ+ λ2 + · · ·+ λm + 2λm+1,

where λ = 1− h(µ̂(n)−1).
We now consider the bound of µ̂(n+ 1)−r. It is easy to see that(

µ̂(n+ 1)

µ̂(n)

)−r

=

(
1 +

π2

µ̂(n)2

)−r/2

.

Then we can derive the bounds of
(
µ̂(n+1)
µ̂(n)

)−r
in a way similar to the estimation of

µ̂(n+1)
µ̂(n) , thus get an estimation of µ̂(n+ 1)−r.

Based on the above estimations, we compute an asymptotic expression of un by
Mathematica. In particular, for any positive integer m, we have

un = 1− π

4n3/2
+ · · ·+ o

(
1

nm

)
.

By Lemma 2.5, the proof is complete. �

3. Proof of Theorems 1.3, 1.6 and 1.9 and Corollaries 1.4, 1.5, 1.7, 1.8, 1.10

and 1.11.

In § 2, we prove the asymptotic r -log-concavity for the overpartition function. In this
section, we study the 2-log-concavity as an example, stated in Corollary 1.7. It is worth
noting that we can derive 3-log-concavity (or more generally r -log-concavity) in the same
way. But it could be more difficult as r becomes larger.
The key idea behind the proof of Theorem 1.3 lies in a detailed analysis of the proof

of Theorem 2.4, in particular exploiting Equations (2.7) and (2.15). More specifically,
we shall proceed with a detailed inquiry of the exact asymptotics for each of the fac-
tor present in T̂ (n + 1)/T̂ (n) explicitly by studying the Taylor expansion of the form∑
m≥0 am(

√
n)−m upto order 7 and bounding the error term. This will set the stage for

the proof of Theorems 1.6 and 1.9.

Proof of Theorem 1.3. We recall Equation (2.7):

T̂ (n+ 1)

T̂ (n)
=
µ̂(n+ 1)− 1

µ̂(n)− 1
· µ̂(n)3

µ̂(n+ 1)3
· eµ̂(n+1)−µ̂(n).

By Taylor’s theorem, we have

µ̂(n+ 1)− 1

µ̂(n)− 1
= s

(1)
+ (n) +O

(
1

n4

)
,
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where

s
(1)
+ (n) : = 1 +

1

2n
+

1

2πn3/2
+

(
1

2π2
− 1

8

)
1

n2
+

(
1

2π3
− 1

8π

)
1

n5/2

+

(
1

16
+

1

2π4
− 1

8π2

)
1

n3
+

(
1

2π5
− 1

8π3
+

1

16π

)
1

n7/2
.

It is easy to observe that for n ≥ 1, we have

s
(1)
+ (n)− 2

n4
<
µ̂(n+ 1)− 1

µ̂(n)− 1
< s

(1)
+ (n) +

2

n4
. (3.1)

Similarly, for n ≥ 1, we obtain

s
(2)
+ (n)− 3

n4
<

µ̂(n)3

µ̂(n+ 1)3
< s

(2)
+ (n) +

3

n4
, (3.2)

where

s
(2)
+ (n) := 1− 3

2n
+

15

8n2
− 35

16n3
.

For the factor eµ̂(n+1)−µ̂(n), we first estimate µ̂(n + 1) − µ̂(n) as follows. For n ≥ 1, we
have

s
(3,0)
+ (n) < µ̂(n+ 1)− µ̂(n) < s

(3,0)
+ (n) +

3

n4
, (3.3)

where

s
(3,0)
+ (n) :=

π

2
√
n
− π

8n3/2
+

π

16n5/2
− 5π

128n7/2
.

Truncating the Taylor series of e
s
(3,0)
+ (n)

at the order
1

n7/2
and bounding the error term,

we obtain for n ≥ 2,

e3/n
4
< 1 +

4

n4
and s

(3)
+ (n)− 1

n4
< e

s
(3,0)
+ (n)

< s
(3)
+ (n) +

1

n4
, (3.4)

where

s
(3)
+ (n) :=

7∑
m=0

s
(3)
+,m

(
1√
n

)m
.
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The coefficients {s(3)+,m}0≤m≤7 are as follows:

s
(3)
+,0 := 1, s

(3)
+,1 :=

π

2
, s

(3)
+,2 :=

π2

8
, s

(3)
+,3 :=

π(π2 − 6)

48
, s

(3)
+,4 :=

π2(π2 − 24)

384
,

s
(3)
+,5 :=

π(π4 − 60π2 + 240)

3840
, s

(3)
+,6 :=

π2(π4 − 120π2 + 1800)

46080
,

s
(3)
+,7 :=

π(π6 − 210π4 + 7560π2 − 25200)

645120
.

From Equations (3.3) and (3.4), we obtain(
s
(3)
+ (n)− 1

n4

)
< eµ̂(n+1)−µ̂(n) <

(
s
(3)
+ (n) +

1

n4

)(
1 +

4

n4

)
. (3.5)

It can be easily checked that for n ≥ 1, we have

1− 4 · 28

µ̂(n)8
> 1− 1

n4
and 1 +

6 · 28

µ̂(n)8
< 1 +

1

n4
. (3.6)

Hence, by Equations (3.1), (3.2), (3.5) and (3.6) and using Equation (2.15) with m =8,
we obtain for all n ≥ 184 that

L+(n) <
p(n+ 1)

p(n)
< U+(n), (3.7)

where

U+(n) :=

(
s
(1)
+ (n) +

2

n4

)(
s
(2)
+ (n) +

3

n4

)(
s
(3)
+ (n) +

1

n4

)(
1 +

4

n4

)(
1 +

1

n4

)
,

L+(n) :=

(
s
(1)
+ (n)− 2

n4

)(
s
(2)
+ (n)− 3

n4

)(
s
(3)
+ (n)− 1

n4

)(
1− 1

n4

)
.

In the similar way stated before, we obtain for all n ≥ 184 that

L−(n) <
p(n− 1)

p(n)
< U−(n), (3.8)

where

U−(n) :=

(
s
(1)
− (n) +

1

n4

)(
s
(2)
− (n) +

3

n4

)(
s
(3)
− (n) +

1

n4

)(
1 +

1

n4

)
,

L−(n) :=

(
s
(1)
− (n)− 1

n4

)(
s
(2)
− (n)

)(
s
(3)
− (n)

)(
1− 1

n4

)2

.
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The sequences {s(i)− (n)}1≤i≤3 is defined as follows:

s
(1)
− (n) := 1− 1

2n
− 1

2πn3/2
−
(

1

2π2
+

1

8

)
1

n2
−
(

1

2π3
+

1

8π

)
1

n5/2

−
(

1

16
+

1

2π4
+

1

8π2

)
1

n3
−
(

1

2π5
+

1

8π3
+

1

16π

)
1

n7/2
,

s
(2)
− (n) := 1 +

3

2n
+

15

8n2
+

35

16n3
,

s
(3)
− (n) :=

7∑
m=0

s
(3)
−,m

(
1√
n

)m
,

with

s
(3)
−,0 := 1, s

(3)
−,1 := −π

2
, s

(3)
−,2 :=

π2

8
, s

(3)
−,3 := −π(π

2 + 6)

48
, s

(3)
−,4 :=

π2(π2 + 24)

384
,

s
(3)
−,5 := −π(π

4 + 60π2 + 240)

3840
, s

(3)
−,6 :=

π2(π4 + 120π2 + 1800)

46080
,

s
(3)
−,7 := −π(π

6 + 210π4 + 7560π2 + 25200)

645120
.

Now by Equations (3.7) and (3.8), it follows that for n ≥ 184, we have

L+(n) · L−(n) < u(n) < U+(n) · U−(n).

It can be readily checked that for n ≥ 2, we have

U+(n) · U−(n) < s(n) +
20

n4
and L+(n) · L−(n) > s(n)− 15

n4
.

This finishes the proof of Equation (1.4) for n ≥ 184. For the values 37 ≤ n ≤ 183, one
can check numerically in Mathematica. �

Proof of Corollary 1.4. It is easy to check that sn+
20
n4

< 1 for n ≥ 5 and therefore

from Equation (1.4), we can conclude that un < 1 for n ≥ 37, which is equivalent to saying
that {p(n)}n≥37 is log-concave. For the values 4 ≤ n ≤ 37, one can check numerically in
Mathematica. �

Proof of Corollary 1.5. Note that for n ≥ 5, we have(
sn − 15

n4

)(
1 +

π

4n3/2

)
> 1,

and therefore from Equation (1.4), it follows that for n ≥ 37, we have

un

(
1 +

π

4n3/2

)
> 1,
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which is equivalent to Equation (1.5). For the values 2 ≤ n ≤ 37, one can check
numerically in Mathematica. �

Define

Un := sn +
20

n4
and Ln := sn − 15

n4
.

Proof of Theorem 1.6. Using Equation (1.4) from Theorem 1.3, it follows that for
n ≥ 37, we have

(1− Un)
2

U2
n(1− Ln−1)(1− Ln+1)

<
(1− un)

2

u2n(1− un−1)(1− un+1)
<

(1− Ln)
2

L2
n(1− Un−1)(1− Un+1)

.

Moreover, it can be readily checked that for n ≥ 29, we have

(1− Ln)
2

L2
n(1− Un−1)(1− Un+1)

< tn +
120

n5/2

and

(1− Un)
2

U2
n(1− Ln−1)(1− Ln+1)

> tn − 120

n5/2
.

We conclude the proof of Equation (1.6) by checking numerically for the values 31 ≤ n ≤
36 in Mathematica. �

Proof of Corollary 1.7. It is equivalent to show that for n ≥ 42, we have

(1− un)
2

u2n(1− un−1)(1− un+1)
> 1.

From the fact that for all n ≥ 99, we have

tn − 120

n5/2
> 1,

and by Equation (1.6), the proof is finished after the numerical verification for the values
42 ≤ n ≤ 98 in Mathematica. �

Proof of Corollary 1.8. For all n ≥ 1176, we have

tn +
120

n5/2
< 1 +

π

2n3/2
.

By Equation (1.6), we complete the proof for n ≥ 1176. We can check Equation (1.7)
numerically for the values 52 ≤ n ≤ 1175 in Mathematica. �
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Proof of Theorem 1.9. Following the definition given before and by Equation (1.4)
of Theorem 1.3, it follows that for n ≥ 37, we have

4(1− Un)(1− Un+1)

(1− LnLn+1)2
<

4(1− un)(1− un+1)

(1− unun+1)2
<

4(1− Ln)(1− Ln+1)

(1− UnUn+1)2
.

It is easy to observe that for n ≥ 99, we have

4(1− Ln)(1− Ln+1)

(1− UnUn+1)2
< vn +

101

n5/2

and

4(1− Un)(1− Un+1)

(1− LnLn+1)2
> vn − 120

n5/2
.

We conclude the proof of Equation (1.8) by checking numerically for the values 2 ≤
n ≤ 98 in Mathematica. �

Proof of Corollary 1.10. We observe that vn − 120

n5/2
> 1 for all n ≥ 180 and hence

by Equation (1.8), it follows immediately that {p(n)}n≥180 satisfies higher-order Turán
inequality and for the values 16 ≤ n ≤ 179, we verified numerically in Mathematica. �

Proof of Corollary 1.11. It is straightforward to check that vn +
101

n5/2
< 1 +

π

4n3/2
for all n ≥ 4179 in Equation (1.8). To finish the proof of Equation (1.9), it remains
to verify for the values 2 ≤ n ≤ 4178, which was done by numerical verification in
Mathematica. �
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