Note on a Theorem of Lommel.

By F. H. Jackson, M.A.
1.

Among the many formulae which show special relations existing between the circular functions and the Bessel-Function $\mathrm{J}_{n}(x)$, when n is half an odd integer, there is one due to Lommel

$$
\frac{\sin 2 x}{\pi}=\left\{\mathrm{J}_{\frac{1}{2}}(x)\right\}^{2}-3\left\{\mathrm{~J}_{\frac{3}{}}(x)\right\}^{2}+5\left\{\mathrm{~J}_{3}(x)\right\}^{2}-\ldots \ldots
$$

In connection with the paper on Basic sines and cosines in this volume of the Proceedings, it may be interesting to consider briefly an analogue of Lommel's theorem, which we write

$$
\begin{align*}
& \sum_{r=0}^{r=\infty}(-1)^{r} \frac{[4 r+2]}{[2]} p^{r(r-1)} \mathrm{J}_{\left[\frac{2 r+1}{2}\right]}(x) \mathscr{I}_{\left[\frac{2 r+1}{2}\right]}(x) \\
= & \frac{1}{[2]^{2}\left(\Gamma_{\left.p^{2}\left[\frac{3}{2}\right]\right\}^{2}}\right.}\left[(1+p) x-\frac{2(1+p)\left(1+p^{3}\right) x^{3}}{[3]!} \div \frac{2\left(1+p^{2}\right)(1+p)\left(1+p^{3}\right)\left(1+p^{5}\right) x^{5}}{[5]!}-\ldots\right], \tag{2}
\end{align*}
$$

the general term of the series within the large brackets being

$$
(-1)^{2} \frac{2\left(1+p^{2}\right)\left(1+p^{4}\right) \ldots\left(1+p^{2 r-2}\right) \cdot\left(1+p^{1}\right)\left(1+p^{3}\right) \ldots\left(1+p^{2 r+1}\right)}{[2 r+1]!} x^{2 r+1}
$$

When the base p equals 1 , this series reduces to $\frac{\sin 2 x}{\pi}$.

2.

Defining $J_{[n]}(x)$ as $\sum_{r=0}^{r=\infty}(-1)^{r} \frac{x^{n+2 r}}{\{2 n+2 r\}!\{2 r\}!}$,
$\{2 m\}!$ is in general $[2]^{m} \cdot \Gamma_{p^{2}}([m+1])$.
This reduces, when m is a positive integer, to [2][4][6]...[2m].
We take $\quad \boldsymbol{\gamma}_{[n]}(x)=\sum_{r=0}^{r=\infty}(-1)^{r} \frac{x^{n+2 r}}{\{2 n+2 r\}!\{2 r\}!} p^{2 r(n+r)}$.
This function is connected with $\mathrm{J}_{[n]}$ by an inversion of the base p.

In a paper shortly to be printed (Proc. $R . S$.) it is shown that

where $\{2 m+2 n+4 r\}_{r}=[2 m+2 n+4 r][2 m+2 n+4 r-2] \ldots[2 m+2 n+2 r+2]$.

3.

Consider now the series

This series may be written by means of (3) in the form

$$
\begin{gathered}
{[2] \Sigma(-1)^{r} \frac{\{4 r+2\}_{r}}{\{2 r+1\}!\{2 r+1\}!\{2 r\}!} x^{2 r+1}} \\
-[6] \Sigma(-1)^{r} \frac{\{4 r+6\}_{r}}{\{2 r+3\}!\{2 r+3\}!\{2 r\}!} x^{2 r+3} \\
\cdots \\
(-1)^{r+s}[4 s+2] \Sigma \frac{\cdots}{\{2 r+2 s+1\}!\{2 r+2 s+1\}!\{2 r\}!} x^{2 r+2 s+1}
\end{gathered}
$$

Collecting the terms in a series of ascending powers of x, the coefficient of x arises only from the first of these series, and is

$$
[2] \frac{\{2\}_{0}}{\{1\}!\{1\}!\{0\}!},
$$

which reduces to

$$
\begin{gathered}
\frac{[2]}{[2]^{\frac{1}{2}}[2]^{\frac{1}{2}}\left\{\Gamma_{p^{2}}\left(\frac{3}{2}\right)\right\}^{2}} \\
=\frac{1}{\left\{\Gamma_{p^{2}}\left(\left[\frac{3}{2}\right]\right)\right\}^{2}}
\end{gathered}
$$

as is seen from the definition of the function $\{2 n\}!$.
The coefficient of x^{3} is

$$
-[2] \frac{\{6\}_{1}}{\{3\}!\{3\}!\{2\}!}-[6] \frac{\{6\}_{0}}{\{3\}!\{3\}!\{0\}!}
$$

and this reduces to

$$
\frac{2\left(1+p^{3}\right)}{[3]!} \frac{1}{\left\{\Gamma_{p^{2}}\left[\frac{3}{2}\right]\right\}^{2}} .
$$

4.

The reduction, however, of the series which forms the coefficient of $x^{2 r+1}$, offers some difficulty and is effected by a theorem due to Heine (Kugelfunctionen, Appendix to Chap. II., Vol. I.).
The coefficient of $x^{2 r+1}$ is, after some obvious reductions,

$$
\begin{align*}
& (-1)^{r} \frac{\{4 r+2\}_{r}}{\{2 r+1\}!\{2 r+1\}!\{2 r\}!}\left[[2]+[6] \frac{[2 r]}{[2 r+4]}+p^{2}[10] \frac{[2 r][2 r-2]}{[2 r+4][2 r+6]}+\ldots\right. \\
& \left.+p^{2(t-1)}[4 s+2] \frac{[2 r][2 r-2] \cdot[2 r-2 s+2]}{[2 r+4] \ldots \ldots[2 r+2 s+2]}+\ldots\right] \tag{5}
\end{align*}
$$

Now

$$
\begin{aligned}
& {[2]=\frac{p^{2}-1}{p-1}=\frac{p^{2}}{p-1}-\frac{1}{p-1},} \\
& {[6]=\frac{p^{6}}{p-1}-\frac{1}{p-1},}
\end{aligned}
$$

$$
[4 s+2]=\frac{p^{4 s+2}}{p-1}-\frac{1}{p-1}
$$

therefore we write the series which is within the large brackets of expression (5) as the difference of two series, viz.,

$$
\left.\begin{array}{rl}
\frac{p^{2}}{p-1} S^{1}-\frac{1}{p-1} \mathrm{~S}_{2}= & \frac{p_{2}}{p-1}\left\{1+p^{4} \frac{[2 r]}{[2 r+4]}+. .+p^{s(s+3)}\left[\frac{[2 r] \ldots \ldots[2 r-2 s+2]}{[2 r+4] . .[2 r+2 s+2]}+. .\right\}\right. \\
& -\frac{1}{p-1}\left\{1+\frac{[2 r]}{[2 r+4]}+. .+p^{s(s-1)}[2 r] \ldots .[2 r-2 s+2]\right. \tag{6}\\
{[2 r+4] .[2 r+2 s+2]}
\end{array}+. .\right\} .
$$

5.

Heine has shown that if

$$
\begin{aligned}
& 1+\frac{(1-a)(1-b)}{(1-q)(1-c)} x+\frac{(1-a)(1-a q)(1-b)(1-b q)}{(1-q)\left(1-q^{2}\right)(1-c)(1-c q)} x^{2}+\ldots=\phi[a, b, c, q, x], \\
& \text { then } \phi[a, b, c, q, x]=\prod_{n=0}^{n=\infty} \frac{\left(1-b x q^{n}\right)\left(1-\frac{c}{b} q^{n}\right)}{\left(1-x q^{n}\right)\left(1-c q^{n}\right)} \phi\left[b, \frac{a b x}{c}, b x, q, \frac{c}{b}\right] .
\end{aligned}
$$

If in this transformation we put $a=p^{2}$,

$$
\begin{aligned}
q & =p^{2} \\
b & =p^{-3 r} \\
c & =p^{2 r+4} \\
x & =-p^{2 r+4}
\end{aligned}
$$

$\phi[a, b, c, q, x]$ becomes, after simple and obvious reductions, identical with S_{1}.

The infinite product on the right side of Heine's transformation, reduces (r integral) to the finite product

$$
\frac{\left(1+p^{4}\right)\left(1+p^{6}\right) \ldots \ldots . .\left(1+p^{2 r+2}\right)}{\left(1-p^{2 r+4}\right)\left(1-p^{2 r+6}\right) \ldots\left(1-p^{4 r+2}\right)}
$$

which we will for convenience denote by P_{1}.

$$
\phi\left[b, \frac{a b x}{c}, b x, q, \frac{c}{b}\right] \text { becomes }
$$

$\left\{1-\frac{\left(p^{2 r}-1\right)\left(p^{2 r-2}+1\right)}{\left(p^{2}-1\right)\left(p^{4}+1\right)} p^{6}+\frac{\left(p^{2 r}-1\right)\left(p^{3 r-2}-1\right)\left(p^{2 r-2}+1\right)\left(p^{2 r-4}+1\right)}{\left(p^{2}-1\right)\left(p^{4}-1\right)\left(p^{4}+1\right)\left(p^{6}+1\right)} p^{16}-\ldots\right\}$

$$
=1-a_{1}+a_{2}-\ldots,
$$

so that

$$
S_{1}=P_{1}\left\{l-a_{1}+a_{2}-a_{3}+\ldots\right\}
$$

Similarily, if we put $\quad a=p^{2}$,

$$
\begin{aligned}
& q=p^{2}, \\
& b=p^{-2 r}, \\
& c=p^{3 r+4} \\
& x=-p^{2 r}
\end{aligned}
$$

in Heine's transformation, we obtain

$$
\phi[a, b, c, q, x]=\mathrm{S}_{2}
$$

$\phi\left[b, \frac{a b x}{c}, b x, q, \frac{c}{b}\right]$
$=\left\{1-\frac{\left(p^{2 r}-1\right)\left(p^{2 r+2}+1\right)}{\left(p^{2}-1\right)(1+1)} p^{2}+\frac{\left(p^{2 r}-1\right)\left(p^{2 r-2}-1\right)\left(p^{2 r+2}+1\right)\left(p^{2 r}+1\right)}{\left(p^{2}-1\right)\left(p^{4}-1\right)(1+1)\left(1+p^{2}\right)} p^{8}-\ldots\right\}$
$=1-b_{1}+b_{2}-\ldots$.
The infinite product becomes

$$
\frac{2\left(1+p^{2}\right)\left(1+p^{4}\right) \ldots\left(1+p^{2 r-2}\right)}{\left(1-p^{2 r+4}\right)\left(1-p^{2 r+6}\right) \ldots\left(1-p^{4 r+2}\right)}=\mathbf{P}_{2} .
$$

Finally we have
$\frac{p^{2}}{p-1} \mathrm{~S}_{1}-\frac{1}{p-1} \mathrm{~S}_{2}=\frac{p^{2}}{p-1} \mathrm{P}_{1}\left\{1-a_{1}+a_{2}-..\right\}-\frac{1}{p-1} \mathrm{P}_{2}\left\{1-b_{1}+b_{2}-..\right\}$.
P_{1} and P_{2} have most of their factors in common, so taking out the common part we may write ($\mathbf{7}$)

$$
\begin{align*}
& \frac{\left(1+p^{4}\right)\left(1+p^{6}\right) \ldots\left(1+p^{2 r-9}\right)}{\left(1-p^{2 r+4}\right)\left(1-p^{2 r+6}\right) \ldots\left(1-p^{42+2}\right)} \cdot \frac{1}{(p-1)} \\
& \left\{p^{2}\left(1+p^{2 r}\right)\left(1+p^{2 r+2}\right)\left\{1-a_{1}+a_{2}-. .\right\}-2\left(1+p^{2}\right)\left\{1-b_{1}+b_{2}-. .\right\}^{\prime}\right\} . \tag{8}
\end{align*}
$$

We sum the series within the large brackets as follows:

$$
\begin{aligned}
& \quad-2\left(1+p^{2}\right) \\
& +2\left(1+p^{2}\right) b_{1}+p^{2}\left(1+p^{2 r}\right)\left(1+p^{3 r+2}\right) \\
& -2\left(1+p^{2}\right) b_{2}-p^{2}\left(1+p^{2 r}\right)\left(1+p^{2-+^{2}}\right) a_{1}
\end{aligned}
$$

in general taking the term involving b_{n} with the term involving b_{n-1}.
Without difficulty, even in the general term, we can reduce this series to

$$
\begin{aligned}
& -2\left(1+p^{2}\right)+2 p^{2} \frac{[4 r+4]}{[2]}-2 p^{8} \frac{[4 r+4][4 r]}{[2][8]}+2 p^{18}[4 r+4][4 r][4 r-4] \\
& {[2][8][12]}
\end{aligned} \ldots .
$$

The product expression for the series within the large brackets is

$$
\left(1-p^{2}\right)\left(1-p^{6}\right)\left(1-p^{10}\right) \ldots\left(1-p^{4 r^{+2}}\right) .
$$

Expression (8) is thus reduced to

$$
-\frac{\left(1+p^{4}\right) \ldots\left(1+p^{3 r-2}\right)}{\left(1-p^{2 r+4}\right) \ldots\left(1-p^{3 r+2}\right)} \cdot \frac{(p+1)}{\left(p^{2}-1\right)} 2\left(1+p^{2}\right) \cdot\left(1-p^{2}\right)\left(1-p^{5}\right) \cdot\left(1-p^{4 r+2}\right)
$$

The coefficient of $x^{2 r+l}$ is then by (5) and (9), after cancelling common factors,

$$
(-1)^{2} \frac{2\left(1+p^{2}\right)\left(1+p^{4}\right) \ldots\left(1+p^{2 r-2}\right) \cdot\left(1+p^{3}\right) \ldots\left(1+p^{2 r+1}\right)}{[2 r+1]!} \frac{1}{\left\{\Gamma_{p^{2}}\left(\left[\frac{3}{2}\right]\right)\right)^{23}},
$$

which establishes

$$
[2] \mathrm{J}_{[\{1]} \boldsymbol{a}_{[2]}-[6] \mathrm{J}_{\left[\frac{1}{2}\right]} \boldsymbol{y}_{[i 3]}+\ldots=\frac{1}{\left\{\Gamma_{p^{2}}\left(\frac{3}{3}\right)\right\}^{2}}\left[x-\frac{2\left(1+p^{3}\right)}{[3]} x^{3}+\ldots\right] .
$$

Dividing throughout by [2] we have the theorem (2) as stated.
We may show also that

$$
J_{[\{ \}]} \boldsymbol{z}_{[4]}+J_{\left[-\frac{1}{2}\right]} \boldsymbol{3}_{\left\{-\frac{1}{2}\right]}=\frac{[2]}{x\left\{\Gamma_{p^{3}}\left(\frac{1}{2}\right)\right\}^{\prime \prime}},
$$

which reduces when $p=1$ to

$$
\mathrm{J}_{\frac{1}{2}}^{2}+\mathrm{J}_{-\frac{1}{2}}{ }^{2}=\frac{2}{\pi x}, \quad \text { (Lommel) }
$$

and, in general, if $n=\frac{1}{2}(2 \kappa+1)$,
where a_{1}, a_{2}, \ldots are simple expressions of factors of the type [m].

