To the Editor of the Mathematical Gazette

DEAR SIR.

I am indebted to Mr. A. Kodym of Prague for pointing out the the expression for π as a continued fraction with unit numerator has been carried to 200 places by P. Pedersen (Nordisk Matematisk Tidskrift, Vol. 6, No. 2, 1958). In this paper it is shown that π appears to satisfy two conditions which a random number satisfies. Both the geometrical mean of the first n denominators and the nth root of the denominator of the nth convergent appear to converge (somewhat erratically) to the limiting values of the corresponding quantities for a random number.

I should like to correct the assertion in my previous letter (Octobe 1959, p. 179) that the probability that, for a random number, an denominator is equal to r is 1/r(r+1). This is true only of th first denominator. Khintehine (Compositio Math. 3, pp. 276–28£ has shown that the limit, as n tends to infinity, of the proportion c denominators which are equal to r is $\log [1 + 1/r(r+2)]/\log 2$ If we assume that 200 is a sufficiently large value of n for this to b approximately true, we obtain the following results.

Denominator	$Theoretical\ frequency$	$Actual\ frequency$
1	83	80
2	34	38
3	19	19
4	12	10
5	8	5
6	6	6
7	5	7
over 7	33	35

Finally, Khintchine (Compositio Math. 1, pp. 361-382) ha shown that the arithmetic mean of the first n denominators of a random number tends asymptotically to $\log n/\log 2$. For n=200 this value is 7.64. The corresponding value for π is 8.45. Thi agreement is quite good, since the arithmetic mean is dominated to a much greater extent than the geometric mean, by the large denominators.

Yours etc., E. J F PRIMROSI

To the Editor of the Mathematical Gazette

DEAR SIR.

Your issue of October 1959 contains two letters on the numerica properties of π . The first letter, by Misses Curphey, Kelley, and Moffat, gives a frequency count of the first 10,000 digits of π which I presume to be those computed by Mr. Felton and published in July 1957 in the *Proceedings of the Oxford Mathematical Conference*