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1. Introduction. A positive integer n is called a square-full integer if p2 divides n
whenever p is a prime divisor of n. For x ? l we denote by Q(x) the number of
square-full integers not exceeding x. Bateman and Grosswald [1] proved that

+ A(x), (1.1)
where

and

A(x) = o(x1/6) as x-><». (1.3)

They also pointed out that the exponent g here can be reduced if and only if the
supremum of the real parts of the zeros of £(s) is less than 1.

We shall be concerned with the number of square-full integers in the interval
x < n ̂  x + h. It is proved in [8] that there may be no square-full integer between
successive squares so that if h < Vx, then the interval x < n =£ x + h may contain no
square-full integer at all. We shall write

h = x1/2+9 (O<0<|) . (1.4)

It follows at once from the result of Bateman and Grosswald that if g<0<5, then

Q(x + h)-Q(x)~iAxe as x^oo. (1.5)

The purpose of this paper is to extend this interval result to the shorter range

(1.6)

The method employed is that introduced by Roth [7] who obtained a short interval result
for square-free integers. The method reduces the problem to that of the estimation of the
two dimensional exponential sum given in (3.11). We shall also require an estimation of
the error term associated with the asymptotic formula for the sum

S(x)= X 1. (1.7)
a2b3«x

2. The asymptotic formula for S(x). Let i|/(x) = x - [ x ] - 5 and, for positive a, 3, 7»
write

R(x;a,fl,y)= I ^ ) . (2.1)
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Richert [6] showed that, for distinct positive constants u and v, the sum £ 1 has an

asymptotic formula whose error term can be expressed in terms of R(x;a, (3, 7) with
a, 0, y depending on u and v. In particular we have, for the sum in (1.7),

S(x) = f @)x m + ai)x m + A*(x), (2.2)

where

It follows trivially from (2.1) that A*(x)«x1/S as x-»•<». We define p* to be the
infimum of the set of real numbers p such that A*(x)«xp holds as x —»°°. From an
application of a special case of the colossal lattice point theorem due to Landau [3] we see
that

P*2*175. (2.4)

We use the method of exponent pairs to prove that

p*=£0-13181619... . (2.5)

Van der Corput's method of estimating trigonometric sums has been developed into a
delicate theory of exponent pairs due to van der Corput [10], Phillips [4], and Rankin [5].
The rather complicated definition of an exponent pair is given in [4] and [5]. By means of
this theory Richert [6] has proved the following result.

LEMMA 1. (Richert [6, Lemma 8]) Let a, /3, y be positive constants and let (fc, I) be an
exponent pair. Then, as x —» °°,

R(x;a, ft y)«xa-^-ay)+\ X0k/(k+1)\ogx if l = yk,
[Pk/(i-KT+Ofc-i) if l < y k

Let (k, 0 be an exponent pair such that 21 = 3k. From Lemma 1 and (2.3) we see that,
as x —» 00,

A*(x)«xk/(2k+2)logx,

since, by the definition of an exponent pair, we must have /s*g so that fcssj giving
. Therefore, for 21 = 3k, we have

r 2k + 2'

Next, let 17 be any positive number such that (17,5+17) is an exponent pair. By
applying the A and B processes of Phillips [4], namely BA(17, I+TJ) and BA2 (17,5-
and then the convexity process of Rankin [5] we see that

3 2n + l
2X2;
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is now an exponent pair (fc, I) satisfying 2/ = 3k. Consequently we have

1 L 1

^ - (2-6)

Moreover, Rankin [5] showed that the infimum of the set of TJ such that (TJ, j + ri) is an
exponent pair is given by

T)0 = 0-1645106784...

so that (2.5) now follows from (2.6).

3. Roth's method. We shall prove the following result.

THEOREM. Let 60 be the infimum of the set of all numbers 6 such that (1.5) holds. Then

We remark that the right hand side of (3.1) is less than g if and only if p*<i; and that
the asymptotic formula (1.5) holds when 6 lies in the interval (1.6) follows from the
theorem together with the estimate (2.5).

We now apply Roth's method [7] to investigate Q(x + h) — Q(x). Let p and 0 satisfy

p * < p < i O<0<^; (3.2)

and, for x > 1, we let

h = xm+e, \ogx<t<x1'6. (3.3)

Since a square-full integer q can be written uniquely as a2b3, where a, b are positive
integers and b is square-free, it follows that

QW=I Z i*2(b)=I I Z Me)

Consequently we have

say, where

= Z
a2d3c6«x

+ h)-Q(x)= Z Mc) = 21 + 22 (3.4)
x<a2d3c6=Sx+h

x<a2d3c6sx+h x<a2d3c6«x+h
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First we have

Now, as x —* oo,

(x + h)112 - xm = \xe + O(x2e-m), (3.5)

(x + k)1 / 3-x1 / 3«x8-1 / 6 , (3.6)
and

— ' «xpt1~6p

so that, from (1.2) and (2.2), we have

Next we put

T(x,t)= Z 1 (3.8)

so that

and it now follows from (3.4) and (3.7) that

|Q(x + h)- Q(x)-{\A + o(l))xe| =sT(x + h)- T(x, t) + O(xpt'-6p). (3.9)

In order to estimate T(x, t) we define

T(fl)= Z 1

so that, by (3.8),

T(x,t)= Z T(n)= Z T(n) Z 1
nc6sx nSil'6 Kc«(x/n)"6

provided that ijj(t) = 0, and this we may assume by taking t to be half an odd integer. Now,
by (2.2),

ts(xr6) = £(l)x1/2r2+c®xll3rl +1 A*(xr6)
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and, similarly to the derivation of (2.2) itself, we have

( x\ 1/6

Let us write

In view of (3.5) and (3.6) it now follows from (3.10) that

T(x + h,t)-T(x, t) = - U ( x + h,t)+ U{x, t) + O(xpr '-6 p) + o(x")

and so, from (3.9), we have

\Q(x + h)-Q(x)-Q[A + o(l))xe\^\U(x + h,t)-U(x,t)\ + O(xpt1-6p). (3.12)

The two dimensional exponential sum U(x, t) in (3.11) has the trivial estimate

f)l^ I l = S(xr6)«x1/2r3. (3.13)

However, for our sharper result we need the following lemma.

LEMMA 2. As x—»°°, we have

U(x,t)«xmr7n\og2x (3.14)

uniformly for l ogx< t^x 3 , where

We give the proof of Lemma 2 in the next section. The estimate (3.14) allows us to
put

(l-2p)/(9-12p)_ x(

55since the exponent for x here is at most 55</3, because p>p*^jo by (3.2) and (2.4). This
choice of t now gives

r ' /2/-7/2_ vp,l-6p _ v(l+p)/(9-12p)

so that from (3.12) and (3.14) we have

Q(x + h)- Q(x) = (|A + o(l))xe + O(x(1+p)/<9-12p) log2 x).

Consequently if 8 satisfies

1 + P
9-12p"

then the asymptotic formula (1.5) holds. Therefore the required result (3.1) is established
subject to the proof of Lemma 2.
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4. The estimation of U(x, i). We write

m n=*£xt

so that from (3.11) we have

U(x, t) = U^x, t)+ U2(x, t) + O((xt-6)115). (4.1)

Van der Corput's method of estimating trigonometric sums has been extended to
higher dimensions. In particular there is now a theory of two dimensional exponent pairs.
We shall apply the following useful result due to Srinivasan [9, Main theorem].

LEMMA 3. Let p, cr>0 and (AO, Aj) be any two dimensional exponent pair. Let z, M, N,
F satisfy

F=zM~pN~'T, 1

Then, for any region D in the rectangle M<m=s2M, N<n=s2N, we have

Ajsf + p

The definition of a two dimensional exponent pair is given in [9] where it is also
shown that (^5, ̂ >) is such a pair. We now apply Lemma 3 to estimate U^x, t) and
U2(x, t).

Let z = x116 and (p, a) be either (|, |) or (5,2), and put

Using the exponent pair (^), ^>), Lemma 3 yields

SP_M, t; M, N)« (F92M171N26

where

From
N5 / 6« M1/3N1/2« MPN°"«

it is easy to verify that

(F92M 1 7 1 / y 2 6 3 ) 1 / 3 4 2 « -v-217/855j

F1/4M1I4N« xV4t-514
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and

F-1 / 2MN«x1 / 2r7 / 2 .

Since
x 1/4 j-5/4 «g ^217/855^-1072/855

if and only if t^Zx, it follows that

Sp^z, t; M, N)«x 1 / 2 r 7 / 2 + x217/855r1072/855

and therefore, as x —*• °°,

l/^x, t)+ U2(x, t)«{X1 / 2r7 / 2 + x217/855r1072/855}log2 x (4.2)

uniformly in 1 =£ f =£x1/6. Since the first term on the right hand side of (4.2) dominates over
the second term when t=£xe, |3 = ^ w e see that Lemma 2 follows from (4.1) and (4.2).

5. Remarks.
(1) It may be of interest to point out that the simple combinatorial argument

suggested by Estermann in Roth's paper also applies here to give an estimate for
T(x + h, t) - T(x, t) which is needed in (3.9). Let u be a number satisfying ut5>h.
Corresponding to each pair of numbers a, b there are at most u numbers c satisfying c > t
and x <a2b3c6=Sx + h since

a2b3(c + u)6 > a2b3c6 +ucs>x + uts>x + h.

From (3.8) we see therefore that

T(x + h,t)-T(x,t)*s £ u«ux1/2r3.

On setting t = x1/8logx, u = xe"1/8 we can deduce from (3.9) that 0o=£(l + 2p*)/8. We
note that this result is inferior to 0osSl/(8-12p*) which can be derived from (3.12)
together with the trivial estimate (3.13) for the sum U(x, t). That is we have

1 + p* __, 1 ^ l + 2p*^,l
9 - 1 2 p * ^ 8 - 1 2 p * ^ 8 ^ 6

and indeed with strict inequality since we know that p*<6-
(2) The distribution of k-full integers has been investigated recently in [2]. For

example the asymptotic formula for Q3(x), the number of cube-full integers not exceeding
x, has an error term A3(x) and is related to the asymptotic formula for the sum

S3(x)= I 1

which has an error term Af(x). Corresponding to A3(x) and A|(x) let p3 and p3 be denned
similarly to p*. The upper estimates given in [2] for p3 and p3 are both the same, namely

= 0-128... .
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If it can be proved that p* <g, then our short interval result here can be extended to
cube-full integers.
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