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Abstract

In this paper we study the number of random records in an arbitrary split tree (or,
equivalently, the number of random cuttings required to eliminate the tree). We show
that a classical limit theorem for the convergence of sums of triangular arrays to infinitely
divisible distributions can be used to determine the distribution of this number. After
normalization the distributions are shown to be asymptotically weakly 1-stable. This
work is a generalization of our earlier results for the random binary search tree in
Holmgren (2010), which is one specific case of split trees. Other important examples
of split trees include m-ary search trees, quad trees, medians of (2k + 1)-trees, simplex
trees, tries, and digital search trees.
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1. Introduction

1.1. Preliminaries

We study the number of records in random split trees which were introduced by Devroye [7].
As shown by Janson [22], this number is equivalent (in distribution) to the number of cuts needed
to eliminate this type of tree.

Given a rooted tree T , let each vertex v have a random value λv attached to it, and assume that
these values are independent and identically distributed (i.i.d.) with a continuous distribution.
We say that the value λv is a record if it is the smallest value in the path from the root to v. Let
Xv(T ) denote the (random) number of records. Alternatively, we may attach random variables
to the edges and let Xe(T ) denote the number of edges with record values. Only the order
relations of the λvs are important, so the distribution of λv does not matter, i.e. we can choose
any continuous distribution for λv .

The same random variables appear when we consider cuttings of the tree T as introduced
by Meir and Moon [27] with the following definition. Make a random cut by choosing one
vertex or edge at random. Delete this vertex or, respectively, edge so that the tree separates into
several parts and keep only the part containing the root. Continue recursively until the root is
cut or, respectively, only the root is left. Then the total (random) number of cuts made isXv(T )
or, respectively, Xe(T ). More precisely, cuttings and records give random variables with the
same distribution. The proof of this equivalence uses a natural coupling argument as shown in
[21] and [22].
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Expanding the earlier studies on selected conditioned Galton–Watson trees [27], [29], [30],
Janson [22] found that the numbers of cuts (or the numbers of records) of conditioned Galton–
Watson trees are asymptotically Rayleigh distributed. There the proof relied on the fact that the
method of moments can be used. For the deterministic (nonrandom) complete binary tree, it is,
however, not possible to use the method of moments to determine the asymptotic distribution of
the number of cuts. To overcome this problem, Janson [21] introduced another strategy, which
is to approximate Xv(T ) by a sum of independent random variables derived from λv , and then
apply a classical limit theorem for triangular arrays; see, e.g. [24, Theorem 15.28]. We recently
showed that Janson’s approach could also be applied to the random binary search tree [18].
Applications of the limit theorem for triangular arrays have also recently been exploited in [5]
and [6] for the study of some two-sided fixed points of smoothing transforms.

In this paper we consider all types of (random) split tree defined by Devroye [7]; the binary
search tree that we considered in [18] is one example of such trees. Some other important
examples of split trees are m-ary search trees, quad trees, median of (2k + 1)-trees, simplex
trees, tries, and digital search trees. The split trees belong to the family of so-called log n trees,
which are trees with height (maximal depth) asymptotically almost surely (a.a.s.) O(log n). (For
the notation a.a.s., see [23, p. 10].) These have similar properties to the deterministic complete
binary tree with height �log2 n� considered in [21]. In the complete binary tree (with high
probability) most vertices are close to �log2 n� (the height of the tree). In split trees on the other
hand (with high probability) most vertices are close to depths of approximately c ln n, where c
is a constant; for the binary search tree that we investigated in [18], this depth is approximately
2 ln n (see, e.g. [8]). Here, by using renewal theory we extend the methods used in [18] for
the specific case of the binary search tree to show that, for split trees, it is also possible, in
general, to apply a limit theorem (see, e.g. [24, Theorem 15.28]) for the convergence of sums
of triangular arrays to infinitely divisible distributions to determine the asymptotic distribution
of Xv(T ).

1.1.1. The split tree generating algorithm. The formal, comprehensive ‘split tree generating
algorithm’ is as follows, with the following introductory notation; see [7] and [17]. A split
tree is a finite subtree of a skeleton tree Sb, i.e. an infinite rooted tree in which each vertex
has exactly b children. The split tree is constructed recursively by distributing balls one at a
time to generate a subset of vertices of Sb. We say that the tree has cardinality n if n balls are
distributed. Each vertex v of Sb is given an independent copy of the so-called random split
vector V = (V1, V2, . . . , Vb) of probabilities, where

∑
i Vi = 1, Vi ≥ 0.

Let nv denote the total number of balls that the vertices in the subtree rooted at v hold
together, and let Cv be the number of balls that are held by v itself. We say that a vertex v is a
leaf if v itself holds at least one ball but no descendants of v hold any balls. Equivalently, we
define v as a leaf if and only if Cv = nv > 0. A vertex v ∈ Sb is included in the split tree if
and only if nv > 0; if nv = 0, the vertex v is not included and it is called useless.

Initially, there are no balls, i.e. Cv = 0 for each v. Choose an independent copy Vv of V
for every v ∈ Sb. Add balls one by one to the root using the following recursive procedure for
adding a ball to the subtree rooted at v.

Step 1. If v is not a leaf, choose child i with probability Vi and recursively add the ball to the
subtree rooted at child i, by the rules given in steps 1, 2, and 3.

Step 2. If v is a leaf andCv = nv < s, then add the ball to v and stop. Thus,Cv and nv increase
by 1.
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All internal vertices
have s0 = 1 balls

All leaves have between 1 
and s = 3 balls (note that s1 is at most 0)

Figure 1: An illustration of a split tree with parameters b = 4, s = 3, s0 = 1, and s1 = 0.

All internal vertices
have s0 = 0 balls

All leaves have between 2 and s = 4 balls 
(note that s1 is at most 2)

Figure 2: An illustration of a split tree with parameters b = 2, s = 4, s0 = 0, and s1 = 2.

Step 3. If v is a leaf and Cv = nv = s, the ball cannot be placed at v since it is occupied by
the maximal number of balls it can hold. In this case, let nv = s + 1 and Cv = s0, by
placing s0 ≤ s randomly chosen balls at v and s + 1 − s0 balls at its children. This is
done by first giving s1 randomly chosen balls to each of the b children. The remaining
s+1−s0−bs1 balls are placed by choosing a child for each ball independently according
to the probability vector Vv = (V1, V2, . . . , Vb), and then using the algorithm described
in steps 1, 2, and 3 applied to the subtree rooted at the selected child.

From step 3, it follows that the integers s0 and s1 have to satisfy the inequalities 0 ≤ s0 ≤ s

and 0 ≤ bs1 ≤ s + 1 − s0. Step 3 also shows that all internal vertices hold s0 balls and the
leaves between max{1, s1} and s balls. For illustrations of split trees, see Figures 1 and 2.

We can assume that the componentsVi of the split vector V are identically distributed. (If this
were not the case, they could be made identically distributed by using a random permutation,
as explained in [7].) Let V be a random variable with this distribution. In a binary search tree
b = 2, the split vector V = (V1, V2) is (U, 1 − U), where U is a uniform U(0, 1) random
variable, and in this specific case N = n. However, in most cases of split trees n �= N and N
is random although n is deterministic.
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1.2. Some important facts and results for split trees

1.2.1. Results concerning depth analysis. In [7, Theorem 1] Devroye presented a weak law and
a central limit law for the depth Dn of the last ball in a split tree. Let

µ := b E(−V ln(V )), σ 2 := b E(V ln2 V )− µ2. (1.1)

If P(V = 1) = 0 and P(V = 0) < 1, then Dn/ ln n
p−→ µ−1 (where ‘

p−→’ denotes convergence
in probability) and E(Dn)/ ln n → µ−1, and if σ ∈ (0,∞) also,

Dn − µ−1 ln n√
σ 2µ−3 ln n

d−→ N(0, 1),

where N(0, 1) denotes the standard normal distribution and ‘
d−→’ denotes convergence in

distribution. Supposing that σ > 0 is equivalent to assuming that V is not monoatomic,
i.e. it is not the case that V = 1/b.

Let D∗
n be the average depth, and let Dk be the depth of the kth ball. In [17, Theorem 2.3],

using the same assumptions for V as when proving the limit law for Dn, we showed that
E(D∗

n)/ ln n → µ−1 and that, for all n/ ln n ≤ k ≤ n, var(Dk)/ ln n → σ 2µ−3.

1.2.2. Results concerning the number of nodes.

Assumption 1.1. Assume as in Section 1.2.1 that P(V = 1) = 0, and, as in [17], for simplicity,
also assume that P(V = 0) = 0 and that − lnV is nonlattice.

Tries and digital search trees are special forms of split trees with a random permutation
of deterministic components (p1, p2, . . . , pb) and, therefore, are not as random as many other
examples. Of the common split trees only for some special cases of tries and digital search trees
(e.g. the symmetric ones, p1 = p2 = · · · = pb = 1/b) does − lnV have a lattice distribution.
By supposing that Assumption 1.1 holds we showed in [17, Theorem 2.1] that there is a constant
α depending on the type of split tree such that, for the random number of nodes N ,

E(N) = αn+ o(n), (1.2)

and var(N) = o(n2).
Let d(v) denote the depth of a node. In [17, Theorem 2.2] we showed that the expected

number of nodes, where d(v) ≤ µ−1 ln n− ln0.5+ε n or d(v) ≥ µ−1 ln n+ ln0.5+ε n for some
arbitrary ε > 0, is O(n/ lnk n) for any constant k. In this paper we assume that this number is
O(n/ ln3 n). In [17, Remark 4.3] we noted that, for any constant r , there is a constant C > 0
such that the expected number of nodes with d(v) ≥ C ln n is O(1/nr); hence, the number of
vertices with ‘large’ depths can be bounded by a small error term.

1.2.3. Results concerning the total path length. In the present study we consider the ‘total path
length’ of a tree T as the sum of all depths of the vertices in T . Since the split tree is a random
tree, the total path length is a random variable, which we denote by ϒ(T ). However, a more
natural definition of the total path length is the sum of all depths of the balls in T , which we
denote by �(T ).

From the fact that, for the average depth, E(D∗
n)/ ln n → µ−1, it follows that

E(�(T n)) = µ−1n ln n+ nq(n), (1.3)

where q(n) = o(ln n) is a function that depends on the type of split tree. Using (1.2), it follows
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from the profile result [17, Theorem 2.2], including its remark [17, Remark 4.3], that

E(ϒ(T n)) = µ−1αn ln n+ nr(n), (1.4)

where α is the constant that occurs in (1.2) and the function r(n) = o(ln n).

Assumption 1.2. Assume that q(n) in (1.3) converges to some constant ς .

Examples of split trees where the limiting constant that q(n) converges to is explicitly
calculated are binary search trees (see, e.g. [11]), random m-ary search trees [25], quad
trees [28], the random median of a (2k + 1)-tree [31], tries, and Patricia tries [3]. In fact,
Assumption 1.2 has now been shown to hold for general split trees; see [4, Theorem 3.1]. We
keep it as an assumption for the sake of precision.

Assumption 1.3. Assume that the result in (1.2) can be improved such that E(N) = αn+f (n),
where f (n) = O(n/ ln1+ε n).

Assumption 1.3 is reasonable. For instance, it holds, e.g. for m-ary search trees [26]; for
such random trees, f (n) is o(

√
n) when m ≤ 26 and O(n1−ε) when m ≥ 27. Furthermore,

as described in Section 1.2.2, tries are special cases of split trees which are not as random as
other types of split tree. Flajolet and Vallée [13] recently showed that, for most tries (as long
as − lnV is not too close to being lattice), Assumption 1.3 holds.

In [4, Corollary 5.1], under Assumption 1.3, we showed, by applying [4, Theorem 3.1], that
r(n) in (1.4) converges to some constant ζ . By applying [4, Corollary 5.1] we showed the
following result, which we will apply in the proof of the main theorem below.

Lemma 1.1. Let L = �β logb ln n� for some large enough constant β. Assume that − lnV is
nonlattice and that Assumption 1.3 holds. Then

bL∑
i=1

ϒ(Ti)

µ−2ln2 ni
=

bL∑
i=1

αni

µ−1 ln ni
+ nζ

µ−2 ln2 n
+ op

(
n

ln2 n

)
, (1.5)

where ζ is the constant that r(n) in (1.4) converges to.

Proof. See Appendix A.

1.3. The main theorem

The main theorem of this study is presented below.

Theorem 1.1. Suppose that Assumptions 1.1–1.3 hold. Then, as n → ∞,

(Xv(T
n)− Cn)

/
αn

µ−2 ln2 n

d−→ −W, (1.6)

where

Cn := αn

µ−1 ln n
+ αn ln ln n

µ−1 ln2 n
− ζn

µ−1 ln2 n

for the constant ζ in (1.5), andW has a weakly 1-stable distribution, with characteristic function

E(eitW ) = exp
(− 1

2µ
−1π |t | + it (C − µ−1 ln |t |)). (1.7)

HereC := −µ−1 lnµ−1 + 2µ−1 − µ−2σ 2 − µ−1γ − (σ 2 − µ2)/2µ2, µ and σ 2 are the con-
stants in (1.1), α is the constant in (1.2), and γ is the Euler constant. The same result holds for
Xe(T

n).
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Recall (see, e.g. [10, Section XVII.3]) that the characteristic function of an infinitely divisible
distribution is

exp

(
itb − a2t

2
+

∫ ∞

−∞
(eitx − 1 − itx1[|x| < 1]) dν(x)

)
(1.8)

for constants a ≥ 0 and b ∈ R, where ν is the so-called Lévy measure which satisfies dν/dx =
c±/|x|α+1 for α ∈ (0, 2) and constants c± if the distribution is weakly α-stable.

The explicit constants in Theorem 1.1 for some types of split tree are as follows. For the
binary search tree (see also [18]), α = 1 (since n = N ), µ = 1

2 , σ 2 = 1
4 , and ζ = 2γ − 4.

For quad trees, α = 1 (since n = N ), µ = d/2, σ 2 = d2/4, and ζ = (3d − 3 + 4γ )/2d −
2d+1∑∞

m=3 1/m(md − 2d). For m-ary search trees, α = 1/2(Hm − 1), µ = ∑m
i=2 1/i, and

σ 2 = ∑m
i=2 1/i2. The constant ζ form-ary search trees whenm ≥ 3 is not as easy to calculate

since the total path length ϒ(T ) is the sum of the depths of the random number of nodes (here
n �= N ) instead of the depths of the n balls. However, applying [12, Theorem 2.4(b)] (in which
general functionals of m-ary search trees are considered) with bn = E(N)− 1, it is possible to
give an analytic expression for ζ . Let bn = E(N) − 1 = (n + 1)/2(Hm − 1) + hn. Then the
constant ζ for m-ary search trees can be expressed as

ζ :=
∞∑
j=0

hj

(j + 1)(j + 2)
+ (Hm)

2 − 4Hm +H
(2)
m + 2

4(Hm − 1)2
,

where Hm is the harmonic number and H(2)
m := ∑m

j=1 1/m2 is the second-order harmonic
number. An explicit expression for E(N) for all N (which determines the hj s) is given in [25].

Remark 1.1. Even without Assumptions 1.2 and 1.3, the normalized Xv(T n) (or Xe(T
n))

ought to still converge to a weakly 1-stable distribution with characteristic function as in (1.7)
for some constant C. However, in this case Cn in (1.6) ought to be expressed as

2
E(N)

µ−1 ln n
− 2 E

( ∑
d(v)=L

E(Nv | nv) ln(nv/n)

µ−1 ln2 n

)
− E(N)L+ αn ln ln n

µ−1 ln2 n

− E

( bL∑
i=1

ϒ(Ti)

µ−2ln2 ni

∣∣∣∣ ni
)
,

where ϒ(Ti) is the total path length of the subtrees Ti rooted at depth L.

Remark 1.2. In the proof of Theorem 1.1 we obtain

E(eitW ) = exp

(
it (C + µ−1(γ − 1))+

∫ ∞

0
(eitx − 1 − itx1[x < 1]) dν(x)

)
, (1.9)

where C is the constant in (1.7), γ is the Euler constant, and the Lévy measure ν is supported
on (0,∞) and has density dν(x)/dx = µ−1/x2. Thus, W has a weakly 1-stable distribution.
The expression in (1.9) can be simplified to (1.7).

Remark 1.3. As in [21] and [18], most records occur close to the depth where most vertices are,
i.e. approximatelyµ−1 ln n for split trees. Also, in analogy with [21] and [18], from Lemma 2.4
and the proof of Theorem 2.1, it follows that most of the random fluctuations of Xv(T n) can
be explained by the values at depths close to ln ln n.
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Remark 1.4. As for the binary search tree [18, Remark 1.3], for other split trees,

E(Xe(T
n))− E(Xv(T

n)) = E

(∑
v �=σ

1

d(v)(d(v)+ 1)

)
− 1 ∼ C1

αn

log2 n

for some constant C1 > 0, while there is no similar difference in the limit distribution; see
Theorem 1.1. As in [18], this behaviour suggests that it is impossible to use the method of
moments to find the distribution of the number of cuts (or records) for split trees, unlike for the
(nonlogarithmic) conditioned Galton–Watson trees in [22]. In [18] we instead used methods
similar to those that Janson used for the complete binary tree in [21]. In this paper we generalize
the proofs in [18] to consider general split trees.

Remark 1.5. The method used here should most likely work for other trees of logarithmic
height as well, and, thus, the limiting distribution for these trees should also be infinitely
divisible and probably also weakly 1-stable. This turns out to be the case for the random
recursive tree (that is, a logarithmic tree), where the limiting distribution ofXe(T )was recently
found to be weakly 1-stable; see [9, Theorem 1.1] and [20, Theorem 1.1]. However, the methods
used for the recursive trees in [9] and [20] differ completely from our methods. The advantage
of studying split trees compared to the whole class of log n trees is that there is a common
definition that describes all split trees, and this is the reason why we only consider these trees
in this paper.

1.4. Renewal theory applications for studies of split trees

1.4.1. Subtrees. For the split tree where the number of balls n > s, there are s0 balls in the root
and the cardinalities of the b subtrees are distributed as (s1, . . . , s1) plus a multinomial vector
(n − s0 − bs1, V1, . . . , Vb). Thus, conditioning on the random V vector that belongs to the
root, the subtrees rooted at the children have cardinalities close to nV1, . . . , nVb. This fact is
often used in applications of random binary search trees; in particular, we used this frequently
in [18].

Conditioning on the split vectors, nv at depth d is in the stochastic sense bounded by the
following random variables:

binomial

(
n,

d∏
r=1

Wr,v

)
− sd ≤ nv ≤ binomial

(
n,

d∏
r=1

Wr,v

)
+ s1d, (1.10)

where theWr,v, r ∈ {1, . . . , d}, are i.i.d. random variables given by the split vectors associated
with the nodes in the unique path from v to the root; see [7] and [17]. This means in particular
thatWr,v

d= V , where ‘
d=’ denotes equality in distribution. It follows from an application of the

Chebyshev inequality that nv for v at depth d is close to

Mn
v := nW1,vW2,v · · ·Wd,v; (1.11)

see [17]. Since the nvs for all v at the same depth are identically distributed, we sometimes
omit the vertex index of Wr,v in (1.10) and just write Wr .

1.4.2. Results obtained using renewal theory. In [17] we introduced renewal theory in the
context of split trees, and in this study we further demonstrate its usefulness in the proof of
Theorem 1.1.
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For each vertex v, whereWr,v
d= V are the i.i.d. random variables defined in Section 1.4.1, let

Yk,v := − ∑k
r=1 lnWr,v . Below we omit the vertex index and just write Yk , since, for vertices

v at the same depth k, the Yk,vs are identically distributed.
Recall from (1.11) that the subtree size nv for v at depth k is close toMn

v = ne−Yk . In [18],
where the binary search tree is considered, we defined Yk := − ∑k

r=1 lnUr for uniformU(0, 1)
random variables Ur ; recall that the split vector is (U, 1 −U), where U is uniform for this type
of split tree. The sum

∑k
r=1 lnUr is distributed as a −(k, 1) random variable,whereas, for

general split trees, for which we do not know the common distribution function of Yk , renewal
theory can be used instead. (For an introduction to renewal theory, see, e.g. [14, Chapter II]
or [1, Chapter IV, pp. 105–124].) We define the exponential renewal function

U(t) :=
∞∑
k=1

bk P(Yk ≤ t) =
∞∑
k=1

Fk. (1.12)

In view of the assumption that P(V = 1) = 0 it is easy to show that U(t) is finite for all
t > 0; see [2, Theorem 1] or [19, Theorem 2.1]. Recall the definitions of the constants µ and σ
in (1.1). In [17, Lemma 3.1] we stated the following result, which is fundamental for the proof
of Theorem 1.1. The function U(t) exhibits the asymptotics

U(t) = (µ−1 + o(1))et as t → ∞. (1.13)

The asymptotics in (1.13) follow as a consequence of [1, Theorem VI.5.1], which deals with
nonprobability measures. In [17] we also defined W(x) := ∫ x

0 e−t (U(t)− µ−1et ) dt , and in
[17, Corollary 3.2] we showed that

W(x) = σ 2 − µ2

2µ2 − µ−1 + o(1) as x → ∞. (1.14)

2. Proofs

2.1. Notation

Most of our notation is similar to that used in [18], where the binary search tree is considered.
We use the notation logb for the b-logarithm (recall that a split tree with parameter b is a

b-ary tree) and ln for the e-logarithm. We treat the case Xv(T n) in Theorem 1.1 in detail and
then indicate why the same result holds for Xe(T

n). From now on, since it is clear that we
consider the vertex model, we just write X(T n). First let X(T n)y be X(T n) − 1 conditioned
on the root label λσ = y.

We say that Yn = op(an) if an is a positive number and Yn is a random variable such that
Yn/an

p−→ 0 as n → ∞. We say that Yn = OLp(an) if an is a positive number and Yn is a
random variable such that (E(Ynp))1/p ≤ Can for some constant C.

We sometimes use the notation m = µ−1 ln n. In the sequel we write T instead of T n. For
a vertex v ∈ T , we let Tv be the subtree of T rooted at v. Recall that nv is the number of balls,
and, similarly, let Nv be the number of nodes in Tv .

We write Exp(θ) for an exponential distribution with parameter θ , i.e. the density function
f (x) = e−x/θ /θ . Without loss of generality, we can assume that the labels λv have an
exponential distribution Exp(1). As mentioned above, this does not affect the distribution
of X(T n).

Let d(v) denote the depth of v, i.e. the distance to the root. Recall thatV is a random variable
distributed as the identically distributed components in the split vector V = (V1, . . . , Vb). Also,
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recall that, for each v, we let Yk,v := − ∑k
r=1 lnWr,v , where Wr,v

d= V are the i.i.d. random
variables defined in Section 1.4.1. Since the Yk,vs are identically distributed for vertices at
the same depth, we often omit the vertex index and write Yk . Recall from (1.12) the renewal
function U(t) := ∑∞

k=1 b
k P(Yk ≤ t).

Let �vi be the minimum of λv along the path P(vi) = σ, . . . , vi , from the root σ of T
to vi, 1 ≤ i ≤ bL, where the vi are the vertices at depthL = �β logb ln n� for some constant β.
Thus, the assumption that λv

d= Exp(1) gives �vi
d= Exp(1/(L+ 1)).

For simplicity, we write Ti := Tvi , ni := nvi , Ni := Nvi , and �i := �vi . We write
di(v) := d(v) − L (i.e. the depth in the subtree Ti, i ∈ {1, . . . , bL}, of a vertex v ∈ Ti). We
say that a vertex v in T n is ‘good’ if

µ−1 ln n− ln0.6 n ≤ d(v) ≤ µ−1 ln n+ ln0.6 n,

and ‘bad’ otherwise. In particular, a vertex v ∈ Ti is ‘good’ if

µ−1 ln ni − ln0.6 ni ≤ di(v) ≤ µ−1 ln ni + ln0.6 ni. (2.1)

We define ϕ(Ti,�i) := E(X(Ti)�i | Ti,�i) and ψ(Ti,�i) := var(X(Ti)�i | Ti,�i). The
conditional expected value given ni is denoted by Eni (Z) := E(Z | ni).

We write ξv := nvµ
−1 ln ne−λvµ−1 ln n/n, which is used in the later part of the proof. We

define �L as the σ -field generated by {nv, d(v) ≤ L}. Finally, we write Gj as the σ -field
generated by the V vectors for all v with d(v) ≤ j . Equivalently, this is the σ -field generated
by {Wr,v, r ∈ {1, 2, . . . , j}} for all v with d(v) = j . In particular, we use the fact that
{nv, d(v) ≤ L} up to small errors is determined by the σ -field GL; this follows because of the
representation of subtree sizes in Section 1.4.1.

2.2. Expressing the number of records as a sum of triangular arrays

Recall from Section 2.1 that ϕ(Ti,�i) := E(X(Ti)�i | Ti,�i).
Lemma 2.1. For all subtrees Ti rooted at vi with d(vi) = L, conditioned on ni ,

ϕ(Ti,�i) = Ni

µ−1 ln ni
(1 − e−(µ−1 ln ni)�i )− ϒ(Ti)− µ−1Ni ln ni

µ−2 ln2 ni

+
∑

good v∈Ti

(di(v)− µ−1 ln ni)2

µ−3 ln3 ni
+ OL1

(
ni

ln2.2 ni

)
, (2.2)

where ϒ(Ti) is the total path length of Ti , and the ‘good’ v ∈ Ti are those with di(v)
satisfying (2.1).

Proof. For each vertex v ∈ Ti , let Iv be the indicator that λv is the minimum value (from
v to vi) given Ti and �i . We obtain ϕ(Ti,�i) = ∑

v �=vi E(Iv). If di(v) = j in Ti , let
vi, vi1, . . . , vij = v be the vertices in the path from the root vi to v. Then, Iv = 1 if and
only if λvij < �i and λvik > λvij for k ∈ {1, . . . , j − 1}. Since the λvs are independent Exp(1)
random variables,

E(Iv) =
∫ �i

0

j−1∏
k=1

P(λvik > x)e−x dx =
∫ �i

0
e−jx dx = 1 − e−j�i

j
.
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Thus, ϕ(Ti,�i) = ∑
v �=vi (1 − e−di (v)�i )/di(v). Expanding 1/di(v) for arbitrary ‘good’v ∈ Ti

gives

1

di(v)
= 1

µ−1 ln ni
− di(v)− µ−1 ln ni

µ−2 ln2 ni
+ (di(v)− µ−1 ln ni)

2

µ−3 ln3 ni

+ O

( |(di(v)− µ−1 ln ni)3|
ln4 ni

)
.

Recall from Section 1.2.2 that the number of ‘bad’ vertices in Ti , i.e. those that are not in the
strip in (2.1), is OL1(ni/ ln3 ni) and can thus be ignored. Hence,

∑
v �=vi

1

di(v)
=

∑
good v �=vi

1

di(v)
+ OL1

(
ni

ln3 ni

)

= Ni

µ−1 ln ni
− ϒ(Ti)− µ−1Ni ln ni

µ−2 ln2 ni

+
∑

good v∈Ti

(di(v)− µ−1 ln ni)2

µ−3 ln3 ni
+ OL1

(
ni

ln2.2 ni

)
. (2.3)

Now we prove that

∑
v �=vi

1

di(v)
(e−di (v) − e−(µ−1 ln ni)�i ) = OL1

(
ni

ln2.2 ni

)
, (2.4)

which obviously implies that

ϕ(Ti,�i) = (1 − e−(µ−1 ln ni)�i )
∑
v �=vi

1

di(v)
+ OL1

(
ni

ln2.2 ni

)
. (2.5)

For simpler calculations, we show the bound in (2.4) by considering e−�i�µ−1 ln ni� instead of
e−(µ−1 ln ni)�i . That we can do this follows from the fact that multiplying the Taylor estimate
in (2.3) by e−�i�µ−1 ln ni� gives the same expression up to the error term OL1(ni/ ln2.2 ni) as
multiplying by e−(µ−1 ln ni)�i . For j > 0,

e(−�µ−1 ln ni�+j)�i = e−�i�µ−1 ln ni� + e(−�µ−1 ln ni�+j)�i ,

e(−�µ−1 ln ni�−j)�i = e−�i�µ−1 ln ni� + e(−�µ−1 ln ni�+j)�i (e−2j�i − e−j�i ).

Since we only have to consider the ‘good’ vertices, it is enough to show that

Q1 +Q2 = OL1

(
ni

ln2.2 ni

)
, (2.6)

where

Q1 :=
�ln0.6 ni�∑
j=1

∑
di (v)=j

e(−�µ−1 ln ni�+j)�i (1 − e−j�i ) 1

�µ−1 ln ni� − j
,

Q2 :=
�ln0.6 ni�∑
j=1

∑
di (v)=j

e(−�µ−1 ln ni�+j)�i (e−2j�i − e−j�i ) 1

�µ−1 ln ni� + j
.
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We have

Q1 ≤ Nie
(−�µ−1 ln ni�+ln0.6 ni)�i (1 − e− ln0.6 ni�i )

1

�µ−1 ln ni� − ln0.6 ni

= NiO

(
ln0.6 ni�i

µ−1 ln ni

)
e(−�µ−1 ln ni�+ln0.6 ni)�i ,

and, similarly,

Q2 = NiO

(
ln0.6 ni�i

µ−1 ln ni

)
e(−�µ−1 ln ni�+ln0.6 ni)�i .

Since �i is an Exp(1/(L+ 1)) random variable, using integration by parts, we obtain

E(�ie
(−�µ−1 ln ni�+ln0.6 ni)�i ) =

∫ ∞

0
(L+ 1)ye(−�µ−1 ln ni�+ln0.6 ni)ye−y(L+1) dy

= L+ 1

(�µ−1 ln ni� − ln0.6 ni + L+ 1)2
.

Thus, (2.6) holds and it follows that (2.5) is satisfied.
Now we show that (2.5) implies (2.2) in Lemma 2.1. We have

e−(µ−1 ln ni)�i = OL1

(
L

ln ni

)
.

Hence,

e−(µ−1 ln ni)�i
∑

good v∈Ti

(di(v)− µ−1 ln ni)2

µ−3 ln3 ni
= OL1

(
ni

ln ni

)
.

Recall from Section 1.2.2 that the number of ‘bad’ nodes in Ti is OL1(ni/ ln3 ni) and that,
for any constant r , there is a constant C > 0 such that the number of nodes with d(v) ≥ C ln n
is OL1(1/nr). Using these facts, we obtain an obvious upper bound for the total path length,
i.e. |ϒ(Ti)− µ−1Ni ln ni | ≤ Ni ln0.6 ni + OL1(ni/ ln ni). Hence,

(ϒ(Ti)− µ−1Ni ln ni)e−(µ−1 ln ni)�i

µ−2 ln2 ni
= OL1

(
ni

ln2.2 ni

)
,

and Lemma 2.1 follows.

Recall that ψ(Ti,�i) := var(X(Ti)�i | Ti,�i) and that Eni (·) := E(· | ni).
Lemma 2.2. For all vertices vi with d(vi) = L, conditioned on ni ,

Eni (ψ(Ti,�i)) = O

(
n2
i

ln3 ni

)
.

Proof. We say that a pair (v,w), with h(v) = j and h(w) = k, is ‘good’ if j and k satisfy

µ−1 ln ni − ln0.6 ni ≤ j, k ≤ µ−1 ln ni + ln0.6 ni,

and ‘bad’ otherwise. In analogy with [18] and [21], using the same indicator Iv as in the proof
of Lemma 2.1, we show that, for a ‘good’ pair,

1 ≥ cov(Iv, Iw) = 1

jk
e−(j+k−d)�i (1 − e−d�i )+ O

(
d

ln3 ni

)
= OL1

(
d

ln3 ni

)
. (2.7)
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(Compare this with [18, Equations (2.13)–(2.14)].) Since the number of ‘bad’ vertices is
OL1(ni/ ln3 ni), it follows that the number of ‘bad’ pairs is OL1(n2

i / ln3 ni). Hence, the sum of
covariances for the ‘bad’ pairs is O(n2

i / ln3 ni). Thus,

Eni (ψ(Ti,�i)) = Eni

( ∑
good (v,w)∈Ti

cov(Iv, Iw)

)
+ O

(
n2
i

ln3 ni

)
. (2.8)

Recall that Gj is the σ -field generated by the split vectors for all vertices v with d(v) ≤ j . Let
niv denote the number of balls in the subtrees rooted at v for v ∈ Ti . From (1.10) we have,
for v, where di(v) = d ,

Eni (niv | GL+d) ≤ ni

d∏
r=1

Wr + s1d.

Thus,

Eni (niv) ≤ ni

d∏
r=1

E(Wr)+ s1d = ni

bd
+ s1d.

Again, by using (1.10) we obtain

Eni (ni
2
v | GL+d) = n2

i

d∏
r=1

W 2
r + O

(
nid

d∏
r=1

Wr

)
+ O(d2).

Thus,

Eni (ni
2
v) ≤ n2

i

d∏
r=1

E(Wr
2)+ O

(
nid

bd

)
+ O(d2). (2.9)

Note that E(W 2
r ) < E(Wr) = 1/b since Wr ∈ [0, 1] and Wr is nondegenerate. Hence, there is

an ε > 0 such that the right-hand side of (2.9) is bounded by n2
i /(b+ε)d+O(nid/b

d)+O(d2).
Hence, from (2.8), using (2.7) and (2.9),

Eni (ψ(Ti,�i)) = O

(∑
d

n2
i b
dd

(b + ε)d ln3 ni

)
+ O

(
n2
i

ln3 ni

)
= O

(
n2
i

ln3 ni

)
.

The estimate in Lemma 2.2 is used in the proof of the following result.

Lemma 2.3. In a split tree T n, let vi, 1 ≤ i ≤ bL, be the vertices at depth L = �β logb ln n�,
choosing β > 1/(− logb E(V 2)− 1). Then

X(T n) =
bL∑
i=1

ϕ(Ti,�i)+ op

(
n

ln2 n

)
.

Proof. We write the number of records as {P ∗ + P1 + · · · + PbL}, where P ∗ is the number
of records with depth at most L and Pi is the number of records in the subtree Ti rooted at
depth L, except for the root vi . Let FL be the σ -field generated by {λv : d(v) ≤ L}, and let
F ∗
L be the σ -field generated by T n and FL. We also note that E(Pi | F ∗

L ) = ϕ(Ti,�i). By the
same calculation as in [18, Equations (2.17)–(2.18)],

E

((
X(T n)− P ∗ −

bL∑
i=1

ϕ(Ti,�i)

)2)
=

bL∑
i=1

Eψ(Ti,�i). (2.10)
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Obviously, for large enough k,

∑
i∈{1,...,bL}, ni≤nb−kL

ni ≤ bL
n

bkL
= O

(
n

ln3 n

)
. (2.11)

(By choosing k large enough in (2.11), the power of the logarithm can be taken to be arbitrarily
large.) Lemma 2.2 and (2.11) give

∑bL

i=1 Eni (ψ(Ti,�i)) = O(
∑bL

i=1 n
2
i / ln3 n); compare with

[18, Equation (2.20)]. The expected value of this sum is equal to the expected value of the
left-hand side of (2.10). From the calculations in (2.9), for i ∈ {1, . . . , bL},

E(n2
i ) ≤ n2(E(V 2))L + O(nL). (2.12)

Hence, choosingβ > 1/(− logb E(V 2)−1)we obtain
∑bL

i=1 E(n2
i ) = o(n2/ ln n), and, thus, the

left-hand side of (2.10) is o(n2/ ln4 n). Thus, Lemma 2.3 follows from the Markov inequality.

Applying Lemmas 2.1 and 2.3 we obtain, for β > 1/(− logb E(V 2)− 1),

X(T n) =
bL∑
i=1

(
2Ni

µ−1 ln ni
− Nie−(µ−1 ln ni)�i

µ−1 ln ni
+

∑
good v∈Ti

(di(v)− µ−1 ln ni)2

µ−3 ln3 ni
− ϒ(Ti)

µ−2ln2 ni

)

+ op

(
n

ln2 n

)
, (2.13)

where we have used the fact that the Markov inequality gives OL1(n/ ln2.2 n) = op(n/ ln2 n).
In [17, Corollary 2.2] we proved that

bL∑
i=1

∑
good v∈Ti

(di(v)− µ−1 ln ni)2

µ−3 ln3 ni
= σ 2αn

ln2 n
+ op

(
n

ln2 n

)
. (2.14)

We obtain, for ni ≥ n/bkL,

E

(∣∣∣∣ Ni

µ−1 ln ni
e−(µ−1 ln ni)�i − Ni

µ−1 ln n
e−(µ−1 ln n)�i

∣∣∣∣
)

= O

(
L2n

bL ln3 n

)
; (2.15)

compare with [18, p. 404].
Again, we use the bound in (2.11) for the ni < n/bkL (for large enough k), so that we can

ignore them in the sums in (2.13). Thus, by (2.14) and (2.15), with another application of the
Markov inequality, the approximation in (2.13) can be simplified to

X(T n) =
bL∑
i=1

2Ni
µ−1 ln ni

−
bL∑
i=1

ϒ(Ti)

µ−2ln2 ni
−

bL∑
i=1

Nie−(µ−1 ln n)�i

µ−1 ln n
+σ

2αn

ln2 n
+op

(
n

ln2 n

)
. (2.16)

(Compare this with [18, Equation (2.22)].)
By choosing large enough β, from (2.12) we can achieve

bL∑
i=1

E(n2
i ) = o

(
n2

lnk n

)
(2.17)

for arbitrarily large k. Applying (2.17), the variance result of N in Section 1.2.2, that is,
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var(N) = o(n2), and supposing that Assumption 1.3 holds, Chebyshev’s inequality results in

bL∑
i=1

Ni

ln ni
=

bL∑
i=1

αni

ln ni
+ op

(
n

ln2 n

)
. (2.18)

The third sum in (2.16) is treated similarly. For simplicity, we change the notation Ni, 1 ≤
i ≤ bL, to Nv, d(v) = L, and, similarly, for ni, 1 ≤ i ≤ bL. Hence, from (2.16), for large
enough β,

X(T n) =
bL∑
i=1

2αni
µ−1 ln ni

−
bL∑
i=1

ϒ(Ti)

µ−2ln2 ni
−

bL∑
i=1

αnie−(µ−1 ln n)�i

µ−1 ln n
+ σ 2αn

ln2 n
+ op

(
n

ln2 n

)
.

(2.19)

Lemma 2.4. Let L = �β logb ln n� for some constant β. Then

bL∑
i=1

nie
−(µ−1 ln n)�i =

∑
d(v)≤L

nve−(µ−1 ln n)λv + op

(
n

ln n

)
.

Thus, choosing β > 1/(− logb E(V 2)− 1), from (2.19),

X(T n) =
bL∑
i=1

2αni
µ−1 ln ni

−
bL∑
i=1

ϒ(Ti)

µ−2ln2 ni
−

∑
d(v)≤L

αnve−(µ−1 ln n)λv

µ−1 ln n
+ σ 2αn

ln2 n

+ op

(
n

ln2 n

)
.

Proof. Recall that m := µ−1 ln n and that �i is the minimum of the L + 1 i.i.d. random
variables λv, v ∈ P(vi), defined in Section 2.1. Thus, e−m�i is the maximum. Now we define
�
j
i as the j th smallest value in {λv, v ∈ P(vi)}, so that e−m�ji is the j th maximum. Note, in

particular, that �1
i = �i . Choosing a = 2 lnm/m means that, for some i, the probability that

at least �β� + 1 of the λvs, v ∈ P(vi), are less than a is O(bL(La)�β�+1) = o(1). Thus, with
probability tending to 1, there are at most �β� values λv less than a in each P(vi), giving, for
each i,

0 ≤
∑

v∈P(vi )
e−mλv −

�β�∑
j=1

e−m�ji ≤ (L− �β�)e−ma = L− �β�
m2 .

Hence, using the fact that nv − sbL ≤ ∑
{i : v∈P(vi )} ni ≤ nv ,

bL∑
i=1

ni

�β�∑
j=1

e−m�ji =
bL∑
i=1

ni
∑

v∈P(vi )
e−mλv + op

(
n

ln n

)

=
∑

d(v)≤L
e−mλv ∑

{i : v∈P(vi )}
ni + op

(
n

ln n

)

=
∑

d(v)≤L
nve−mλv + op

(
n

ln n

)
.
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Observing that the second smallest value �2
i in {i : v ∈ P(vi)} is at most x if at least two λv

are at most x, and using the fact that the λvs are i.i.d., we calculate P(�2
i ≤ x) as

1 − P(λv > x)L − LP(λv > x)L−1 P(λv ≤ x) = 1 − e−Lx − Le−(L−1)x(1 − e−x).

Hence, E(e−m�2
i ) can be expressed as

∫ ∞

0
e−mx((L− L2)e−Lx + L(L− 1)e−(L−1)x) dx = L− L2

m+ L
+ L2 − L

m+ L− 1
= O

(
L2

m2

)
,

implying that
∑bL

i=1 ni
∑�β�
j=2 e−m�ji = OL1(nL2/m2). Thus, the Markov inequality gives

bL∑
i=1

nie
−(µ−1 ln n)�i =

∑
d(v)≤L

nve−(µ−1 ln n)λv + op

(
n

ln n

)
.

From Lemma 2.4 (where β is chosen large enough), by applying (2.18) and the total path
length result in (1.5), we thus obtain

X(T n) =
∑

d(v)=L

αnv

µ−1ln nv
−

∑
d(v)≤L

αnve−(µ−1 ln n)λv

µ−1 ln n
− ζn

µ−2 ln2 n
+ αnσ 2

ln2 n

+ op

(
n

ln2 n

)
. (2.20)

As in [18] and [21], our aim is to express X(T n) as a sum of triangular arrays. Recall that
ξv := mnve−mλv/n. Normalizing X(T n) gives, using (2.20),

µ−2 ln2 n

αn

(
X(T n)− αn

µ−1 ln n
− αn ln ln n

µ−1 ln2 n
+ ζn

µ−2 ln2 n

)

= −
∑

d(v)≤L
ξv + µ−2 ln2 n

n

∑
d(v)=L

nv

µ−1 ln nv
− µ−1 ln ln n− µ−1 ln n

+ µ−2σ 2 + op(1). (2.21)

Let

D := µ−2 ln2 n

n

∑
d(v)=L

nv

µ−1 ln nv
− µ−1 ln ln n− µ−1 ln n+ µ−2σ 2 (2.22)

and ξ
′
i = −D/n. Then

µ−2 ln2 n

αn

(
X(T n)− αn

µ−1 ln n
− αn ln ln n

µ−1 ln2 n
+ ζn

µ−2 ln2 n

)

= −
∑

d(v)≤L
ξv −

n∑
i=1

ξ
′
i + op(1). (2.23)

As in [18], since the nvs in (2.21) are not independent, {ξv} ∪ {ξ ′
i } is not a triangular array.

Recall that �L is the σ -field generated by {nv, d(v) ≤ L}. Conditioned on �L, {ξv} ∪ {ξ ′
i } is

a triangular array with ξ
′
i conditioned on �L deterministic.
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2.3. Applying a limit theorem for sums of triangular arrays

2.3.1. Theorem 2.1, which proves Theorem 1.1. As in [18] and [21], the proof of Theorem 1.1
will be completed by a classical theorem for convergence of sums of triangular arrays to infinitely
divisible distributions; see, e.g. [24, Theorem 15.28]. For the sake of independence, we intend
to condition on the nvs in the sums in (2.23). We show that, conditioned on the nvs, we
obtain convergence in distribution for the normalized X(T n) to a random variable W with an
infinitely divisible distribution, which is not dependent on the nvs we conditioned on. Then it
follows in the same way as in [18] that, also unconditioned, the normalized X(T n) converges
in distribution to W . The main theorem, Theorem 1.1, is proven by Theorem 2.1 below.

Theorem 2.1. For any constant c > 0, large enough β, and L = �β logb ln n�, the following
statements hold: as n → ∞,

(i) sup
v, d(v)≤L

P(ξv > x | �L) a.s.−→ 0 for every x > 0,

(ii) �1 :=
∑

d(v)≤L
P(ξv > x | �L) p−→ ν(x,∞) := µ−1

x
for every x > 0,

(iii) �2 :=
∑

d(v)≤L
E(ξv1[ξv ≤ c] | �L)− µ−2 ln2 n

n

∑
d(v)=L

nv

µ−1 ln nv
+ µ−1 ln ln n

+ µ−1 ln n− µ−2σ 2

p−→ −µ−1 lnµ−1 + µ−1 − µ−2σ 2 − σ 2 − µ2

2µ2 + µ−1 ln c,

(iv) �3 :=
∑

d(v)≤L
var(ξv1[ξv ≤ c] | �L) p−→ µ−1c.

Compare this theorem with [18, Theorem 2.5]. Before proving Theorem 2.1 we show how it
proves Theorem 1.1. RecallD from (2.22). We apply [24, Theorem 15.28], with the constants

a = 0 and b = −µ−1 lnµ−1 + µ−1 − µ−2σ 2 − σ 2 − µ2

2µ2 ,

to
∑
d(v)≤L ξv + ∑n

i=1 ξ
′
i conditioned on �L with ξ

′
i = −D/n deterministic. The constants a

and b are those that occur in (1.8). Note that D/n → 0; thus, because of (i), conditioned on
�L, {ξv} ∪ {ξ ′

i } is a null array.
We define S(n) := ∑

d(v)≤L ξv + ∑n
i=1 ξ

′
i . Let ν(x) =: 1 − ν(x,∞). From (ii) we have

that dν(x)/dx = µ−1/x2; hence,

∫ c

0
x2 dν(x) =

∫ c

0
µ−1 dx = µ−1c and

∫ 1

c

x dν(x) =
∫ 1

c

µ−1

x
dx = −µ−1 ln c.

Thus, the right-hand sides of (iii) and (iv) are b − ∫ 1
c
x dν(x) and

∫ c
0 x

2 dν(x), respectively,
where b is the constant just defined. In analogy to the binary search tree in [18], we can also
apply [24, Theorem 15.28] to general split trees, implying that, conditioned on�L, S(n)

d−→ W

as n → ∞, where W has an infinitely divisible distribution (in particular, a weakly 1-stable
distribution) with characteristic function as in (1.9). Since the conditioning does not affect
the distribution of W , it follows that, also unconditioned, S(n)

d−→ W ; for a formal proof of
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this fact, see [18, p. 408]. Thus, unconditioned, the normalized X(T n) in (2.21) converges in
distribution to −W . Thus, the proof of Theorem 1.1 for Xv(T ) is completed. Now it simply
follows, by the same type of argument as for the binary search tree [18, p. 409], that the result
holds for Xe(T ) too.

Remark 2.1. Theorem 15.28 of [24] in fact requires usual convergence, i.e. standard pointwise
convergence of sequences with no probability involved, whereas the convergence in Theo-
rem 2.1 is in the probabilistic sense. However, in [18, pp. 408–409] we proved in two ways
(firstly by using subsequences and secondly by using Skorokhod’s coupling theorem) that
convergence in probability is actually sufficient for S(n)

d−→ W to hold. By analogy, these
proofs also work for general split trees.

The idea of the proof of Theorem 2.1 is, as for the binary search tree [18, Theorem 2.5], to
use Chebyshev’s inequality. In [18] we frequently used the fact that the sum

∑k
r=1 lnUr , where

theUr are uniformU(0, 1) random variables, is distributed as a −(k, 1) random variable. For
general split trees, the exponential renewal function U(t) defined in (1.12) is fundamental.

2.3.2. Lemmas for the proof of Theorem 2.1. Recall that �j is the σ -field generated by {nv,
d(v) ≤ j} and that Gj is the σ -field generated by {Wr,v, r ∈ {1, 2 . . . , j}}, d(v) = j . Recall
that m := µ−1 ln n, and write

n̂v := n

k∏
r=1

Wr,v, ξ̂v := mn̂v

n
e−mλv . (2.24)

Note that Gj is equivalent to the σ -field generated by {n̂v : d(v) ≤ j}.
We now present four crucial lemmas, which we use to prove Theorem 2.1.

Lemma 2.5. For any constant c > 0, large enough β, and L = �β logb ln n�, the following
statements hold: as n → ∞,

∑
d(v)≤L

P(ξv > x | �L) =
∑

d(v)≤L
P(ξ̂v > x | GL)+ op(1),

∑
d(v)≤L

E(ξv1[ξv ≤ c] | �L) =
∑

d(v)≤L
E(ξ̂v1[ξ̂v ≤ c] | GL)+ op(1),

∑
d(v)=L

nv

µ−1 ln nv
= n

µ−1 ln n
−

∑
d(v)=L

n̂v ln(n̂v/n)

µ−1 ln2 n
+ op

(
n

ln2 n

)
,

∑
d(v)≤L

var(ξv1[ξv ≤ c] | �L) =
∑

d(v)≤L
var(ξ̂v1[ξ̂v ≤ c] | GL)+ op(1).

For simplicity, we sometimes use the shorthand notation

�L : = n

µ−1 ln n
−

∑
d(v)=L

n̂v ln(n̂v/n)

µ−1 ln2 n
, (2.25)

R1 : =
∑

d(v)≤L
P(ξ̂v > x | GL), (2.26)
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R2 : =
∑

d(v)≤L
E(ξ̂v1[ξ̂v ≤ c] | GL)− µ−2 ln2 n

n
�L, (2.27)

R3 : =
∑

d(v)≤L
var(ξ̂v1[ξ̂v ≤ c] | GL). (2.28)

Lemma 2.6. For any constant c > 0, large enough β, and L = �β logb ln n�, the following
statements hold: as n → ∞,

E(R1) = µ−1

x
+ o(1) = ν(x,∞)+ o(1) for every x > 0,

E(R2) = −µ−1 ln n− µ−1 ln ln n+ µ−1 − µ−1 lnµ−1 + µ−1 ln c − σ 2 − µ2

2µ2 + o(1),

E(R3) = µ−1c + o(1).

Let l := �logb ln n/2�, and, for short, write

S1 :=
∑

l≤d(v)≤L
P(ξ̂v > x | GL),

S2 :=
∑

l≤d(v)≤L
E(ξ̂v1[ξ̂v ≤ c] | GL)− µ−2 ln2 n

n
�L, (2.29)

S3 :=
∑

l≤d(v)≤L
var(ξ̂v1[ξ̂v ≤ c] | GL).

Lemma 2.7. For any constant c > 0, large enough β,L = �β logbln n�, and l = �logbln n/2�,
it holds that, for i ∈ {1, 2, 3}, as n → ∞,

var(E(Si | Gl )) → 0. (2.30)

Lemma 2.8. For any constant c > 0, large enough β,L = �β logbln n�, and l = �logbln n/2�,
it holds that, for i ∈ {1, 2, 3}, as n → ∞,

E(var(Si | Gl )) → 0. (2.31)

Before proving these lemmas we show how they lead to the proof of Theorem 2.1.

2.3.3. Proof of Theorem 2.1. For any x > 0 and v with d(v) ≤ L, we have

P(ξv > x | �L) = P

(
e−mλv > nx

mnv

∣∣∣∣ �L
)

= P

(
λv <

1

m
ln
mnv

nx

∣∣∣∣ �L
)

= 1 − exp

(
− 1

m
ln+ mnv

nx

)
. (2.32)

Thus, for every x > 0,

P(ξv > x | �L) ≤ 1

m
ln+ mnv

nx
≤ 1

m
ln+ m

x
→ 0, (2.33)

which proves (i).
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Recall the definitions of R1, R2, and R3 in (2.26), (2.27), and (2.28). Lemma 2.5 shows that
the left-hand sides of Theorem 2.1(ii), (iii), and (iv) have the following asymptotics:

�1 = R1 + op(1),

�2 = R2 + µ−1 ln ln n+ µ−1 ln n− µ−2σ 2 + op(1) := R̂2 + op(1),

�3 = R3 + op(1).

Lemma 2.6 shows that the expected values of R1, R̂2, and R3 converge to the right-hand sides
of Theorem 2.1(ii), (iii), and (iv).

We complete the proof of Theorem 2.1 by showing that

var(R1) → 0 for every x > 0, var(R2) → 0, and var(R3) → 0. (2.34)

Then, by Chebyshev’s inequality, Theorem 2.1(ii), (iii), and (iv) follow. Thus, it remains to
show how (2.34) follows from Lemma 2.6 and Lemma 2.7. By using (2.33), we easily obtain

∑
d(v)≤L

P(ξ̂v > x | GL) =
∑

l≤d(v)≤L
P(ξ̂v > x | GL)+ o(1),

∑
d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL) =
∑

l≤d(v)≤L
E(ξ̂v1[ξ̂v ≤ c] | GL)+ o(1),

∑
d(v)≤L

var(ξ̂v1[ξ̂v ≤ c] | GL) =
∑

l≤d(v)≤L
var(ξ̂v1[ξ̂v ≤ c] | GL)+ o(1).

Hence,
R1 = S1 + o(1), R2 = S2 + o(1), R3 = S3 + o(1). (2.35)

To show (2.34), we use a variance formula that is easy to establish (see, e.g. [15, Exer-
cise 10.17-2]) var(X) = E(var(X | G)) + var(E(X | G)), where X is a random variable and
G is a sub-σ -field. Consequently, by applying the variance formula, from Lemma 2.7 and
Lemma 2.8, we obtain, as n → ∞, for i ∈ {1, 2, 3},

var(Si) = E(var(Si | Gl ))+ var(E(Si | Gl )) → 0,

and, thus, (2.34) follows from (2.35). Hence, Lemmas 2.5–2.8 prove Theorem 2.1, and, thus,
also Theorem 1.1.

2.3.4. Proofs of Lemmas 2.5–2.8. Finally, we present the proofs of Lemmas 2.5–2.8.

Proof of Lemma 2.5. Since a binomial (k, p) random variable has expected value kp and
variance kp(1 − p), by applying (1.10), the Chebyshev inequality results in

P

(∣∣∣∣nv − n

k∏
r=1

Wr,v

∣∣∣∣ > n0.6
∣∣∣∣ �L

)
≤ 1

n0.19 . (2.36)

This motivates the notation n̂v := n
∏k
r=1Wr,v in (2.24). Also, recall ξ̂v from (2.24) and

the σ -field Gj from Section 2.1. By using (2.32) and (2.33), we obtain (compare with [18,
Equation (2.50)]),

∑
d(v)≤L

P(ξv > x | �L) =
L∑
k=1

∑
d(v)=k

1

m
ln+

(
mnv

nx

)(
1 + O

(
lnm

m

))
, (2.37)
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and, similarly,

∑
d(v)≤L

P(ξ̂v > x | GL) =
L∑
k=1

∑
d(v)=k

1

m
ln+

(
mn̂v

nx

)(
1 + O

(
lnm

m

))
. (2.38)

Using (2.37), (2.38), and (2.36), we obtain

∑
d(v)≤L

P(ξv > x | �L) =
∑

d(v)≤L
P(ξ̂v > x | GL)+ op(1). (2.39)

Similarly, (2.36) implies that

∑
d(v)≤L

E(ξv1[ξv ≤ c] | �L) =
∑

d(v)≤L
E(ξ̂v1[ξ̂v ≤ c] | GL)+ op(1),

where

∑
d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL) =
∑

d(v)≤L

mn̂v

n(m+ 1)
exp

(
−m+ 1

m
ln+

(
mn̂v

nc

))
. (2.40)

(Compare with [18, Equations (2.56)–(2.57)], where
∑
d(v)≤L E(ξv1[ξv ≤ c] | �L) is esti-

mated.)
Using (2.36) (compare with [18, Equations (2.62)–(2.63)]), we obtain

∑
d(v)=L

nv

µ−1 ln nv
= n

µ−1 ln n
−

∑
d(v)=L

n̂v ln(n̂v/n)

µ−1 ln2 n
+ op

(
n

ln2 n

)
.

By applying (2.36) and using similar calculations as in (2.37)–(2.39), we obtain

∑
d(v)≤L

var(ξv1[ξv ≤ c] | �L) =
∑

d(v)≤L
var(ξ̂v1[ξ̂v ≤ c] | GL)+ op(1),

where (compare with [18, Equation (2.65)])

∑
d(v)≤L

var(ξ̂v1[ξ̂v ≤ c] | GL) =
∑

d(v)≤L

m2n̂2
v

2mn2 exp

(
−2m+ 1

m
ln+

(
mn̂v

nc

))
+ o(1).

Proof of Lemma 2.6. Recall that Yk = −∑k
r=1 lnWr and that R1 = ∑

d(v)≤L P(ξ̂v >

x | GL). As in the calculations in [18, Equation (2.51)], from (2.38) and using integration
by parts, we obtain

E(R1) = (1 + o(1))
L∑
k=1

bk E

(
ln(m/x)− Yk

m
1
[
Yk ≤ ln

(
m

x

)])

= (1 + o(1))
1

m

∫ ln(m/x)

0

L∑
k=1

bk P(Yk ≤ t) dt. (2.41)
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We want to show that

1

m

∫ ln(m/x)

0

∞∑
k=L+1

bk P(Yk ≤ t) dt = o(1). (2.42)

To show this, we use large deviations. Choose an arbitrary s > 0. By applying the Markov
inequality and using the fact that the Wr,v, r ∈ {1, . . . , k}, are i.i.d., we obtain

P(Yk ≤ t) = P(−Yk ≥ −t) = P(e−sYk ≥ e−st ) ≤ (E(V s))kest . (2.43)

In the definition ofL = �β logb ln n�, the constantβ can be chosen arbitrarily large. It is enough
to show that (lnm/m)

∑∞
k=L+1 b

k P(Yk ≤ ln(m/x)) iso(1) for proving (2.42). Choosing s > 1,
we obtain E(V s) < E(V ) = 1/b. Thus, we can find a δ > 0 such that E(V s) ≤ 1/b1+δ . By
applying this fact together with (2.43), we obtain

∞∑
k=L+1

bk P

(
Yk ≤ ln

(
m

x

))
≤

∞∑
k=L+1

bk

bk+δk
ms

xs
= O(m−δβms). (2.44)

Thus, choosing β > (s − 1)/δ in L gives (2.42). Now it follows from the asymptotics of U(t)
in (1.13) that the principal term in (2.41) has the following asymptotics:

1

m

∫ ln(m/x)

0
U(t) dt + o(1) = µ−1 + o(1)

m

∫ ln(m/x)

0
et dt + o(1) = ν(x,∞)+ o(1). (2.45)

Hence, E(R1) = ν(x,∞)+ o(1). Similar to [18, Equation (2.58)], using (2.40), we obtain

E

( ∑
d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL)

)
:= E1 + E2, (2.46)

where

E1 = E
∑

d(v)≤L
bk

m

m+ 1
e−Yk exp

(
−m+ 1

m

(
ln

(
m

c

)
− Yk

))
1
[
Yk ≤ ln

(
m

c

)]
,

E2 = E
∑

d(v)≤L
bk

m

m+ 1
e−Yk 1

[
Yk > ln

(
m

c

)]
. (2.47)

Using integration by parts, we obtain

E1 = m

m+ 1
exp

(
−m+ 1

m
ln

(
m

c

))(∣∣∣∣
L∑
k=1

bket/m P(Yk ≤ t)

∣∣∣∣
ln(m/c)

0

−
∫ ln(m/c)

0

L∑
k=1

bk

m
et/m P(Yk ≤ t) dt

)
, (2.48)

which is asymptotic to µ−1 + o(1) in view of (1.13) and (2.44). By similar calculations as in
(2.48) we obtain

E2 = m

m+ 1
L− m

m+ 1

∫ ln(m/c)

0

L∑
k=1

bke−t dP(Yk ≤ t)

= L− µ−1 − m

m+ 1

∫ ln(m/c)

0

L∑
k=1

bke−t P(Yk ≤ t) dt + o(1). (2.49)
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From (2.44) with β > s/δ, it follows that

∫ ln(m/c)

0

L∑
k=1

bke−t P(Yk ≤ t) dt =
∫ ln(m/c)

0
e−tU(t) dt + o(1)

=
∫ ln(m/c)

0
e−t (U(t)− µ−1et ) dt + µ−1 ln

(
m

c

)
+ o(1).

(2.50)

Applying the solution of W(x) := ∫ x
0 e−t (U(t)− µ−1et ) dt in (1.14), from (2.49) we obtain

E2 = L− µ−1 ln(m/c)− (σ 2 − µ2)/2µ2 + o(1).

Recalling (2.46) and applying the approximations of E1 and E2, we obtain

E

( ∑
d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL)

)
= L+ µ−1 − µ−1 ln

(
m

c

)
− σ 2 − µ2

2µ2 + o(1),

which has the following asymptotics:

K := L+ µ−1 − µ−1 ln ln n− µ−1 lnµ−1 + µ−1 ln c − σ 2 − µ2

2µ2 + o(1). (2.51)

By the definition of n̂v in (2.24),

�L := n

µ−1 ln n
−

∑
d(v)=L

n̂v ln(n̂v/n)

µ−1 ln2 n

= n

µ−1 ln n
−

∑
d(v)=L

n
∏L
r=1Wr,v

∑L
r=1 lnWr,v

µ−1 ln2 n
. (2.52)

Hence, using the definition of µ in (1.1), we obtain E(�L) = n/µ−1 ln n + nL/µ−2 ln2 n.
Recalling R2 from (2.27) and K in (2.51), we obtain E(R2) = K − µ−1 ln n− L.

Recall that R3 = ∑
d(v)≤L var(ξ̂v1[ξ̂v ≤ c] | GL). Using integration by parts and (2.43)

(choosing 1 < s < 2), we obtain, by similar calculations as in (2.41)–(2.45), E(R3) = µ−1c+
o(1). (Compare with [18, Equations (2.66)–(2.69)].) For a complete proof of this fact, we refer
the reader to [16].

Proof of Lemma 2.7. We show only (2.30) for i = 2. Then (2.30) for i = 1 and i = 3 are
shown by similar but simpler calculations. For a complete proof, we refer the reader to [16].
Also, compare with the similar calculations in [18, Proof of Lemma 2.7].

For a given vertex vi ∈ T with d(vi) = l, there are at most bj−l choices of v at depth j
with ancestor vi . Recall that Yj,v := − ∑j

r=1 lnWr,v . For v with d(v) = j , we also write
Zj−l,v := Yj,v − Yl,vi = − ∑j

r=l+1 lnWr,v .

Recall the definition of S2 from (2.29) and the definition of�L from (2.25). Glancing at the
calculations in (2.46)–(2.47), we obtain E(

∑
l≤d(v)≤L E(ξ̂v1[ξ̂v ≤ c] | GL) | Gl ) = F1 + F2,
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where

F1 := E

( ∑
l≤d(v)≤L

m

m+ 1
exp(−Yl,vi − Zj−l,v) exp

(
−m+ 1

m
(lnm− ln c − Yl,vi − Zj−l,v)

)

× 1
[
Yl,vi + Zj−l,v ≤ ln

(
m

c

)] ∣∣∣∣ Gl

)
,

F2 := E

( ∑
l≤d(v)≤L

m

m+ 1
exp(−Yl,vi − Zj−l,v) 1

[
Yl,vi + Zj−l,v > ln

(
m

c

)] ∣∣∣∣ Gl

)
.

Then, by similar calculations as in (2.48),

F1 = exp

(
−m+ 1

m

(
ln

(
m

c

)))
m

m+ 1

bl∑
i=1

∫ ln(m/c)−Yl,vi
0

L∑
j=l+1

bj−let/m dP(Zj−l,v ≤ t)

=
bl∑
i=1

µ−1
l∏

r=1

Wr,vi + o(1)

= µ−1 + o(1). (2.53)

By similar calculations as in (2.48)–(2.50), we obtain

F2 =
bl∑
i=1

l∏
r=1

Wr,vi

(
(L− l)−

∫ ln(m/c)−Yl,vi
0

m

m+ 1

L∑
j=l+1

bj−le−t dP(Zj−l,v ≤ t)

)
+ o(1)

=
bl∑
i=1

l∏
r=1

Wr,vi

(
L− l − µ−1 ln

(
m

c

)
− σ 2 − µ2

2µ2 − µ−1
l∑

r=1

lnWr,vi

)
+ o(1)

= L− l − µ−1 ln

(
m

c

)
− σ 2 − µ2

2µ2 −
bl∑
i=1

µ−1
l∏

r=1

Wr,vi

l∑
r=1

lnWr,vi + o(1). (2.54)

Thus, by applying the approximations of F1 in (2.53) and F2 in (2.54), we obtain

E

( ∑
l≤d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL)

∣∣∣∣ Gl

)
= µ−1 + L− l − µ−1 ln

(
m

c

)
− σ 2 − µ2

2µ2

−
bl∑
i=1

µ−1
l∏

r=1

Wr,vi

l∑
r=1

lnWr,vi + o(1). (2.55)

Let vi be a vertex at depth l, and let v be a vertex at depth L. Similarly as in (2.52) (compare
with [18, Equations (2.73)–(2.74)]), we obtain

E(�L | Gl ) = n

µ−1 ln n
+ n(L− l)

µ−2 ln2 n
−

bl∑
i=1

n
∏l
r=1Wr,vi

∑l
r=1 lnWr,vi

µ−1 ln2 n
+o

(
n

ln2 n

)
. (2.56)

From (2.55) and (2.56), var(E(S2 | Gl )) is o(1).
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Proof of Lemma 2.8. The calculations are similar to those of [18, Proof of Lemma 2.8]. We
show only (2.31) for i = 2 and i = 3; then by similar calculations we can show (2.31) for
i = 1. For a complete proof, we refer the reader to [16].

First we consider

var

( ∑
l≤d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL)

∣∣∣∣ Gl

)

=
∑

l≤d(v)≤L
l≤d(w)≤L

cov(E(ξ̂v1[ξ̂v ≤ c] | GL),E(ξ̂w1[ξ̂w ≤ c] | GL) | Gl ). (2.57)

We can suppose that the closest ancestor u for v and w is at depth d ≥ l, since the other terms
are just 0 because of independence. For d ≥ l,

E(cov(E(ξ̂v1[ξ̂v ≤ c] | GL),E(ξ̂w1[ξ̂w ≤ c] | GL) | Gl ))

≤ E(E(ξ̂v1[ξ̂v ≤ c] | GL)E(ξ̂w1[ξ̂w ≤ c] | GL)).

For a vertex v with d(v) = j ,

E(ξ̂v1[ξ̂v ≤ c] | GL) = mn̂v

n(m+ 1)
exp

(
−m+ 1

m
ln+

(
mn̂v

nc

))
≤ n̂v

n
=

j∏
r=1

Wr,v.

Denote by (vu,wu) a pair of vertices with closest ancestor u. Consider one such pair (vu,wu),
and let d(u) = d , d(v) = j , and d(w) = k. Since E(W 2

r,v) < 1/b1+δ for some δ > 0, it
follows that

E(E(ξ̂vu1[ξ̂vu ≤ c] | GL)E(ξ̂wu1[ξ̂wu ≤ c] | GL)) ≤ C1 E
d∏
r=1

W 2
r,ub

−(j−d)−(k−d)

≤ C1

(
1

b1+δ

)d
b−(j−d)−(k−d), (2.58)

where C1 is a constant depending on E(Ŵu,vŴu,w), Ŵu,v is the component in the split vector
of vertex u that corresponds to the child uv of u, and Ŵu,w has an analogous definition. Thus,
by using (2.57)–(2.58), letting v,w : v ∧ w = u denote that the vertices v,w have closest
ancestor u, we find that

E

(
var

( ∑
l≤d(v)≤L

E(ξ̂v1[ξ̂v ≤ c] | GL)

∣∣∣∣ Gl

))

is bounded by

L∑
d=l

∑
{u : d(u)=d}

∑
{v,w∈Tu : v∧w=u}

E(E(ξ̂v1[ξ̂v ≤ c] | GL)E(ξ̂w1[ξ̂w ≤ c] | GL))

≤ C1

L∑
d=l

b−δd
L∑
j=d

bj−d−(j−d)
L∑
k=d

bk−d−(k−d)

≤ C2L
2b−δl

→ 0, (2.59)

where C2 is a constant. (Compare with the calculations in [18, Equation (2.82)].) Similarly,

https://doi.org/10.1239/aap/1300198517 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198517


Records and cuttings in split trees 175

we show that

E

(
var

(
µ−2 ln2 n

n
�L

∣∣∣∣ Gl

))
→ 0.

By applying the conditional Hölder inequality we deduce that E(var(S2 | Gl )) is o(1).
We can now easily show (2.31) for i = 3 by the same argument as in [18], i.e. we observe

that
var(ξ̂v1[ξ̂v ≤ c] | GL) ≤ E(ξ̂2

v 1[ξ̂v ≤ c] | GL) ≤ c E(ξ̂v1[ξ̂v ≤ c] | GL),

and, thus, (2.31) for i = 3 follows from (2.58) by calculations similar to those in (2.59).

Appendix A. Proof of Lemma 1.1

Recall that �L is the σ -field generated by {n(v), d(v) ≤ L}. First, (1.4) gives

E

( bL∑
i=1

ϒ(Ti)

µ−2ln2 ni

∣∣∣∣ �L
)

=
bL∑
i=1

αni

µ−1ln ni
+

bL∑
i=1

nir(ni)

µ−2ln2 ni
. (A.1)

Note that, conditioned on �L, the summands ϒ(Ti), i ∈ {1, . . . , bL}, are independent.
By applying the Cauchy–Schwarz inequality, and using the facts that E(N2) = O(n2) (see,
e.g. [17, Theorem 2.1]) and E(D2

k ) = O(ln2 n) for all k (see e.g. [17, Theorem 2.3]), we obtain

var

( bL∑
i=1

ϒ(Ti)

∣∣∣∣ �L
)

=
bL∑
i=1

var(ϒ(Ti) | �L)

≤
bL∑
i=1

E(ϒ(Ti)
2 | �L)

=
bL∑
i=1

O(n2
i ln2 ni). (A.2)

For a large enough constant β, by taking expectations in (A.2) and applying (2.17), we obtain

E

(
var

( bL∑
i=1

ϒ(Ti)

µ−2ln2 ni

∣∣∣∣ �L
))

= o

(
n2

ln4 n

)
. (A.3)

Using (A.1), (A.2), and applying (A.3), the Chebyshev inequality results in, conditioned on�L,

bL∑
i=1

ϒ(Ti)

µ−2ln2 ni
=

bL∑
i=1

αni

µ−1 ln ni
+

bL∑
i=1

nir(ni)

µ−2ln2 ni
+ op

(
n

ln2 n

)
. (A.4)

Let k > 0 be a fixed constant, and assume that ni is at least n/bkL; by Taylor’s expansion we
obtain

1

ln2 ni
= 1

ln2 n
+ O

(
ln ln n

ln3 n

)
. (A.5)

By applying (2.11) and using (A.5), we deduce that

bL∑
i=1

o(ni)

ln2 ni
= o

( bL∑
i=1

ni

ln2 ni

)
+ o

(
n

ln2 n

)
= o

(
n

ln2 n

)
. (A.6)
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By applying [4, Corollary 5.1], which states that r(n) converges to a constant ζ , it follows from
(2.11), (A.5), and (A.6) that

bL∑
i=1

nir(ni)

µ−2ln2 ni
=

bL∑
i=1

ζni

µ−2ln2 ni
+

bL∑
i=1

o(ni)

ln2 ni
= ζn

ln2 n
+ o

(
n

ln2 n

)
. (A.7)

Thus, the lemma follows from (A.4) and (A.7).
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